Search results for: early grain-filling stage
6535 Controlling Fear: Jordanian Women’s Perceptions of the Diagnosis and Surgical Treatment of Early Stage Breast Cancer
Authors: Rana F. Obeidat, Suzanne S. Dickerson, Gregory G. Homish, Nesreen M. Alqaissi, Robin M. Lally
Abstract:
Background: Despite the fact that breast cancer is the most prevalent cancer among Jordanian women, practically nothing is known about their perceptions of early stage breast cancer and surgical treatment. Objective: To gain understanding of the diagnosis and surgical treatment experience of Jordanian women diagnosed with early stage breast cancer. Methods: An interpretive phenomenological approach was used for this study. A purposive sample of 28 Jordanian women who were surgically treated for early stage breast cancer within 6 months of the interview was recruited. Data were collected using individual interviews and analyzed using Heideggerian hermeneutical methodology. Results: Fear had a profound effect on Jordanian women’s stories of diagnosis and surgical treatment of early stage breast cancer. Women’s experience with breast cancer and its treatment was shaped by their pre-existing fear of breast cancer, the disparity in the quality of care at various health care institutions, and sociodemographic factors (e.g., education, age). Conclusions: Early after the diagnosis, fear was very strong and women lost perspective of the fact that this disease was treatable and potentially curable. To control their fears, women unconditionally trusted God, the health care system, surgeons, family, friends, and/or neighbors, and often accepted treatment offered by their surgeons without questioning. Implications for practice: Jordanian healthcare providers have a responsibility to listen to their patients, explore meanings they ascribe to their illness, and provide women with proper education and support necessary to help them cope with their illness.Keywords: breast cancer, early stage, Jordanian, experience, phenomenology
Procedia PDF Downloads 3266534 Decision Support System for a Pilot Flash Flood Early Warning System in Central Chile
Authors: D. Pinto, L. Castro, M. L. Cruzat, S. Barros, J. Gironás, C. Oberli, M. Torres, C. Escauriaza, A. Cipriano
Abstract:
Flash floods, together with landslides, are a common natural threat for people living in mountainous regions and foothills. One way to deal with this constant menace is the use of Early Warning Systems, which have become a very important mitigation strategy for natural disasters. In this work, we present our proposal for a pilot Flash Flood Early Warning System for Santiago, Chile, the first stage of a more ambitious project that in a future stage shall also include early warning of landslides. To give a context for our approach, we first analyze three existing Flash Flood Early Warning Systems, focusing on their general architectures. We then present our proposed system, with main focus on the decision support system, a system that integrates empirical models and fuzzy expert systems to achieve reliable risk estimations.Keywords: decision support systems, early warning systems, flash flood, natural hazard
Procedia PDF Downloads 3756533 Significance of Tridimensional Volume of Tumor in Breast Cancer Compared to Conventional TNM Stage
Authors: Jaewoo Choi, Ki-Tae Hwang, Eunyoung Ko
Abstract:
Backgrounds/Aims: Patients with breast cancer are currently classified according to TNM stage. Nevertheless, the actual volume would be mis-estimated, and it would bring on inappropriate diagnosis. Tridimensional volume-stage derived from the ellipsoid formula was presented as useful measure. Methods: The medical records of 480 consecutive breast cancer between January 2001 and March 2013 were retrospectively reviewed. All patients were divided into three groups according to tumor volume by receiver operating characteristic analysis, and the ranges of each volume-stage were that V1 was below 2.5 cc, V2 was exceeded 2.5 and below 10.9 cc, and V3 was exceeded 10.9 cc. We analyzed outcomes of volume-stage and compared disease-free survival (DFS) and overall survival (OS) between size-stage and volume-stage with variant intrinsic factor. Results: In the T2 stage, there were patients who had a smaller volume than 4.2 cc known as maximum value of T1. These findings presented that patients in T1c had poorer DFS than T2-lesser (mean of DFS 48.7 vs. 51.8, p = 0.011). Such is also the case in OS (mean of OS 51.1 vs. 55.3, p = 0.006). The cumulative survival curves for V1, V2 compared T1, T2 showed similarity in DFS (HR 1.9 vs. 1.9), and so did it for V3 compared T3 (HR 3.5 vs. 2.6) significantly. Conclusion: This study demonstrated that tumor volume had good feasibility on the prognosis of patients with breast cancer. We proposed that volume-stage should be considered for an additional stage indicator, particularly in early breast cancer.Keywords: breast cancer, tridimensional volume of tumor, TNM stage, volume stage
Procedia PDF Downloads 4046532 Winter Wheat Yield Forecasting Using Sentinel-2 Imagery at the Early Stages
Authors: Chunhua Liao, Jinfei Wang, Bo Shan, Yang Song, Yongjun He, Taifeng Dong
Abstract:
Winter wheat is one of the main crops in Canada. Forecasting of within-field variability of yield in winter wheat at the early stages is essential for precision farming. However, the crop yield modelling based on high spatial resolution satellite data is generally affected by the lack of continuous satellite observations, resulting in reducing the generalization ability of the models and increasing the difficulty of crop yield forecasting at the early stages. In this study, the correlations between Sentinel-2 data (vegetation indices and reflectance) and yield data collected by combine harvester were investigated and a generalized multivariate linear regression (MLR) model was built and tested with data acquired in different years. It was found that the four-band reflectance (blue, green, red, near-infrared) performed better than their vegetation indices (NDVI, EVI, WDRVI and OSAVI) in wheat yield prediction. The optimum phenological stage for wheat yield prediction with highest accuracy was at the growing stages from the end of the flowering to the beginning of the filling stage. The best MLR model was therefore built to predict wheat yield before harvest using Sentinel-2 data acquired at the end of the flowering stage. Further, to improve the ability of the yield prediction at the early stages, three simple unsupervised domain adaptation (DA) methods were adopted to transform the reflectance data at the early