Search results for: e-mail correspondence
273 Personalized Email Marketing Strategy: A Reinforcement Learning Approach
Authors: Lei Zhang, Tingting Xu, Jun He, Zhenyu Yan
Abstract:
Email marketing is one of the most important segments of online marketing. It has been proved to be the most effective way to acquire and retain customers. The email content is vital to customers. Different customers may have different familiarity with a product, so a successful marketing strategy must personalize email content based on individual customers’ product affinity. In this study, we build our personalized email marketing strategy with three types of emails: nurture, promotion, and conversion. Each type of email has a different influence on customers. We investigate this difference by analyzing customers’ open rates, click rates and opt-out rates. Feature importance from response models is also analyzed. The goal of the marketing strategy is to improve the click rate on conversion-type emails. To build the personalized strategy, we formulate the problem as a reinforcement learning problem and adopt a Q-learning algorithm with variations. The simulation results show that our model-based strategy outperforms the current marketer’s strategy.Keywords: email marketing, email content, reinforcement learning, machine learning, Q-learning
Procedia PDF Downloads 194272 Measurement of Susceptibility Users Using Email Phishing Attack
Authors: Cindy Sahera, Sarwono Sutikno
Abstract:
Rapid technological developments also have negative impacts, namely the increasing criminal cases based on technology or cybercrime. One technique that can be used to conduct cybercrime attacks are phishing email. The issue is whether the user is aware that email can be misused by others so that it can harm the user's own? This research was conducted to measure the susceptibility of selected targets against email abuse. The objectives of this research are measurement of targets’ susceptibility and find vulnerability in email recipient. There are three steps being taken in this research, (1) the information gathering phase, (2) the design phase, and (3) the execution phase. The first step includes the collection of the information necessary to carry out an attack on a target. The next step is to make the design of an attack against a target. The last step is to send phishing emails to the target. The levels of susceptibility are three: level 1, level 2 and level 3. Level 1 indicates a low level of targets’ susceptibility, level 2 indicates the intermediate level of targets’ susceptibility, and level 3 indicates a high level of targets’ susceptibility. The results showed that users who are on level 1 and level 2 more that level 3, which means the user is not too careless. However, it does not mean the user to be safe. There are still vulnerabilities that may occur, such as automatic location detection when opening emails and automatic downloaded malware as user clicks a link in the email.Keywords: cybercrime, email phishing, susceptibility, vulnerability
Procedia PDF Downloads 287271 Examining Social Connectivity through Email Network Analysis: Study of Librarians' Emailing Groups in Pakistan
Authors: Muhammad Arif Khan, Haroon Idrees, Imran Aziz, Sidra Mushtaq
Abstract:
Social platforms like online discussion and mailing groups are well aligned with academic as well as professional learning spaces. Professional communities are increasingly moving to online forums for sharing and capturing the intellectual abilities. This study investigated dynamics of social connectivity of yahoo mailing groups of Pakistani Library and Information Science (LIS) professionals using Graph Theory technique. Design/Methodology: Social Network Analysis is the increasingly concerned domain for scientists in identifying whether people grow together through online social interaction or, whether they just reflect connectivity. We have conducted a longitudinal study using Network Graph Theory technique to analyze the large data-set of email communication. The data was collected from three yahoo mailing groups using network analysis software over a period of six months i.e. January to June 2016. Findings of the network analysis were reviewed through focus group discussion with LIS experts and selected respondents of the study. Data were analyzed in Microsoft Excel and network diagrams were visualized using NodeXL and ORA-Net Scene package. Findings: Findings demonstrate that professionals and students exhibit intellectual growth the more they get tied within a network by interacting and participating in communication through online forums. The study reports on dynamics of the large network by visualizing the email correspondence among group members in a network consisting vertices (members) and edges (randomized correspondence). The model pair wise relationship between group members was illustrated to show characteristics, reasons, and strength of ties. Connectivity of nodes illustrated the frequency of communication among group members through examining node coupling, diffusion of networks, and node clustering has been demonstrated in-depth. Network analysis was found to be a useful technique in investigating the dynamics of the large network.Keywords: emailing networks, network graph theory, online social platforms, yahoo mailing groups
Procedia PDF Downloads 239270 Email Based Global Automation with Raspberry Pi and Control Circuit Module: Development of Smart Home Application
Authors: Lochan Basyal
Abstract:
