Search results for: arbuscular mychorrhizae fungi (AM Fungi) indigenous isolates
1619 Combined Aplication of Indigenous Pseudomonas fluorescens and the AM Fungi as the Potential Biocontrol Agents of Banana Fusarium wilt
Authors: Eri Sulyanti, Trimurti Habazar, Eti Farda Husen, Abdi Dharma, Nasril Nasir
Abstract:
In this study, combination of some biocontrol agents with different mechanisms was an alternative to improve the effectiveness of the biological control agents. Single and combined applications of indigenous Pseudomonas fluorescens and Arbuscular Mychorrhizae Fungi (AM Fungi) isolates were tested to induce the resistance on susceptible Cavendish banana against F.oxysporum f. sp. cubense race 4 under greenhouse conditions. These isolates originally isolated from healthy banana rhizosphere at endemic Fusarium wilt areas in the centre of production banana in West Sumatra. These researches were conducted with Randomized Block Design with 16 treatments and 10 replications. The treatments were three indigenous isolates of Pseudomonas fluorescens (Par1-Cv, Par4-Rj1, Par2-Jt1) and 3 isolates of AM Fungi (Gl1BuA4, Gl2BuA6, and Gl1KeP3. The biocontrol agents were applied as single agents and combination two of them. This study demonstrated that the application of combination biocontrol organisms Pseudomonas fluorescens and AM Fungi provided were more effective than single application. The combination of Par1-Cv and Gl1BuA4 isolates was the most effective to control Fusarium wilt and followed by the combination of Par1-Cv and Gl2BuA6 and Par2-Jt1 and Gl1P3.Keywords: pseudomonad fluorescens (Pf), arbuscular mychorrhizae fungi (AM Fungi) indigenous isolates, fusarium oxysporum f. sp. cubense, soil rhizosphere
Procedia PDF Downloads 3071618 Potential Role of Arbuscular Mycorrhizal (AM) Fungi in CO₂-Sequestration During Bipartite Interaction with Host Plant Oryza Sativa
Authors: Sadhana Shukla, Pushplata Singh, Nidhi Didwania
Abstract:
Arbuscular mycorrhizal (AM) fungi are a highly advantageous and versatile group of fungi that significantly contribute to the formation of soil organic matter by creating a demand for plant carbon (C) and distributing it through below-ground hyphal biomass, regardless of their substantial contribution in enhancing net primary productivity and accumulating additional photosynthetic fixed C in the soil. The genetic role of AM fungi in carbon cycling is largely unexplored. In our study, we propose that AM fungi significantly interact with the soil, particularly: the provision of photosynthates by plants. We have studied the expression of AM fungi genes involved in CO₂ sequestration during host-plant interaction was investigated by qPCR studies. We selected Rhizophagus proliferus (AM fungi) and Oryza sativa (Rice) (inoculated with or without 200ppg AMF inoculums per plant) and investigated the effect of AM fungi on soil organic carbon (SOC) and rice growth under field conditions. Results thus provided faster SOC turnover, 35% increased nutrient uptake in plants and pronounced hyphal biomass of AM fungi which enhanced soil carbon storage by 15% in comparison to uninoculated plants. This study will offer a foundation for delving into various carbon-soil studies while also advancing our comprehension of the relationship between AM fungi and the sustainability of agricultural ecosystems.Keywords: arbuscular mycorrhizal (AM) fungi, carbon sequestration, gene expression, soil health, plant development.