stages to the optimum phenological stage. The winter wheat yield prediction using multiple vegetation indices showed higher accuracy than using single vegetation index. The optimum stage for winter wheat yield forecasting varied with different fields when using vegetation indices, while it was consistent when using multispectral reflectance and the optimum stage for winter wheat yield prediction was at the end of flowering stage. The average testing RMSE of the MLR model at the end of the flowering stage was 604.48 kg/ha. Near the booting stage, the average testing RMSE of yield prediction using the best MLR was reduced to 799.18 kg/ha when applying the mean matching domain adaptation approach to transform the data to the target domain (at the end of the flowering) compared to that using the original data based on the models developed at the booting stage directly (“MLR at the early stage”) (RMSE =1140.64 kg/ha). This study demonstrated that the simple mean matching (MM) performed better than other DA methods and it was found that “DA then MLR at the optimum stage” performed better than “MLR directly at the early stages” for winter wheat yield forecasting at the early stages. The results indicated that the DA had a great potential in near real-time crop yield forecasting at the early stages. This study indicated that the simple domain adaptation methods had a great potential in crop yield prediction at the early stages using remote sensing data.Keywords: wheat yield prediction, domain adaptation, Sentinel-2, within-field scale
Procedia PDF Downloads 676531 Neuromingeal Cryptococcosis Revealing IgA-λ Multiple Myeloma
Authors: L. Mtibaa, N. Baccouchi, S. Hannechi, R. Abid, R. Battikh, B. Jemli
Abstract:
Cryptococcosis is an opportunistic fungal infection which is commonly associated with an immune-compomised state, especially HIV infection. Rare cases of cryptococcosis have been reported in patients with multiple myeloma (MM), and they are all at a late stage of the disease. However, the inaugural character of cryptococcosis revealing the MM at an early stage has never been reported to our best knowledge. We presented here a case of neuromeningeal cryptococcosis in a patient without any apparent underlying conditions, who has revealed IgA-λ MM. Early detection and treatment of cryptococcosis are essential to reduce morbidity and for a better outcome.Keywords: Cryptococcosis, Cryptococcus, hematologic, malignancy
Procedia PDF Downloads 1676530 Differences in Innovative Orientation of the Entrepreneurially Active Adults: The Case of Croatia
Authors: Nataša Šarlija, Sanja Pfeifer
Abstract:
This study analyzes the innovative orientation of the Croatian entrepreneurs. Innovative orientation is represented by the perceived extent to which an entrepreneur’s product or service or technology is new, and no other businesses offer the same product. The sample is extracted from the GEM Croatia Adult Population Survey dataset for the years 2003-2013. We apply descriptive statistics, t-test, Chi-square test and logistic regression. Findings indicate that innovative orientations vary with personal, firm, meso and macro level variables, and between different stages in entrepreneurship process. Significant predictors are occupation of the entrepreneurs, size of the firm and export aspiration for both early stage and established entrepreneurs. In addition, fear of failure, expecting to start a new business and seeing an entrepreneurial career as a desirable choice are predictors of innovative orientation among early stage entrepreneurs.Keywords: multilevel determinants of the innovative orientation, Croatian early stage entrepreneurs, established businesses, GEM evidence
Procedia PDF Downloads 4986529 Data Augmentation for Early-Stage Lung Nodules Using Deep Image Prior and Pix2pix
Authors: Qasim Munye, Juned Islam, Haseeb Qureshi, Syed Jung
Abstract:
Lung nodules are commonly identified in computed tomography (CT) scans by experienced radiologists at a relatively late stage. Early diagnosis can greatly increase survival. We propose using a pix2pix conditional generative adversarial network to generate realistic images simulating early-stage lung nodule growth. We have applied deep images prior to 2341 slices from 895 computed tomography (CT) scans from the Lung Image Database Consortium (LIDC) dataset to generate pseudo-healthy medical images. From these images, 819 were chosen to train a pix2pix network. We observed that for most of the images, the pix2pix network was able to generate images where the nodule increased in size and intensity across epochs. To evaluate the images, 400 generated images were chosen at random and shown to a medical student beside their corresponding original image. Of these 400 generated images, 384 were defined as satisfactory - meaning they resembled a nodule and were visually similar to the corresponding image. We believe that this generated dataset could be used as training data for neural networks to detect lung nodules at an early stage or to improve the accuracy of such networks. This is particularly significant as datasets containing the growth of early-stage nodules are scarce. This project shows that the combination of deep image prior and generative models could potentially open the door to creating larger datasets than currently possible and has the potential to increase the accuracy of medical classification tasks.Keywords: medical technology, artificial intelligence, radiology, lung cancer
Procedia PDF Downloads 736528 Development of a Decision-Making Method by Using Machine Learning Algorithms in the Early Stage of School Building Design
Authors: Pegah Eshraghi, Zahra Sadat Zomorodian, Mohammad Tahsildoost
Abstract:
Over the past decade, energy consumption in educational buildings has steadily increased. The purpose of this research is to provide a method to quickly predict the energy consumption of buildings using separate evaluation of zones and decomposing the building to eliminate the complexity of geometry at the early design stage. To produce this framework, machine learning algorithms such as Support vector regression (SVR) and Artificial neural network (ANN) are used to predict energy consumption and thermal comfort metrics in a school as a case. The database consists of more than 55000 samples in three climates of Iran. Cross-validation evaluation and unseen data have been used for validation. In a specific label, cooling energy, it can be said the accuracy of prediction is at least 84% and 89% in SVR and ANN, respectively. The results show that the SVR performed much better than the ANN.Keywords: early stage of design, energy, thermal comfort, validation, machine learning