Global Automation is an emerging technology of today’s era and is based on Internet of Things (IoT). Global automation deals with the controlling of electrical appliances throughout the world. The fabrication of this system has been carried out with interfacing an electrical control system module to Raspberry Pi. An electrical control system module includes a relay driver mechanism through which appliances are controlled automatically in respective condition. In this research project, one email ID has been assigned to Raspberry Pi, and the users from different location having different email ID can mail to Raspberry Pi on assigned email address “[email protected]” with subject heading “Device Control” with predefined command on compose email line. Also, a notification regarding current working condition of this system has been updated on respective user email ID. This approach is an innovative way of implementing smart automation system through which a user can control their electrical appliances like light, fan, television, refrigerator, etc. in their home with the use of email facility. The development of this project helps to enhance the concept of smart home application as well as industrial automation.Keywords: control circuit, e-mail, global automation, internet of things, IOT, Raspberry Pi
Procedia PDF Downloads 167269 Enhancing Email Security: A Multi-Layered Defense Strategy Approach and an AI-Powered Model for Identifying and Mitigating Phishing Attacks
Authors: Anastasios Papathanasiou, George Liontos, Athanasios Katsouras, Vasiliki Liagkou, Euripides Glavas
Abstract:
Email remains a crucial communication tool due to its efficiency, accessibility and cost-effectiveness, enabling rapid information exchange across global networks. However, the global adoption of email has also made it a prime target for cyber threats, including phishing, malware and Business Email Compromise (BEC) attacks, which exploit its integral role in personal and professional realms in order to perform fraud and data breaches. To combat these threats, this research advocates for a multi-layered defense strategy incorporating advanced technological tools such as anti-spam and anti-malware software, machine learning algorithms and authentication protocols. Moreover, we developed an artificial intelligence model specifically designed to analyze email headers and assess their security status. This AI-driven model examines various components of email headers, such as "From" addresses, ‘Received’ paths and the integrity of SPF, DKIM and DMARC records. Upon analysis, it generates comprehensive reports that indicate whether an email is likely to be malicious or benign. This capability empowers users to identify potentially dangerous emails promptly, enhancing their ability to avoid phishing attacks, malware infections and other cyber threats.Keywords: email security, artificial intelligence, header analysis, threat detection, phishing, DMARC, DKIM, SPF, ai model
Procedia PDF Downloads 58268 An Experimental Study for Assessing Email Classification Attributes Using Feature Selection Methods
Authors: Issa Qabaja, Fadi Thabtah
Abstract:
Email phishing classification is one of the vital problems in the online security research domain that have attracted several scholars due to its impact on the users payments performed daily online. One aspect to reach a good performance by the detection algorithms in the email phishing problem is to identify the minimal set of features that significantly have an impact on raising the phishing detection rate. This paper investigate three known feature selection methods named Information Gain (IG), Chi-square and Correlation Features Set (CFS) on the email phishing problem to separate high influential features from low influential ones in phishing detection. We measure the degree of influentially by applying four data mining algorithms on a large set of features. We compare the accuracy of these algorithms on the complete features set before feature selection has been applied and after feature selection has been applied. After conducting experiments, the results show 12 common significant features have been chosen among the considered features by the feature selection methods. Further, the average detection accuracy derived by the data mining algorithms on the reduced 12-features set was very slight affected when compared with the one derived from the 47-features set.Keywords: data mining, email classification, phishing, online security
Procedia PDF Downloads 432267 sing Eye Tracking to Measure the Impact of Persuasion Principles in Phishing Emails
Authors: Laura Bishop, Isabel Jones, Linn Halvorsen, Angela Smith
Abstract:
Phishing emails are a form of social engineering where attackers deceive email users into revealing sensitive information or installing malware such as ransomware. Scammers often use persuasion techniques to influence email users to interact with malicious content. This study will use eye-tracking equipment to analyze how participants respond to and process Cialdini’s persuasion principles when utilized within phishing emails. Eye tracking provides insights into what is happening on the subconscious level of the brain that the participant may not be aware of. An experiment is conducted to track participant eye movements, whilst interacting with and then filing a series of persuasive emails delivered at random. Eye tracking metrics will be analyzed in relation to whether a malicious email has been identified as phishing (filed as ‘suspicious’) or not phishing (filed in any other folder). This will help determine the most influential persuasion techniques and those 'areas of interest' within an email that require intervention. The results will aid further research on how to reduce the effects of persuasion on human decision-making when interacting with phishing emails.Keywords: cybersecurity, human-centric, phishing, psychology
Procedia PDF Downloads 83266 Block Matching Based Stereo Correspondence for Depth Calculation
Authors: G. Balakrishnan
Abstract:
Stereo Correspondence plays a major role in estimation of distance of an object from the stereo camera pair for various applications. In this paper, a stereo correspondence algorithm based on block-matching technique is presented. Initially, an energy matrix is calculated for every disparity obtained using modified Sum of Absolute Difference (SAD). Higher energy matrix errors are removed by using threshold value in order to reduce the mismatch errors. A smoothening filter is applied to eliminate unreliable disparity estimate across the object boundaries. The purpose is to improve the reliability of calculation of disparity map. The experimental results obtained shows that the final depth map produce better results and can be used to all the applications using stereo cameras.Keywords: stereo matching, filters, energy matrix, disparity