Procedia PDF Downloads 731617 Synergistic Effect of Plant Growth Promoting Bacteria and Arbuscular Mycorrhizal Fungi to Enhance Wheat Grain Yield, Biofortification and Soil Health: A Field Study
Authors: Radheshyam Yadav, Ramakrishna Wusirika
Abstract:
Plant Growth Promoting Bacteria (PGPB) and Arbuscular Mycorrhizal (AM) Fungi are ubiquitous in soil and often very critical for crop yield and agriculture sustainability, and this has motivated the agricultural practices to support and promote PGPB and AM Fungi in agriculture. PGPB can be involved in a range of processes that affect Nitrogen (N) and Phosphorus (P) transformations in soil and thus influence nutrient availability and uptake to the plants. A field study with two wheat cultivars, HD-3086, and HD-2967 was performed in Malwa region, Bathinda of Punjab, India, to evaluate the effect of native and non-native PGPB alone and in combination with AM fungi as an inoculant on wheat grain yield, nutrient uptake and soil health parameters (dehydrogenase, urease, β‐glucosidase). Our results showed that despite an early insignificant increase in shoot length, plants treated with PGPB (Bacillus sp.) and AM Fungi led to a significant increase in shoot growth at maturity, aboveground biomass, nitrogen (45% - 40%) and phosphorus (40% - 34%) content in wheat grains relative to untreated control plants. Similarly, enhanced grain yield and nutrients uptake i.e. copper (27.15% - 36.25%) iron (43% - 53%) and zinc (44% - 47%) was recorded in PGPB and AM Fungi treated plants relative to untreated control. Overall, inoculation with native PGPB alone and in combination with AM Fungi provided benefits to enhance grain yield, wheat biofortification, and improved soil fertility, despite this effect varied depending on different PGPB isolates and wheat cultivars. These field study results provide evidence of the benefits of agricultural practices involving native PGPB and AM Fungi to the plants. These native strains and AM Fungi increased accumulations of copper, iron, and zinc in wheat grains, enhanced grain yield, and soil fertility.Keywords: AM Fungi, biofortification, PGPB, soil microbial enzymes
Procedia PDF Downloads 3251616 Improvement in Drought Stress Tolerance in Wheat by Arbuscular Mycorrhizal Fungi
Authors: Seema Sangwan, Ekta Narwal, Kannepalli Annapurna
Abstract:
The aim of this study was to determine the effect of arbuscular mycorrhizal fungi (AMF) inoculation on drought stress tolerance in 3 genotypes of wheat subjected to moderate water stress, i.e. HD 3043 (drought tolerant), HD 2987 (drought tolerant), and HD 2967 (drought sensitive). Various growth parameters were studied, e.g. total dry weight, total shoot and root length, root volume, root surface area, grain weight and number, leaf area, chlorophyll content in leaves, relative water content, number of spores and percent colonisation of roots by arbuscular mycorrhizal fungi. Total dry weight, root surface area and chlorophyll content were found to be significantly high in AMF inoculated plants as compared to the non-mycorrhizal ones and also higher in drought-tolerant varieties of wheat as compared to the sensitive variety HD 2967, in moderate water stress treatments. Leakage of electrolytes was lower in case of AMF inoculated stressed plants. Under continuous water stress, leaf water content and leaf area were significantly increased in AMF inoculated plants as compared to un-inoculated stressed plants. Overall, the increased colonisation of roots of wheat by AMF in inoculated plants weather drought tolerant or sensitive could have a beneficial effect in alleviating the harmful effects of water stress in wheat and delaying its senescence.Keywords: Arbuscular mycorrhizal fungi, wheat, drought, stress
Procedia PDF Downloads 1971615 Medicinal Plants and Arbuscular mycorrhizal Colonization
Abstract:
Demands of traditional herbal medicines are increasing day by day over the world. Considering the growing demand of medicinal plants in curative treatments and the role of VAM fungi in augmentation of the production of active secondary metabolites by the medicinal plants, the present work has been undertaken to survey the mycorrhizal status in 30 different medicinal plants belonging to various families from Krishna district, Andhra Pradesh. The roots were collected carefully and stained by the Phillips & Hayman technique. Basing on the occurrence of vesicles and arbuscules, categorized into four grades; Excellent: mycelia, vesicles or arbuscules present more than 75% of root bits, Good: mycelia, vesicles or arbuscules present 50-75% in surface of root bits, moderate: mycelia, vesicles or arbuscules present 25-50% in surface of root bits, and poor: mycelia, vesicles or arbuscules present 1-25% in surface of root bits. The study reveals that the roots of all plants were colonized by AM fungi. Percentage of root colonization by AM fungi was more in Aloe vera, Phylanthus emblica, Azadiracta