Procedia PDF Downloads 1036527 Development of a Decision-Making Method by Using Machine Learning Algorithms in the Early Stage of School Building Design
Authors: Rajaian Hoonejani Mohammad, Eshraghi Pegah, Zomorodian Zahra Sadat, Tahsildoost Mohammad
Abstract:
Over the past decade, energy consumption in educational buildings has steadily increased. The purpose of this research is to provide a method to quickly predict the energy consumption of buildings using separate evaluation of zones and decomposing the building to eliminate the complexity of geometry at the early design stage. To produce this framework, machine learning algorithms such as Support vector regression (SVR) and Artificial neural network (ANN) are used to predict energy consumption and thermal comfort metrics in a school as a case. The database consists of more than 55000 samples in three climates of Iran. Cross-validation evaluation and unseen data have been used for validation. In a specific label, cooling energy, it can be said the accuracy of prediction is at least 84% and 89% in SVR and ANN, respectively. The results show that the SVR performed much better than the ANN.Keywords: early stage of design, energy, thermal comfort, validation, machine learning
Procedia PDF Downloads 766526 Collaborative Early Warning System: An Integrated Framework for Mitigating Impacts of Natural Hazards in the UAE
Authors: Abdulla Al Hmoudi
Abstract:
The impacts and costs of natural disasters on people, properties and the environment is often severe when they occur on a large scale or when not prepared for. Factors such as impacts of climate change, urban growth, poor planning to mention a few, have continued to significantly increase the frequencies and aggravate the impacts of natural hazards across the world; the United Arab Emirates (UAE) inclusive. The lack of deployment of an early warning system, low risk and hazard knowledge and impact of natural hazard experienced in some communities in the UAE have emphasised the need for more effective early warning systems. This paper focuses on the collaborative approach taken to instituting and implementing an early warning system. Using mixed methods 888 people completed the questionnaire and eight people were interviewed in Abu Dhabi. The results indicate that the collaborative approach to early warning system is UAE is needed, but lacks essential principles of the early warning system and currently underutilised. It is recommended that the collaborative early warning system is applied at every stage of the early warning system with the specific responsibility of each stakeholder and actor.Keywords: community, early warning system, emergency management, UAE
Procedia PDF Downloads 1466525 Analysis on South Korean Early Childhood Education Teachers’ Stage of Concerns about Software Education According to the Concern-Based Adoption Model
Authors: Sun-Mi Park, Ji-Hyun Jung, Min-Jung Kang
Abstract:
Software (SW) education is scheduled to be included in the National curriculum in South Korea by 2018. However, Korean national kindergarten curriculum has been excepted from the revision of the entire Korean national school curriculum including software education. Even though the SW education has not been considered a part of current national kindergarten curriculum, there is a growing interest of adopting software education into the ECE practice. Teachers might be a key element in introducing and implementing new educational change such as SW education. In preparation for the adoption of SW education in ECE, it might be necessary to figure out ECE teachers’ perception and attitudes toward early childhood software education. For this study, 219 ECE teachers’ concern level in SW education was surveyed by using the Stages of Concern Questionnaire (SoCQ). As a result, the teachers' concern level in SW education is the highest at stage 0-Unconcerned and is high level in stage 1-informational, stage 2-personal, and stage 3-management concern. Thus, a non-user pattern was mostly indicated. However, compared to a typical non-user pattern, the personal and informative concern level is slightly high. The 'tailing up' phenomenon toward stage 6-refocusing was shown. Therefore, the pattern aspect close to critical non-user ever appeared to some extent. In addition, a significant difference in concern level was shown at all stages depending on the awareness of necessity. Teachers with SW training experience showed higher intensity only at stage 0. There was statistically significant difference in stage 0 and 6 depending on the future implementation decision. These results will be utilized as a resource in building ECE teachers’ support system according to his or her concern level of SW education.Keywords: concerns-based adoption model (CBAM), early childhood education teachers, software education, Stages of Concern (SoC)
Procedia PDF Downloads 2076524 Transcriptomics Analysis on Comparing Non-Small Cell Lung Cancer versus Normal Lung, and Early Stage Compared versus Late-Stages of Non-Small Cell Lung Cancer
Authors: Achitphol Chookaew, Paramee Thongsukhsai, Patamarerk Engsontia, Narongwit Nakwan, Pritsana Raugrut
Abstract:
Lung cancer is one of the most common malignancies and primary cause of death due to cancer worldwide. Non-small cell lung cancer (NSCLC) is the main subtype in which majority of patients present with advanced-stage disease. Herein, we analyzed differentially expressed genes to find potential biomarkers for lung cancer diagnosis as well as prognostic markers. We used transcriptome data from our 2 NSCLC patients and public data (GSE81089) composing of 8 NSCLC and 10 normal lung tissues. Differentially expressed genes (DEGs) between NSCLC and normal tissue and between early-stage and late-stage NSCLC were analyzed by the DESeq2. Pairwise correlation was used to find the DEGs with false discovery rate (FDR) adjusted p-value £ 0.05 and |log2 fold change| ³ 4 for NSCLC versus normal and FDR adjusted p-value £ 0.05 with |log2 fold change| ³ 2 for early versus late-stage NSCLC. Bioinformatic tools were used for functional and pathway analysis. Moreover, the top ten genes in each comparison group were verified the expression and survival analysis via GEPIA. We found 150 up-regulated and 45 down-regulated genes in NSCLC compared to normal tissues. Many immnunoglobulin-related genes e.g., IGHV4-4, IGHV5-10-1, IGHV4-31, IGHV4-61, and IGHV1-69D were significantly up-regulated. 22 genes were up-regulated, and five genes were down-regulated in late-stage compared to early-stage NSCLC. The top five DEGs genes were KRT6B, SPRR1A, KRT13, KRT6A and KRT5. Keratin 6B (KRT6B) was the most significantly increased gene in the late-stage NSCLC. From GEPIA analysis, we concluded that IGHV4-31 and IGKV1-9 might be used as diagnostic biomarkers, while KRT6B and KRT6A might be used as prognostic biomarkers. However, further clinical validation is needed.Keywords: differentially expressed genes, early and late-stages, gene ontology, non-small cell lung cancer transcriptomics