Procedia PDF Downloads 215265 Investigating (Im)Politeness Strategies in Email Communication: The Case Algerian PhD Supervisees and Irish Supervisors
Authors: Zehor Ktitni
Abstract:
In pragmatics, politeness is regarded as a feature of paramount importance to successful interpersonal relationships. On the other hand, emails have recently become one of the indispensable means of communication in educational settings. This research puts email communication at the core of the study and analyses it from a politeness perspective. More specifically, it endeavours to look closely at how the concept of (im)politeness is reflected through students’ emails. To this end, a corpus of Algerian supervisees’ email threads, exchanged with their Irish supervisors, was compiled. Leech’s model of politeness (2014) was selected as the main theoretical framework of this study, in addition to making reference to Brown and Levinson’s model (1987) as it is one of the most influential models in the area of pragmatic politeness. Further, some follow-up interviews are to be conducted with Algerian students to reinforce the results derived from the corpus. Initial findings suggest that Algerian Ph.D. students’ emails tend to include more politeness markers than impoliteness ones, they heavily make use of academic titles when addressing their supervisors (Dr. or Prof.), and they rely on hedging devices in order to sound polite.Keywords: politeness, email communication, corpus pragmatics, Algerian PhD supervisees, Irish supervisors
Procedia PDF Downloads 70264 New Approach to Interactional Dynamics of E-mail Correspondence
Authors: Olga Karamalak
Abstract:
The paper demonstrates a research about theoretical understanding of writing in the electronic environment as dynamic, interactive, dialogical, and distributed activity aimed at “other-orientation” and consensual domain creation. The purpose is to analyze the personal e-mail correspondence in the academic environment from this perspective. The focus is made on the dynamics of interaction between the correspondents such as contact setting, orientation and co-functions; and the text of an e-letter is regarded as indices of the write’s state or affordances in terms of ecological linguistics. The establishment of consensual domain of interaction brings about a new stage of cognition emergence which may lead to distributed learning. The research can play an important part in the series of works dedicated to writing in the electronic environment.Keywords: consensual domain of interactions, distributed writing and learning, e-mail correspondence, interaction, orientation, co-function
Procedia PDF Downloads 579263 R-Killer: An Email-Based Ransomware Protection Tool
Authors: B. Lokuketagoda, M. Weerakoon, U. Madushan, A. N. Senaratne, K. Y. Abeywardena
Abstract:
Ransomware has become a common threat in past few years and the recent threat reports show an increase of growth in Ransomware infections. Researchers have identified different variants of Ransomware families since 2015. Lack of knowledge of the user about the threat is a major concern. Ransomware detection methodologies are still growing through the industry. Email is the easiest method to send Ransomware to its victims. Uninformed users tend to click on links and attachments without much consideration assuming the emails are genuine. As a solution to this in this paper R-Killer Ransomware detection tool is introduced. Tool can be integrated with existing email services. The core detection Engine (CDE) discussed in the paper focuses on separating suspicious samples from emails and handling them until a decision is made regarding the suspicious mail. It has the capability of preventing execution of identified ransomware processes. On the other hand, Sandboxing and URL analyzing system has the capability of communication with public threat intelligence services to gather known threat intelligence. The R-Killer has its own mechanism developed in its Proactive Monitoring System (PMS) which can monitor the processes created by downloaded email attachments and identify potential Ransomware activities. R-killer is capable of gathering threat intelligence without exposing the user’s data to public threat intelligence services, hence protecting the confidentiality of user data.Keywords: ransomware, deep learning, recurrent neural networks, email, core detection engine
Procedia PDF Downloads 211262 A Small Graphic Lie. The Photographic Quality of Pierre Bourdieu’s Correspondance Analysis
Authors: Lene Granzau Juel-Jacobsen
Abstract:
The problem of beautification is an obvious concern of photography, claiming reference to reality, but it also lies at the very heart of social theory. As we become accustomed to sophisticated visualizations of statistical data in pace with the development of software programs, we should not only be inclined to ask new types of research questions, but we also need to confront social theories based on such visualization techniques with new types of questions. Correspondence Analysis, GIS analysis, Social Network Analysis, and Perceptual Maps are current examples of visualization techniques popular within the social sciences and neighboring disciplines. This article discusses correspondence analysis, arguing that the graphic plot of correspondence analysis is to be interpreted much similarly to a photograph. It refers no more evidently or univocally to reality than a photograph, representing social life no more truthfully than a photograph documents. Pierre Bourdieu’s theoretical corpus, especially his theory of fields, relies heavily on correspondence analysis. While much attention has been directed towards critiquing the somewhat vague conceptualization of habitus, limited focus has been placed on the equally problematic concepts of social space and field. Based on a re-reading of the Distinction, the article argues that the concepts rely on ‘a small graphic lie’ very similar to a photograph. Like any other piece of art, as Bourdieu himself recognized, the graphic display is a politically and morally loaded representation technique. However, the correspondence analysis does not necessarily serve the purpose he intended. In fact, it tends towards the pitfalls he strove to overcome.Keywords: datavisualization, correspondance analysis, bourdieu, Field, visual representation
Procedia PDF Downloads 68261 Local Interpretable Model-agnostic Explanations (LIME) Approach to Email Spam Detection
Authors: Rohini Hariharan, Yazhini R., Blessy Maria Mathew
Abstract:
The task of detecting email spam is a very important one in the era of digital technology that needs effective ways of curbing unwanted messages. This paper presents an approach aimed at making email spam categorization algorithms transparent, reliable and more trustworthy by incorporating Local Interpretable Model-agnostic Explanations (LIME). Our technique assists in providing interpretable explanations for specific classifications of emails to help users understand the decision-making process by the model. In this study, we developed a complete pipeline that incorporates LIME into the spam classification framework and allows creating simplified, interpretable models tailored to individual emails. LIME identifies influential terms, pointing out key elements that drive classification results, thus reducing opacity inherent in conventional machine learning models. Additionally, we suggest a visualization scheme for displaying keywords that will improve understanding of categorization decisions by users. We test our method on a diverse email dataset and compare its performance with various baseline models, such as Gaussian Naive Bayes, Multinomial Naive Bayes, Bernoulli Naive Bayes, Support Vector Classifier, K-Nearest Neighbors, Decision Tree, and Logistic Regression. Our testing results show that our model surpasses all other models, achieving an accuracy of 96.59% and a precision of 99.12%.Keywords: text classification, LIME (local interpretable model-agnostic explanations), stemming, tokenization, logistic regression.
Procedia PDF Downloads 47260 Discrimination during a Resume Audit: The Impact of Job Context in Hiring
Authors: Alexandra Roy
Abstract:
Building on literature on cognitive matching and social categorization and using the correspondence testing method, we test the interaction effect of person characteristics (Gender with physical attractiveness) and job context (client contact, industry status, coworker contact). As expected, while findings show a strong impact of gender with beauty on hiring chances, job context characteristics have also a significant overall effect of this hiring outcome. Moreover, the rate of positive responses varies according some of the recruiter’s characteristics. Results are robust to various sensitivity checks. Implications of the results, limitations of the study, and directions for future research are discussed.Keywords: correspondence testing, discrimination, hiring, physical attractiveness
Procedia PDF Downloads 208259 Phishing Attacks Facilitated by Open Source Intelligence
Authors: Urva Maryam
Abstract:
Information has become an important asset to the current cosmos. Globally, various tactics are being observed to confine the spread of information as it makes people vulnerable to security attacks. Open Source Intelligence (OSINT) is a publicly available source that has disseminated information about users or website, companies, and various organizations. This paper focuses on the quantitative method of exploring various OSINT tools that reveal public information of personals. This information could further facilitate the phishing attacks. Phishing attacks can be launched on email addresses, open ports, and unsecured web-surfing. This study allows to analyze information retrieved from OSINT tools i.e., the Harvester, and Maltego, that can be used to send phishing attacks to individuals.Keywords: OSINT, phishing, spear phishing, email spoofing, the harvester, maltego
Procedia PDF Downloads 81258 Qualitative Data Analysis for Health Care Services
Authors: Taner Ersoz, Filiz Ersoz
Abstract:
This study was designed enable application of multivariate technique in the interpretation of categorical data for measuring health care services satisfaction in Turkey. The data was collected from a total of 17726 respondents. The establishment of the sample group and collection of the data were carried out by a joint team from The Ministry of Health and Turkish Statistical Institute (Turk Stat) of Turkey. The multiple correspondence analysis (MCA) was used on the data of 2882 respondents who answered the questionnaire in full. The multiple correspondence analysis indicated that, in the evaluation of health services females, public employees, younger and more highly educated individuals were more concerned and complainant than males, private sector employees, older and less educated individuals. Overall 53 % of the respondents were pleased with the improvements in health care services in the past three years. This study demonstrates the public consciousness in health services and health care satisfaction in Turkey. It was found that most the respondents were pleased with the improvements in health care services over the past three years. Awareness of health service quality increases with education levels. Older individuals and males would appear to have lower expectancies in health services.Keywords: multiple correspondence analysis, multivariate categorical data, health care services, health satisfaction survey
Procedia PDF Downloads 242257 Insider Theft Detection in Organizations Using Keylogger and Machine Learning
Authors: Shamatha Shetty, Sakshi Dhabadi, Prerana M., Indushree B.