Procedia PDF Downloads 1186523 Carbon Skimming: Towards an Application to Summarise and Compare Embodied Carbon to Aid Early-Stage Decision Making
Authors: Rivindu Nethmin Bandara Menik Hitihamy Mudiyanselage, Matthias Hank Haeusler, Ben Doherty
Abstract:
Investors and clients in the Architectural, Engineering and Construction industry find it difficult to understand complex datasets and reports with little to no graphic representation. The stakeholders examined in this paper include designers, design clients and end-users. Communicating embodied carbon information graphically and concisely can aid with decision support early in a building's life cycle. It is essential to create a common visualisation approach as the level of knowledge about embodied carbon varies between stakeholders. The tool, designed in conjunction with Bates Smart, condenses Tally Life Cycle Assessment data to a carbon hot-spotting visualisation, highlighting the sections with the highest amounts of embodied carbon. This allows stakeholders at every stage of a given project to have a better understanding of the carbon implications with minimal effort. It further allows stakeholders to differentiate building elements by their carbon values, which enables the evaluation of the cost-effectiveness of the selected materials at an early stage. To examine and build a decision-support tool, an action-design research methodology of cycles of iterations was used along with precedents of embodied carbon visualising tools. Accordingly, the importance of visualisation and Building Information Modelling are also explored to understand the best format for relaying these results.Keywords: embodied carbon, visualisation, summarisation, data filtering, early-stage decision-making, materiality
Procedia PDF Downloads 856522 Optimisation of Structural Design by Integrating Genetic Algorithms in the Building Information Modelling Environment
Authors: Tofigh Hamidavi, Sepehr Abrishami, Pasquale Ponterosso, David Begg
Abstract:
Structural design and analysis is an important and time-consuming process, particularly at the conceptual design stage. Decisions made at this stage can have an enormous effect on the entire project, as it becomes ever costlier and more difficult to alter the choices made early on in the construction process. Hence, optimisation of the early stages of structural design can provide important efficiencies in terms of cost and time. This paper suggests a structural design optimisation (SDO) framework in which Genetic Algorithms (GAs) may be used to semi-automate the production and optimisation of early structural design alternatives. This framework has the potential to leverage conceptual structural design innovation in Architecture, Engineering and Construction (AEC) projects. Moreover, this framework improves the collaboration between the architectural stage and the structural stage. It will be shown that this SDO framework can make this achievable by generating the structural model based on the extracted data from the architectural model. At the moment, the proposed SDO framework is in the process of validation, involving the distribution of an online questionnaire among structural engineers in the UK.Keywords: building information, modelling, BIM, genetic algorithm, GA, architecture-engineering-construction, AEC, optimisation, structure, design, population, generation, selection, mutation, crossover, offspring
Procedia PDF Downloads 2446521 The Role of Bone Marrow Fatty Acids in the Early Stage of Post-Menopausal Osteoporosis
Authors: Sizhu Wang, Cuisong Tang, Lin Zhang, Guangyu Tang
Abstract:
Objective: We aimed to detect the composition of bone marrow fatty acids early after ovariectomized (OVX) surgery and explore the potential mechanism. Methods: Thirty-two female Sprague-Dawley (SD) rats (12 weeks) were randomly divided into OVX group and Sham group (N=16/group), and received ovariectomy or sham surgery respectively. After 3 and 28 days, eight rats in each group were sacrificed to detect the composition of bone marrow fatty acids by gas chromatography–mass spectrometry (GC–MS) and evaluate the trabecular bone microarchitecture by micro-CT. Significant different fatty acids in the early stage of post-menopausal osteoporosis were selected by OPLS-DA and t test. Then selected fatty acids were further studied in the process of osteogenic differentiation through RT-PCR and Alizarin Red S staining. Results: An apparent sample clustering and group separation were observed between OVX group and sham group three days after surgery, which suggested the role of bone marrow fatty acids in the early stage of postmenopausal osteoporosis. Specifically, myristate, palmitoleate and arachidonate were found to play an important role in classification between OVX group and sham group. We further investigated the effect of palmitoleate and arachidonate on osteogenic differentiation and found that palmitoleate promoted the osteogenic differentiation of MC3T3-E1 cells while arachidonate inhibited this process. Conclusion: Profound bone marrow fatty acids changes have taken place in the early stage of post-menopausal osteoporosis. Bone marrow fatty acids may begin to affect osteogenic differentiation shortly after deficiency of estrogen.Keywords: bone marrow fatty acids, GC-MS, osteoblast, osteoporosis, post-menopausal
Procedia PDF Downloads 1086520 The Family Sense of Coherence of Early Childhood Education Students
Abstract:
The aim of this study is to examine the family sense of coherence of early childhood education students. The Family Sense of Coherence Inventory has applied to 233 (108 girls and 125 boys) early childhood education students in Turkey. At the stage of data collection, with the aim of determining the family sense of coherence of early childhood education students, Family Sense of Coherence Inventory which was developed by Çeçen (2007) was used. In the process of the analysis of data, independent samples t-test, and one-way ANOVA were used. According to the results of the study, there were significant differences between some demographic variables in terms of the family sense of coherence.Keywords: family sense of coherence, early childhood education students
Procedia PDF Downloads 1676519 Liminality in Early Career Academic Identities: A Life History Approach
Authors: C. Morris, W. Ashall, K. Telling, L. Kadiwal, J. Kirby, S. Mwale
Abstract:
This paper addresses experiences of liminality in the early career phase of academia. Liminality is understood as a process moving from one state (in this case of being non-academic) to another (of being academic), caught between or moving in and out these modes of being. Drawing on life-history methods, a group of academics jointly reflected on experiences of the early career. Primarily focused on the theme of imposter syndrome at this career stage, the authors identified feelings of non-belonging and lack of fit with the academy, tracing the biographical, political, and affective dimensions of such responses. Uncertainty around status within seemingly impermeable hierarchies and barriers to progression in combination with our intersectional positionings shaped by sexism, racism, ableism, and classism, led to experiences of liminality, having not yet fully achieved the desired and potentially illusionary status of established academic. Findings are contextualised within the authors’ contrasting disciplinary, departmental, and institutional settings against a backdrop of neoliberalised academia. The paper thereby contributes nuanced understandings of early-career academic identities at a time when this career stage is ever more ill-defined, extended, precarious and uncertain, exposing ongoing impacts of inequities in the contemporary academic milieu.Keywords: early career, identities, intersectionality, liminality
Procedia PDF Downloads 1206518 Urinary Exosome miR-30c-5p as a Biomarker for Early-Stage Clear Cell Renal Cell Carcinoma
Authors: Shangqing Song, Bin Xu, Yajun Cheng, Zhong Wang
Abstract:
miRNAs derived from exosomes exist in a body fluid such as urine were regarded as potential biomarkers for various human cancers diagnosis and prognosis, as mature miRNAs can be steadily preserved by exosomes. However, its potential value in clear cell renal cell carcinoma (ccRCC) diagnosis and prognosis remains unclear. In the present study, differentially expressed miRNAs from urinal exosomes were identified by next-generation sequencing (NGS) technology. The 16 differentially expressed miRNAs were identified between ccRCC patients and healthy donors. To explore the specific diagnosis biomarker of ccRCC, we validated these urinary exosomes from 70 early-stage renal cancer patients, 30 healthy people and other urinary system cancers, including 30 early-stage prostate cancer patients and 30 early-stage bladder cancer patients by qRT-PCR. The results showed that urinary exosome miR-30c-5p could be stably amplified and meanwhile the expression of miR-30c-5p has no significant difference between other urinary system cancers and healthy control, however, expression level of miR-30c-5p in urinary exosomal of ccRCC patients was lower than healthy people and receiver operation characterization (ROC) curve showed that the area under the curve (AUC) values was 0.8192 (95% confidence interval was 0.7388-0.8996, P= 0.0000). In addition, up-regulating miR-30c-5p expression could inhibit renal cell carcinoma cells growth. Lastly, HSP5A was found as a direct target gene of miR-30c-5p. HSP5A depletion reversed the promoting effect of ccRCC growth casued by miR-30c-5p inhibitor, respectively. In conclusion, this study demonstrated that urinary exosomal miR-30c-5p is readily accessible as diagnosis biomarker of early-stage ccRCC, and miR-30c-5p might modulate the expression of HSPA5, which correlated with the progression of ccRCC.Keywords: clear cell renal cell carcinoma, exosome, HSP5A, miR-30c-5p
Procedia PDF Downloads 2706517 Atom Probe Study of Early Stage of Precipitation on Binary Al-Li, Al-Cu Alloys and Ternary Al-Li-Cu Alloys
Authors: Muna Khushaim
Abstract:
Aluminum-based alloys play a key role in modern engineering, especially in the aerospace industry. Introduction of solute atoms such as Li and Cu is the main approach to improve the strength in age-hardenable Al alloys via the precipitation hardening phenomenon. Knowledge of the decomposition process of the microstructure during the precipitation reaction is particularly important for future technical developments. The objective of this study is to investigate the nano-scale chemical composition in the Al-Cu, Al-Li and Al-Li-Cu during the early stage of the precipitation sequence and to describe whether this compositional difference correlates with variations in the observed precipitation kinetics. Comparing the random binomial frequency distribution and the experimental frequency distribution of concentrations in atom probe tomography data was used to investigate the early stage of decomposition in the different binary and ternary alloys which were experienced different heat treatments. The results show that an Al-1.7 at.% Cu alloy requires a long ageing time of approximately 8 h at 160 °C to allow the diffusion of Cu atoms into Al matrix. For the Al-8.2 at.% Li alloy, a combination of both the natural ageing condition (48 h at room temperature) and a short artificial ageing condition (5 min at 160 °C) induces increasing on the number density of the Li clusters and hence increase number of precipitated δ' particles. Applying this combination of natural ageing and short artificial ageing conditions onto the ternary Al-4 at.% Li-1.7 at.% Cu alloy induces the formation of a Cu-rich phase. Increasing the Li content in the ternary alloy up to 8 at.% and increasing the ageing time to 30 min resulted in the precipitation processes ending with δ' particles. Thus, the results contribute to the understanding of Al-alloy design.Keywords: aluminum alloy, atom probe tomography, early stage, decomposition
Procedia PDF Downloads 3436516 A Low-Power Two-Stage Seismic Sensor Scheme for Earthquake Early Warning System
Authors: Arvind Srivastav, Tarun Kanti Bhattacharyya
Abstract:
The north-eastern, Himalayan, and Eastern Ghats Belt of India comprise of earthquake-prone, remote, and hilly terrains. Earthquakes have caused enormous damages in these regions in the past. A wireless sensor network based earthquake early warning system (EEWS) is being developed to mitigate the damages caused by earthquakes. It consists of sensor nodes, distributed over the region, that perform majority voting of the output of the seismic sensors in the vicinity, and relay a message to a base station to alert the residents when an earthquake is detected. At the heart of the EEWS is a low-power two-stage seismic sensor that continuously tracks seismic events from incoming three-axis accelerometer signal at the first-stage, and, in the presence of a seismic event, triggers the second-stage P-wave detector that detects the onset of P-wave in an earthquake event. The parameters of the P-wave detector have been optimized for minimizing detection time and maximizing the accuracy of detection.Working of the sensor scheme has been verified with seven earthquakes data retrieved from IRIS. In all test cases, the scheme detected the onset of P-wave accurately. Also, it has been established that the P-wave onset detection time reduces linearly with the sampling rate. It has been verified with test data; the detection time for data sampled at 10Hz was around 2 seconds which reduced to 0.3 second for the data sampled at 100Hz.Keywords: earthquake early warning system, EEWS, STA/LTA, polarization, wavelet, event detector, P-wave detector
Procedia PDF Downloads 1796515 Managing Early Stakeholder Involvement at the Early Stages of a Building Project Life Cycle
Authors: Theophilus O. Odunlami, Hasan Haroglu, Nader Saleh-Matter
Abstract:
The challenges facing the construction industry are often worsened by the compounded nature of projects coupled with the complexity of key stakeholders involved at different stages of the project. Projects are planned to achieve outlined benefits in line with the business case; however, a lack of effective management of key stakeholders can result in unrealistic delivery aspirations, unnecessary re-works, and overruns. The aim of this study is to examine the early stages of a project lifecycle and investigate the stakeholder management and involvement processes and their impact on the successful delivery of the project. The research engaged with conventional construction organisations and project personnel and stakeholders on diverse projects, using a research strategy to analyse existing project case studies, narrative enquiries, interviews, and surveys using a combined qualitative, quantitative, and mixed method of analysis. Research findings have shown that the involvement of stakeholders at different levels during the early stages has pronounced effects on project delivery; it helps to forge synergy and promotes a clear understanding of individual responsibilities, strengths, and weaknesses. This has often fostered a positive sense of productive collaboration right through the early stages of the project. These research findings intend to contribute to the development of a process framework for stakeholder and project team involvement in the early stages of a project. This framework will align with the selection criteria for stakeholders, contractors, and resources, ultimately contributing to the successful completion of projects. The primary question addressed in this study is stakeholder involvement and management of the early stages of a building project life cycle impacts project delivery. Findings showed that early-stage stakeholder involvement and collaboration between project teams and contractors significantly contribute to project success. However, a strong and healthy communication strategy would be required to maintain the flow of value-added ideas among stakeholders at the early stages to benefit the project at the execution stage.Keywords: early stages, project lifecycle, stakeholders, decision-making strategy, project framework
Procedia PDF Downloads 1036514 Response of Chickpea (Cicer arietinum L.) Genotypes to Drought Stress at Different Growth Stages
Authors: Ali. Marjani, M. Farsi, M. Rahimizadeh
Abstract:
Chickpea (Cicer arietinum L.) is one of the important grain legume crops in the world. However, drought stress is a serious threat to chickpea production, and development of drought-resistant varieties is a necessity. Field experiments were conducted to evaluate the response of 8 chickpea genotypes (MCC* 696, 537, 80, 283, 392, 361, 252, 397) and drought stress (S1: non-stress, S2: stress at vegetative growth stage, S3: stress at early bloom, S4: stress at early pod visible) at different growth stages. Experiment was arranged in split plot design with four replications. Difference among the drought stress time was found to be significant for investigated traits except biological yield. Differences were observed for genotypes in flowering time, pod information time, physiological maturation time and yield. Plant height reduced due to drought stress in vegetative growth stage. Stem dry weight reduced due to drought stress in pod visibly. Flowering time, maturation time, pod number, number of seed per plant and yield cause of drought stress in flowering was also reduced. The correlation between yield and number of seed per plant and biological yield was positive. The MCC283 and MCC696 were the high-tolerance genotypes. These results demonstrated that drought stress delayed phonological growth in chickpea and that flowering stage is sensitive.Keywords: chickpea, drought stress, growth stage, tolerance
Procedia PDF Downloads 2636513 Anti-Inflammatory Effect of Omega-3 Fish-Oil Supplements: Eicosapentaenoic Acid and Docosahexaenoic Acid in Early-Stage Tumors
Authors: Corina Muscurel, Irina Stoian, Laura Gaman, Valeriu Atanasiu
Abstract:
Chronic inflammation predisposes cells to neoplastic transformation and is associated with angiogenesis. Omega-3 polyunsaturated fatty acids (n-3 PUFAs) give rise to anti-inflammatory metabolites and decrease some inflammatory cytokines. The aim of the study was to analyze the effect of n-3 PUFAs intake on patients with tumors in early-stage (without regional or distant metastasis). There were two groups of patients: one group with colon tumors and one group with lung tumors. All patients took for 60 days daily supplements from fish-oil containing 600 mg eicosapentaenoic acid and 400 mg docosahexaenoic acid. The plasma markers were evaluated before and after PUFAs intake: ceruloplasmin (using p-phenylenediamine oxidase method), plasma total thiol groups (using dithiobis-nitrobenzoic acid method) and CEA (carcinoembryonic antigen using electrochemiluminescent immunoassay). The results reflect ceruloplasmin decrease (p < 0.05), plasma total thiol groups increase (not statistically significant) and CEA decrease (p < 0.05) after n-3 PUFAs intake. Conclusions: n-3 PUFAs intake is favorable in premalignant lesions or in early tumor stage and dietary fish-oil has anti-inflammatory effects and can contribute to reduce cancer progression.Keywords: cancer, fish-oil, inflammation, n-3 polyunsaturated fatty acids