Abstract:
About 66% of firms claim that insider attacks are more likely to happen. The frequency of insider incidents has increased by 47% in the last two years. The goal of this work is to prevent dangerous employee behavior by using keyloggers and the Machine Learning (ML) model. Every keystroke that the user enters is recorded by the keylogging program, also known as keystroke logging. Keyloggers are used to stop improper use of the system. This enables us to collect all textual data, save it in a CSV file, and analyze it using an ML algorithm and the VirusTotal API. Many large companies use it to methodically monitor how their employees use computers, the internet, and email. We are utilizing the SVM algorithm and the VirusTotal API to improve overall efficiency and accuracy in identifying specific patterns and words to automate and offer the report for improved monitoring.Keywords: cyber security, machine learning, cyclic process, email notification
Procedia PDF Downloads 57256 Library Outreach After COVID: Making the Case for In-Person Library Visits
Authors: Lucas Berrini
Abstract:
Academic libraries have always struggled with engaging with students and faculty. Striking the balance between what the community needs and what the library can afford has also been a point of contention for libraries. As academia begins to return to a new normal after COVID, library staff are rethinking how remind patrons that the library is open and ready for business. NC Wesleyan, a small liberal arts school in eastern North Carolina, decided to be proactive and reach out to the academic community. After shutting down in 2020 for COVID, the campus library saw a marked decrease in in-person attendance. For a small school whose operational budget was tied directly to tuition payments, it was imperative for the library to remind faculty and staff that they were open for business. At the beginning of the Summer 2022 term and continuing into the fall, the reference team created a marketing plan using email, physical meetings, and virtual events targeted at students and faculty as well as community members who utilized the facilities prior to COVID. The email blasts were gentle reminders that the building was open and available for use The target audiences were the community at large. Several of the emails contained reminders of previous events in the library that were student centered. The next phase of the email campaign centers on reminding the community about the libraries physical and electronic resources, including the makerspace lab. Language will indicate that student voices are needed, and a QR code is included for students to leave feedback as to what they want to see in the library. The final phase of the email blasts were faculty focused and invited them to connect with library reference staff for an in-person consultation on their research needs. While this phase is ongoing, the response has been positive, and staff are compiling data in hopes of working with administration to implement some of the requested services and materials. These email blasts will be followed up by in-person meetings with faculty and students who responded to the QR codes. This research is ongoing. This type of targeted outreach is new for Wesleyan. It is the hope of the library that by the end of Fall 2022, there will be a plan in place to address the needs and concerns of the students and faculty. Furthermore, the staff hopes to create a new sense of community for the students and staff of the university.Keywords: academic, education, libraries, outreach
Procedia PDF Downloads 94255 Metadiscourse in Chinese and Thai Request Emails: Analysis and Pedagogical Application
Authors: Chia-Ling Hsieh, Kankanit Potikit
Abstract:
Metadiscourse refers to linguistic resources employed by writers to organize text and interact with readers. While metadiscourse has received considerable attention within the field of discourse analysis, few studies have explored the use of metadiscourse in email, one of the most popular forms of computer-mediated communication. Furthermore, the diversity of cross-linguistic research required to uncover the influence of cultural factors on metadiscourse use is lacking. The present study compares metadiscourse markers employed in Chinese and Thai-language request emails with the purpose of discovering cross-cultural similarities and differences that are meaningful and applicable to foreign language teaching. The analysis is based on a corpus of 200 request emails: 100 composed in Chinese and 100 in Thai, with half of the emails from each language data set addressed to professors and the other half addressed to classmates. Adopting Hyland’s model as an analytical framework, two primary categories of metadiscourse are identified. Textual metadiscourse helps to create text coherence, while interpersonal metadiscourse functions to convey authorial stance. Results of the study make clear that both Chinese and Thai-language emails use significantly more interpersonal markers than textual markers, indicating that email, as a unique communicative medium, is characterized by high degrees of concision and interactivity. Users of both languages further deploy similar patterns in writing emails to recipients of different social statuses. Compared with emails addressed to classmates, emails addressed to professors are notably longer and include more transition and engagement markers. Nevertheless, cultural factors do play a role. Emails composed in Thai, for example, include more textual markers than those in Chinese, as Thai favors formal expressions and detailed explanations, while in contrast, emails composed in Chinese employ more interpersonal markers than those in Thai, since Chinese tends to emphasize recipient involvement and attitudinal warmth. These findings thereby demonstrate the combined effects of email as a communicative medium, social status, and cultural values on metadiscourse usage. The study concludes by applying these findings to pedagogical suggestions for teaching email writing to Chinese and Thai language learners based on similarities and differences in metadiscourse strategy between the two languages.Keywords: discourse analysis, email, metadiscourse, writing instruction