Procedia PDF Downloads 1396512 Heart Rate Variability Analysis for Early Stage Prediction of Sudden Cardiac Death
Authors: Reeta Devi, Hitender Kumar Tyagi, Dinesh Kumar
Abstract:
In present scenario, cardiovascular problems are growing challenge for researchers and physiologists. As heart disease have no geographic, gender or socioeconomic specific reasons; detecting cardiac irregularities at early stage followed by quick and correct treatment is very important. Electrocardiogram is the finest tool for continuous monitoring of heart activity. Heart rate variability (HRV) is used to measure naturally occurring oscillations between consecutive cardiac cycles. Analysis of this variability is carried out using time domain, frequency domain and non-linear parameters. This paper presents HRV analysis of the online dataset for normal sinus rhythm (taken as healthy subject) and sudden cardiac death (SCD subject) using all three methods computing values for parameters like standard deviation of node to node intervals (SDNN), square root of mean of the sequences of difference between adjacent RR intervals (RMSSD), mean of R to R intervals (mean RR) in time domain, very low-frequency (VLF), low-frequency (LF), high frequency (HF) and ratio of low to high frequency (LF/HF ratio) in frequency domain and Poincare plot for non linear analysis. To differentiate HRV of healthy subject from subject died with SCD, k –nearest neighbor (k-NN) classifier has been used because of its high accuracy. Results show highly reduced values for all stated parameters for SCD subjects as compared to healthy ones. As the dataset used for SCD patients is recording of their ECG signal one hour prior to their death, it is therefore, verified with an accuracy of 95% that proposed algorithm can identify mortality risk of a patient one hour before its death. The identification of a patient’s mortality risk at such an early stage may prevent him/her meeting sudden death if in-time and right treatment is given by the doctor.Keywords: early stage prediction, heart rate variability, linear and non-linear analysis, sudden cardiac death
Procedia PDF Downloads 3446511 Challenging Barriers to the Evolution of the Saudi Animation Industry Life-Cycle
Authors: Ohud Alharbi, Emily Baines
Abstract:
The animation industry is one of the creative industries that have attracted recent historiographical attention. However, there has been very limited research on Saudi Arabian and wider Arabian animation industries, while there are a large number of studies that have covered this issue for North America, Europe and East Asia. The existing studies show that developed countries such as USA, Japan and the UK have reached the Maturity stage in their animation industry life-cycle. On the other hand, developing countries that are still in the Introduction phase of the industry life-cycle face challenges to improve their industry. Saudi Arabia is one of the countries whose animation industry is still in its infancy. Thus, the aim of this paper is to address the main barriers that hinder the evolution of the industry life-cycle for Saudi animation – challenges that are also relevant to many other early stage industries in developing countries. These barriers have been analysed using the early mobility barriers defined by Porter, to provide a conceptual structure for defining recommendations to enable the transition to a strong Growth phase industry. This study utilized qualitative methods to collect data, which involved in-depth interviews, document analysis and observations. It also undertook a comparative case study approach to investigate the animation industry life-cycle, with three selected case studies that have a more developed industry than Saudi animation. Case studies include: the United Kingdom, which represents a Mature animation industry; Egypt, which represents an established Growth stage industry; and the United Arab of Emirates, which is an early Growth stage industry. This study suggests adopting appropriate strategies that arise as findings from the comparative case studies, to overcome barriers and facilitate the growth of the Saudi animation industry.Keywords: barriers, industry life-cycle, Saudi animation, industry
Procedia PDF Downloads 5826510 Evolving Digital Circuits for Early Stage Breast Cancer Detection Using Cartesian Genetic Programming
Authors: Zahra Khalid, Gul Muhammad Khan, Arbab Masood Ahmad
Abstract:
Cartesian Genetic Programming (CGP) is explored to design an optimal circuit capable of early stage breast cancer detection. CGP is used to evolve simple multiplexer circuits for detection of malignancy in the Fine Needle Aspiration (FNA) samples of breast. The data set used is extracted from Wisconsins Breast Cancer Database (WBCD). A range of experiments were performed, each with different set of network parameters. The best evolved network detected malignancy with an accuracy of 99.14%, which is higher than that produced with most of the contemporary non-linear techniques that are computational expensive than the proposed system. The evolved network comprises of simple multiplexers and can be implemented easily in hardware without any further complications or inaccuracy, being the digital circuit.Keywords: breast cancer detection, cartesian genetic programming, evolvable hardware, fine needle aspiration
Procedia PDF Downloads 2196509 Technology Management for Early Stage Technologies
Authors: Ming Zhou, Taeho Park
Abstract:
Early stage technologies have been particularly challenging to manage due to high degrees of their numerous uncertainties. Most research results directly out of a research lab tend to be at their early, if not the infant stage. A long while uncertain commercialization process awaits these lab results. The majority of such lab technologies go nowhere and never get commercialized due to various reasons. Any efforts or financial resources put into managing these technologies turn fruitless. High stake naturally calls for better results, which make a patenting decision harder to make. A good and well protected patent goes a long way for commercialization of the technology. Our preliminary research showed that there was not a simple yet productive procedure for such valuation. Most of the studies now have been theoretical and overly comprehensive where practical suggestions were non-existent. Hence, we attempted to develop a simple and highly implementable procedure for efficient and scalable valuation. We thoroughly reviewed existing research, interviewed practitioners in the