Procedia PDF Downloads 127254 A Comparison of Image Data Representations for Local Stereo Matching
Authors: André Smith, Amr Abdel-Dayem
Abstract:
The stereo matching problem, while having been present for several decades, continues to be an active area of research. The goal of this research is to find correspondences between elements found in a set of stereoscopic images. With these pairings, it is possible to infer the distance of objects within a scene, relative to the observer. Advancements in this field have led to experimentations with various techniques, from graph-cut energy minimization to artificial neural networks. At the basis of these techniques is a cost function, which is used to evaluate the likelihood of a particular match between points in each image. While at its core, the cost is based on comparing the image pixel data; there is a general lack of consistency as to what image data representation to use. This paper presents an experimental analysis to compare the effectiveness of more common image data representations. The goal is to determine the effectiveness of these data representations to reduce the cost for the correct correspondence relative to other possible matches.Keywords: colour data, local stereo matching, stereo correspondence, disparity map
Procedia PDF Downloads 370253 Clustering-Based Computational Workload Minimization in Ontology Matching
Authors: Mansir Abubakar, Hazlina Hamdan, Norwati Mustapha, Teh Noranis Mohd Aris
Abstract:
In order to build a matching pattern for each class correspondences of ontology, it is required to specify a set of attribute correspondences across two corresponding classes by clustering. Clustering reduces the size of potential attribute correspondences considered in the matching activity, which will significantly reduce the computation workload; otherwise, all attributes of a class should be compared with all attributes of the corresponding class. Most existing ontology matching approaches lack scalable attributes discovery methods, such as cluster-based attribute searching. This problem makes ontology matching activity computationally expensive. It is therefore vital in ontology matching to design a scalable element or attribute correspondence discovery method that would reduce the size of potential elements correspondences during mapping thereby reduce the computational workload in a matching process as a whole. The objective of this work is 1) to design a clustering method for discovering similar attributes correspondences and relationships between ontologies, 2) to discover element correspondences by classifying elements of each class based on element’s value features using K-medoids clustering technique. Discovering attribute correspondence is highly required for comparing instances when matching two ontologies. During the matching process, any two instances across two different data sets should be compared to their attribute values, so that they can be regarded to be the same or not. Intuitively, any two instances that come from classes across which there is a class correspondence are likely to be identical to each other. Besides, any two instances that hold more similar attribute values are more likely to be matched than the ones with less similar attribute values. Most of the time, similar attribute values exist in the two instances across which there is an attribute correspondence. This work will present how to classify attributes of each class with K-medoids clustering, then, clustered groups to be mapped by their statistical value features. We will also show how to map attributes of a clustered group to attributes of the mapped clustered group, generating a set of potential attribute correspondences that would be applied to generate a matching pattern. The K-medoids clustering phase would largely reduce the number of attribute pairs that are not corresponding for comparing instances as only the coverage probability of attributes pairs that reaches 100% and attributes above the specified threshold can be considered as potential attributes for a matching. Using clustering will reduce the size of potential elements correspondences to be considered during mapping activity, which will in turn reduce the computational workload significantly. Otherwise, all element of the class in source ontology have to be compared with all elements of the corresponding classes in target ontology. K-medoids can ably cluster attributes of each class, so that a proportion of attribute pairs that are not corresponding would not be considered when constructing the matching pattern.Keywords: attribute correspondence, clustering, computational workload, k-medoids clustering, ontology matching
Procedia PDF Downloads 248252 Idea, Creativity, Design, and Ultimately, Playing with Mathematics
Authors: Yasaman Azarmjoo
Abstract:
Since ancient times, it has been said that mathematics is the mother of all sciences and the foundation of basic concepts in every field and profession. It would be great if, after learning this subject, we could enable students to create games and activities based on the same mathematical concepts. This article explores the design of various mathematical activities in the form of games, utilizing different mathematical topics such as algebra, equations, binary systems, and one-to-one correspondence. The theoretical significance of this article lies in uncovering alternative approaches to teaching and learning mathematics. By employing creative and interactive methods such as game design, it challenges the traditional perception of mathematics as a difficult and laborious subject. The theoretical significance of this article lies in demonstrating that mathematics can be made more accessible and enjoyable, which can result in heightened interest and engagement in the subject. In general, this article reveals another aspect of mathematics.Keywords: playing with mathematics, algebra and equations, binary systems, one-to-one correspondence
Procedia PDF Downloads 93251 Digital Forensic Exploration Framework for Email and Instant Messaging Applications
Authors: T. Manesh, Abdalla A. Alameen, M. Mohemmed Sha, A. Mohamed Mustaq Ahmed
Abstract:
Email and instant messaging applications are foremost and extensively used electronic communication methods in this era of information explosion. These applications are generally used for exchange of information using several frontend applications from various service providers by its users. Almost all such communications are now secured using SSL or TLS security over HTTP communication. At the same time, it is also noted that cyber criminals and terrorists have started exchanging information using these methods. Since communication is encrypted end-to-end, tracing significant forensic details and actual content of messages are found to be unattended and severe challenges by available forensic tools. These challenges seriously affect in procuring substantial evidences against such criminals from their working environments. This paper presents a vibrant forensic exploration and architectural framework which not only decrypts any communication or network session but also reconstructs actual message contents of email as well as instant messaging applications. The framework can be effectively used in proxy servers and individual computers and it aims to perform forensic reconstruction followed by analysis of webmail and ICQ messaging applications. This forensic framework exhibits a versatile nature as it is equipped with high speed packet capturing hardware, a well-designed packet manipulating algorithm. It regenerates message contents over regular as well as SSL encrypted SMTP, POP3 and IMAP protocols and catalyzes forensic presentation procedure for prosecution of cyber criminals by producing solid evidences of their actual communication as per court of law of specific countries.Keywords: forensics, network sessions, packet reconstruction, packet reordering
Procedia PDF Downloads 344250 A Scalable Media Job Framework for an Open Source Search Engine
Authors: Pooja Mishra, Chris Pollett
Abstract:
This paper explores efficient ways to implement various media-updating features like news aggregation, video conversion, and bulk email handling. All of these jobs share the property that they are periodic in nature, and they all benefit from being handled in a distributed fashion. The data for these jobs also often comes from a social or collaborative source. We isolate the class of periodic, one round map reduce jobs as a useful setting to describe and handle media updating tasks. As such tasks are simpler than general map reduce jobs, programming them in a general map reduce platform could easily become tedious. This paper presents a MediaUpdater module of the Yioop Open Source Search Engine Web Portal designed to handle such jobs via an extension of a PHP class. We describe how to implement various media-updating tasks in our system as well as experiments carried out using these implementations on an Amazon Web Services cluster.Keywords: distributed jobs framework, news aggregation, video conversion, email
Procedia PDF Downloads 298249 Email Phishing Detection Using Natural Language Processing and Convolutional Neural Network
Abstract:
Phishing is one of the oldest and best known scams on the Internet. It can be defined as any type of telecommunications fraud that uses social engineering tricks to obtain confidential data from its victims. It’s a cybercrime aimed at stealing your sensitive information. Phishing is generally done via private email, so scammers impersonate large companies or other trusted entities to encourage victims to voluntarily provide information such as login credentials or, worse yet, credit card numbers. The COVID-19 theme is used by cybercriminals in multiple malicious campaigns like phishing. In this environment, messaging filtering solutions have become essential to protect devices that will now be used outside of the secure perimeter. Despite constantly updating methods to avoid these cyberattacks, the end result is currently insufficient. Many researchers are looking for optimal solutions to filter phishing emails, but we still need good results. In this work, we concentrated on solving the problem of detecting phishing emails using the different steps of NLP preprocessing, and we proposed and trained a model using one-dimensional CNN. Our study results show that our model obtained an accuracy of 99.99%, which demonstrates how well our model is working.Keywords: phishing, e-mail, NLP preprocessing, CNN, e-mail filtering
Procedia PDF Downloads 126248 A Discourse Completion Test Analysis of Email Request Strategies as Used by Tunisian Postgraduate Students
Authors: Imen Aribi Ben Amor
Abstract:
The aim of the present study is to analyze the performance of requests in emails among a group of Tunisian postgraduate students. It also seeks to determine the influence of the social factors on the participants’ requests performance. For this purpose, the data were collected using a discourse completion test (DCT). Accordingly, 42 Tunisian postgraduate students were asked to respond in English to eight different situations in which they carried out the speech act of request in emails. The data were analyzed based on the degree of directness. A detailed analysis of the head acts found in the DCT revealed that Tunisian Postgraduate students use a varied repertoire of request strategies (direct, conventionally indirect and non-conventionally indirect) but at the same time rely heavily on direct request strategies. They tended to address their requestees directly except for distant superiors. DCT results suggest that the participants are to some extent aware of the influence of the ranking of imposition and social distance but fail to acknowledge the weight of social power when performing requests in emails. The preference of the participants to use direct strategies may be the result of the effect of Tunisian culture and the negative transfer of Tunisian communicative strategies. Accordingly, this study suggests some pedagogical implications and suggestions for Tunisian EFL (English as a Foreign Language) instructors. They are required to pay closer attention to the pragmalinguistic nuances of the ways in which requests in emails are realized. Teachers can also help students understand academic email etiquettes by explicitly explaining what they expect in the student email. Thus, EFL teachers and syllabus designers should devote more attention to developing EFL learners’ pragmatic competence through teaching L2 pragmatics.Keywords: directness, ranking of imposition, request strategies, social distance, social power