Silicon Valley area, and surveyed university technology offices. Instead of presenting another theoretical and exhaustive research, we aimed at developing a practical guidance that a government agency and/or university office could easily deploy and get things moving to later steps of managing early stage technologies. We provided a procedure to thriftily value and make the patenting decision. A patenting index was developed using survey data and expert opinions. We identified the most important factors to be used in the patenting decision using survey ratings. The rating then assisted us in generating good relative weights for the later scoring and weighted averaging step. More importantly, we validated our procedure by testing it with our practitioner contacts. Their inputs produced a general yet highly practical cut schedule. Such schedule of realistic practices has yet to be witnessed our current research. Although a technology office may choose to deviate from our cuts, what we offered here at least provided a simple and meaningful starting point. This procedure was welcomed by practitioners in our expert panel and university officers in our interview group. This research contributed to our current understanding and practices of managing early stage technologies by instating a heuristically simple yet theoretical solid method for the patenting decision. Our findings generated top decision factors, decision processes and decision thresholds of key parameters. This research offered a more practical perspective which further completed our extant knowledge. Our results could be impacted by our sample size and even biased a bit by our focus on the Silicon Valley area. Future research, blessed with bigger data size and more insights, may want to further train and validate our parameter values in order to obtain more consistent results and analyze our decision factors for different industries.Keywords: technology management, early stage technology, patent, decision
Procedia PDF Downloads 3446508 Data-driven Decision-Making in Digital Entrepreneurship
Authors: Abeba Nigussie Turi, Xiangming Samuel Li
Abstract:
Data-driven business models are more typical for established businesses than early-stage startups that strive to penetrate a market. This paper provided an extensive discussion on the principles of data analytics for early-stage digital entrepreneurial businesses. Here, we developed data-driven decision-making (DDDM) framework that applies to startups prone to multifaceted barriers in the form of poor data access, technical and financial constraints, to state some. The startup DDDM framework proposed in this paper is novel in its form encompassing startup data analytics enablers and metrics aligning with startups' business models ranging from customer-centric product development to servitization which is the future of modern digital entrepreneurship.Keywords: startup data analytics, data-driven decision-making, data acquisition, data generation, digital entrepreneurship
Procedia PDF Downloads 3296507 Relationship between Chalkiness and the Structural and Physicochemical Properties of Rice Starch at Different Nighttime Temperatures during the Early Grain-Filling Stage
Authors: Yongjun Zeng, Shan Huang, Guanjun Huang, Changzhi Long
Abstract:
The chalkiness, starch fine structure, and physiochemical properties of rice starch were analyzed, and their correlations were investigated under different nighttime temperatures during the early grain-filling stage. Compared to MT, medium temperature (MT) and low (LNT) and high (HNT) nighttime temperatures resulted in an increased chalky grain rate (CGR) and chalkiness degree (CD). LNT mainly affected the chalkiness by increasing peak1 (short branch chains of amylopectin), the branching degree, and the proportion of small starch granules but decreasing peak2 (long branch chains of amylopectin) and peak 3 (amylose branches). This altered the pasting properties, such as by increasing the peak viscosity and final viscosity. However, HNT mainly affected the chalkiness by increasing peak 2 and the crystalline degree but decreasing peak 1 and peak 3. Regarding the thermal properties, HNT also elevated peak and conclusion temperatures. The CGR and CD were significantly and positively correlated with the proportions of small and medium starch granules, peak1, branching degree, gelatinization enthalpy, setback viscosity, and pasting time but markedly and negatively correlated with the proportion of large starch granules, amylose content, peak 3, peak viscosity, and breakdown viscosity. These findings suggest that LNT and HNT disrupted the starch structure, resulting in increased chalkiness. However, their mechanisms of action differ.Keywords: chalkiness, starch fine structure, different nighttime temperatures, early grain-filling stage
Procedia PDF Downloads 46506 Early Warning System of Financial Distress Based On Credit Cycle Index
Authors: Bi-Huei Tsai
Abstract:
Previous studies on financial distress prediction choose the conventional failing and non-failing dichotomy; however, the distressed extent differs substantially among different financial distress events. To solve the problem, “non-distressed”, “slightly-distressed” and “reorganization and bankruptcy” are used in our article to approximate the continuum of corporate financial health. This paper explains different financial distress events using the two-stage method. First, this investigation adopts firm-specific financial ratios, corporate governance and market factors to measure the probability of various financial distress events based on multinomial logit models. Specifically, the bootstrapping simulation is performed to examine the difference of estimated misclassifying cost (EMC). Second, this work further applies macroeconomic factors to establish the credit cycle index and determines the distressed cut-off indicator of the two-stage models using such index. Two different models, one-stage and two-stage prediction models, are developed to forecast financial distress, and the results acquired from different models are compared with each other, and with the collected data. The findings show that the two-stage model incorporating financial ratios, corporate governance and market factors has the lowest misclassification error rate. The two-stage model is more accurate than the one-stage model as its distressed cut-off indicators are adjusted according to the macroeconomic-based credit cycle index.Keywords: Multinomial logit model, corporate governance, company failure, reorganization, bankruptcy
Procedia PDF Downloads 378