Procedia PDF Downloads 231247 Combined Automatic Speech Recognition and Machine Translation in Business Correspondence Domain for English-Croatian
Authors: Sanja Seljan, Ivan Dunđer
Abstract:
The paper presents combined automatic speech recognition (ASR) for English and machine translation (MT) for English and Croatian in the domain of business correspondence. The first part presents results of training the ASR commercial system on two English data sets, enriched by error analysis. The second part presents results of machine translation performed by online tool Google Translate for English and Croatian and Croatian-English language pairs. Human evaluation in terms of usability is conducted and internal consistency calculated by Cronbach's alpha coefficient, enriched by error analysis. Automatic evaluation is performed by WER (Word Error Rate) and PER (Position-independent word Error Rate) metrics, followed by investigation of Pearson’s correlation with human evaluation.Keywords: automatic machine translation, integrated language technologies, quality evaluation, speech recognition
Procedia PDF Downloads 484246 A Blockchain-Based Protection Strategy against Social Network Phishing
Authors: Francesco Buccafurri, Celeste Romolo
Abstract:
Nowadays phishing is the most frequent starting point of cyber-attack vectors. Phishing is implemented both via email and social network messages. While a wide scientific literature exists which addresses the problem of contrasting email spam-phishing, no specific countermeasure has been so far proposed for phishing included into private messages of social network platforms. Unfortunately, the problem is severe. This paper proposes an approach against social network phishing, based on a non invasive collaborative information-sharing approach which leverages blockchain. The detection method works by filtering candidate messages, by distilling them by means of a distance-preserving hash function, and by publishing hashes over a public blockchain through a trusted smart contract (thus avoiding denial of service attacks). Phishing detection exploits social information embedded into social network profiles to identify similar messages belonging to disjoint contexts. The main contribution of the paper is to introduce a new approach to contrasting the problem of social network phishing, which, despite its severity, received little attention by both research and industry.Keywords: phishing, social networks, information sharing, blockchain
Procedia PDF Downloads 328245 Sentiment Analysis of Ensemble-Based Classifiers for E-Mail Data
Authors: Muthukumarasamy Govindarajan
Abstract:
Detection of unwanted, unsolicited mails called spam from email is an interesting area of research. It is necessary to evaluate the performance of any new spam classifier using standard data sets. Recently, ensemble-based classifiers have gained popularity in this domain. In this research work, an efficient email filtering approach based on ensemble methods is addressed for developing an accurate and sensitive spam classifier. The proposed approach employs Naive Bayes (NB), Support Vector Machine (SVM) and Genetic Algorithm (GA) as base classifiers along with different ensemble methods. The experimental results show that the ensemble classifier was performing with accuracy greater than individual classifiers, and also hybrid model results are found to be better than the combined models for the e-mail dataset. The proposed ensemble-based classifiers turn out to be good in terms of classification accuracy, which is considered to be an important criterion for building a robust spam classifier.Keywords: accuracy, arcing, bagging, genetic algorithm, Naive Bayes, sentiment mining, support vector machine
Procedia PDF Downloads 142244 A Phishing Email Detection Approach Using Machine Learning Techniques
Authors: Kenneth Fon Mbah, Arash Habibi Lashkari, Ali A. Ghorbani
Abstract:
Phishing e-mails are a security issue that not only annoys online users, but has also resulted in significant financial losses for businesses. Phishing advertisements and pornographic e-mails are difficult to detect as attackers have been becoming increasingly intelligent and professional. Attackers track users and adjust their attacks based on users’ attractions and hot topics that can be extracted from community news and journals. This research focuses on deceptive Phishing attacks and their variants such as attacks through advertisements and pornographic e-mails. We propose a framework called Phishing Alerting System (PHAS) to accurately classify e-mails as Phishing, advertisements or as pornographic. PHAS has the ability to detect and alert users for all types of deceptive e-mails to help users in decision making. A well-known email dataset has been used for these experiments and based on previously extracted features, 93.11% detection accuracy is obtainable by using J48 and KNN machine learning techniques. Our proposed framework achieved approximately the same accuracy as the benchmark while using this dataset.Keywords: phishing e-mail, phishing detection, anti phishing, alarm system, machine learning
Procedia PDF Downloads 338