indica and least in plants such as Aerva lanata, Vinca rosea, Crotalaria verrucosa among the 30 medicinal plants in present study. The enhancement of growth and vigour and increased production of bioactive compounds of the medicinal plants is desirable which may be achieved by inoculation of the roots with Arbuscular mycorrhizal fungi. There is a steady increase in the cultivation of medicinal plants to maintain a steady supply to support the increasing demand but corresponding researches of VAM fungi and their association in medicinal plants have received very little attention as compared to the studies on forest species and field crops. So a vast research on this field is necessary for a better tomorrow.Keywords: Arbuscular mycorrhizae, colonization, categories, medicinal plants
Procedia PDF Downloads 4021614 Investigating the Biosorption Potential of Indigenous Filamentous Fungi from Copperbelt Tailing Dams in Zambia with Copper and Cobalt Tolerance
Authors: Leonce Dusengemungu
Abstract:
Filamentous fungi indigenous to heavy metals (HMs) contaminated environments have a considerable biosorption potential yet are currently under-investigated in developing countries. In the work presented herein, the biosorption potential of three indigenous filamentous fungi (Aspergillus transmontanensis, Cladosporium cladosporioides, and Geotrichum candidum) isolated from copper and cobalt mining wasteland sites in Zambia's Copperbelt province was investigated. In Cu and Co tolerance tests, all the fungal isolates were shown to be tolerant, with mycelial growth at HMs concentrations of up to 7000 ppm. However, exposure to high Cu and Co concentrations hindered the growth of the three strains to varying degrees, resulting in reduced mycelial biomass (evidenced by loss of the infrared bands at 887 and 930 cm-1 of the 1,3-glucans backbone) as well as morphological alterations, sporulation, and pigment synthesis. In addition, gas chromatography-mass spectrometry characterization of the fungal biomass extracts allowed to detect changes in the chemical constituents upon exposure to HMs, with profiles poorer in maltol, 1,2-cyclopentadione, and n-hexadecanoic acid, and richer in furaldehydes. Biosorption tests showed that A. transmontanensis and G. candidum showed better performance as bioremediators than C. cladosporioides, with biosorption efficiencies of 1645, 1853 and 1253 ppm at pH 3, respectively, and may deserve further research in field conditions.Keywords: bioremediation, fungi, biosorption, heavy metal
Procedia PDF Downloads 641613 Treatment of Grey Water from Different Restaurants in FUTA Using Fungi
Authors: F. A. Ogundolie, F. Okogue, D. V. Adegunloye
Abstract:
Greywater samples were obtained from three restaurants in the Federal University of Technology; Akure coded SSR, MGR and GGR. Fungi isolates obtained include Rhizopus stolonifer, Aspergillus niger, Mucor mucedo, Aspergillus flavus, Saccharomyces cerevisiae. Of these fungi isolates obtained, R. stolonifer, A. niger and A. flavus showed significant degradation ability on grey water and was used for this research. A simple bioreactor was constructed using biodegradation process in purification of waste water samples. Waste water undergoes primary treatment; secondary treatment involves the introduction of the isolated organisms into the waste water sample and the tertiary treatment which involved the use of filter candle and the sand bed filtration process to achieve the end product without the use of chemicals. A. niger brought about significant reduction in both the bacterial load and the fungi load of the greywater samples of the three respective restaurants with a reduction of (1.29 × 108 to 1.57 × 102 cfu/ml; 1.04 × 108 to 1.12 × 102 cfu/ml and 1.72 × 108 to 1.60 × 102 cfu/ml) for bacterial load in SSR, MGR and GGR respectively. Reduction of 2.01 × 104 to 1.2 × 101; 1.72 × 104 to 1.1 × 101, and 2.50 × 104 to 1.5 × 101 in fungi load from SSR, MGR and GGR respectively. Result of degradation of these selected waste water by the fungi showed that A. niger was probably more potent in the degradation of organic matter and hence, A. niger could be used in the treatment of wastewater.Keywords: Aspergillus niger, greywater, bacterial, fungi, microbial load, bioreactor, biodegradation, purification, organic matter and filtration
Procedia PDF Downloads 3121612 Biological Methods to Control Parasitic Weed Phelipanche ramosa L. Pomel in the Field Tomato Crop
Authors: F. Lops, G. Disciglio, A. Carlucci, G. Gatta, L. Frabboni, A. Tarantino, E. Tarantino
Abstract:
Phelipanche ramosa L. Pomel is a root holoparasitic weed plant of many cultivations, particularly of tomato (Lycopersicum esculentum L.) crop. In Italy, Phelipanche problem is increasing, both in density and in acreage. The biological control of this parasitic weed involves the use of living organisms as numerous fungi and bacteria that can infect the parasitic weed, while it may improve the crop growth. This paper deals with the biocontrol with microorganism, including Arbuscular mycorrhizal (AM) fungi and fungal pathogens as Fusarium oxisporum spp. Colonization of crop roots by AM fungi can provide protection of crops against parasitic weeds because of a reduction in their seed germination and attachment, while F. oxisporum, isolated from diseased broomrape tubercles, proved to be highly virulent on P. ramosa. The experimental trial was carried out in open field at Foggia province (Apulia Region, Southern Italy), during the spring-summer season 2016, in order to evaluate the effect of four biological treatments: AM fungi and Fusarium oxisporum applied in the soil alone or combined together, and Rizosum Max® product, compared with the untreated control, to reduce the P. ramosa infestation in processing tomato crop. The principal results to be drawn from this study under field condition, in contrast of those reported previously under laboratory and greenhouse conditions, show that both AM fungi and F. oxisporum do not provide the reduction of the number of emerged shoots of P. ramosa. This can arise probably from the low efficacy seedling of the agent pathogens for the control of this parasite in the field. On the contrary, the Rizosum Max® product, containing AM fungi and some rizophere bacteria combined with several minerals and organic substances, appears to be most effective for the reduction of P. ramosa infestation.Keywords: Arbuscular mycorrhized fungi, biocontrol methods, Phelipanche ramosa, tomato crop
Procedia PDF Downloads 4621611 Characterization of Common Maize Ear Rot Pathogens in Ilesa Nigeria and Their Potential Control Using Selected Arbuscular Mycorrhizal Fungi
Authors: Olumayowa M. Olowe, Michael D. Asemoloye Odunayo J. Olawuyi, Hilda Vasanthakaalam
Abstract:
Poor management of maize ear rot caused by fungal infection in Nigeria affected the quantity and quality of maize. This study, therefore, aims at characterizing and controlling Fusarium strains using arbuscular mycorrhizal fungi. Maize ear showing rot symptoms were obtained from some selected farms located at Ilesa East and West using random sampling technique. Isolation of Fusarium pathogen from infected maize grain was done using direct pour plate method on potato dextrose agar (PDA) and was characterized based on morphological and molecular ITS-amplification methods. The reaction of PVASYN8F2, T2LCOMP1STR SYN-W-1, and T2LCOMP4 maize varieties, to the Fusarium ear rot pathogens and biocontrol efficacy of the mycorrhizal fungi were assessed on growth, yield, agronomic parameters and symptoms observed. The strains; olowILH1 and olowILH2 identified as Fusarium napiforme were the most dominant and virulent pathogens associated with the maize. They showed genetic similarity with documented ear rot pathogens on NCBI with accession numbers Fusarium proliferatum KT224027, KT224023, and Fusarium sp AY237110. They both exhibited varying inhibitory effects on the three maize varieties compare to control (uninfected plant) which had better growth characteristics. It was also observed that strain olowILH1 was more virulent than olowILH2. T2LCOMP4 was generally more susceptible to both fungal strains compared to the other two maize (T2LCOMP1STR SYN-W-1 and T2LCOMP4 ). In all, strain olowILH1 was more virulent than olowILH2, and Glomus clarum had higher inhibitory pathogenic effect against Fusarium strains compared to G. deserticola.Keywords: arbuscular mycorrhizal fungi, disease management, Fusarium strains, identification
Procedia PDF Downloads 1731610 Biodegradation of Cellulosic Materials by Marine Fungi Isolated from South Corniche of Jeddah, Saudi Arabia
Authors: Fuad Ameen, Mohamed Moslem, Sarfaraz Hadi
Abstract:
Twenty-eight fungal isolates belonging to 12 genera were derived from debris, sediment and water samples collected from Avicennia marina stands 25km south of Jeddah city on the Red Sea coast of Saudi Arabia. Eight of these isolates were found to be able to grow in association cellulosic waste materials under in vitro conditions in the absence of any carbon source. Isolates were further tested for their potential to degrade paper and clothes wastes by co-cultivation under aeration on a rotary shaker. These fungi accumulated significantly higher biomass, produced ligninolytic and cellulase enzymes, and liberated larger volumes of CO2. These observations indicated that the selected isolates were able to break down and consume the waste materials.Keywords: biodegradation, enzyme activity, waste materials, mangrove
Procedia PDF Downloads 5661609 Test of Biological Control against Brachytrupes Megacephalus Lefèbre, 1827 (Orthoptera, Gryllinae) by Using Entomopathogenic Fungi
Authors: W. Lakhdari, B. Doumendji-Mitich, A. Dahliz, S. Doumendji, Y. Bouchikh, R. M'lik, H. Hammi, A. Soud
Abstract:
This work was done in order to fight against Brachytrupes megacephalus, a major pest in the Algerian oasis and promote one aspect of biological control against it. He wears a hand on the isolation and identification of indigenous fungi on imagos of this insect harvested in the station of INRAA Touggourt and secondly, the study of the pathogenicity of these strains fungal on this orthoptère adults. The results obtained showed the presence of six different species of entomopathogenic fungi, it is: Aspergillus flavus, Fusarium sp, Beauveria bassiana, Penicillium sp, Metharizium anisopliae and Aspergillus Niger. The pathogenicity test using fungi Beauveria bassiana strains and Metharizium anisopliae. On adult of B. megacephalus highlights the effectiveness of these strains of predatory adults, with a mortality rate approaching 100% after 11 days.Keywords: biological control, brachytrupes megacephalus, entomopathogenic fungi, Southeastern Algeria
Procedia PDF Downloads 4101608 Growth of Albizia in vitro: Endophytic Fungi as Plant Growth Promote of Albizia
Authors: Reine Suci Wulandari, Rosa Suryantini
Abstract:
Albizia (Paraserianthes falcataria) is a woody plant species that has a high economic value and multifunctional. Albizia is important timber, medicinal plants and can also be used as a plant to rehabilitate critical lands. The demand value of Albizia is increased so that the large quantities and high quality of seeds are required. In vitro propagation techniques are seed propagation that can produce more seeds and quality in a short time. In vitro cultures require growth regulators that can be obtained from biological agents such as endophytic fungi. Endophytic fungi are micro fungi that colonize live plant tissue without producing symptoms or other negative effects on host plants and increase plant growth. The purposes of this research were to isolate and identify endophytic fungi isolated from the root of Albizia and to study the effect of endophytic fungus on the growth of Albizia in vitro. The methods were root isolation, endophytic fungal identification, and inoculation of endophytic fungi to Albizia plants in vitro. Endophytic fungus isolates were grown on PDA media before being inoculated with Albizia sprouts. Incubation is done for 4 (four) weeks. The observed growth parameters were live explant percentage, percentage of explant shoot, and percentage of explant rooted. The results of the research showed that 6 (six) endophytic fungal isolates obtained from the root of Albizia, namely Aspergillus sp., Verticillium sp, Penicillium sp., Trichoderma sp., Fusarium sp., and Acremonium sp. Statistical analysis found that Trichoderma sp. and Fusarium sp. affect in vitro growth of Albizia. Endophytic fungi from the results of this research were potential as plant growth promoting. It can be applied to increase productivity either through increased plant growth and increased endurance of Albizia seedlings to pests and diseases.Keywords: Albizia, endophytic fungi, propagation, in vitro
Procedia PDF Downloads 2641607 Media Manipulations and the Culture of Beneficial Endophytic Fungi in the Leaves and Stem Bark of Grewia lasiocarpa E. Mey. Ex Harv
Authors: Akwu A. Nneka, Naidoo, Yougasphree
Abstract:
A significantly high number of microbes exist in higher plants; these microbes include bacteria, fungi, and actinomycetes. There are reports on the benefits of endophytic fungi and their products of metabolism to the host plant and man, consequently, it is expedient to explore the changes that could arise as a result of manipulating their growth media. Grewia lasiocarpa E. Mey. ex Harv. (Malvaceae) is an indigenous Southern African plant, that belongs to a genus with known medicinal properties. Three media were used to culture the endophytic fungi viz., Potato Dextrose Agar (PDA), Malt Extract Agar (MEA), and Bacteriological Agar (BA) were used singly, and supplemented with three dilutions of the leaves and stem bark extracts. The manipulated growth media composition had a significant effect on the diversity of the isolated fungal populations. Several endophytic fungi were isolated; their distribution and diversity revealed a significant relatedness with the manipulated media. The media supplemented with the plant extracts was observed to give a significant increase in the growth rate and yield of the endophytes. To the best of our knowledge, this is the first study describing the endophytic fungi present in the leaves and stem bark of G. lasiocarpa E. Mey. ex Harv.Keywords: Grewia lasiocarpa, plant-based extracts, endophytic fungi, Malvaceae
Procedia PDF Downloads 1551606 Analysis of Pathogen Populations Occurring in Oilseed Rape Using DNA Sequencing Techniques
Authors: Elizabeth Starzycka-Korbas, Michal Starzycki, Wojciech Rybinski, Mirosława Dabert
Abstract:
For a few years, the populations of pathogenic fungi occurring in winter oilseed rape in Malyszyn were analyzed. Brassica napus L. in Poland and in the world is a source of energy for both the men (oil), and animals, as post-extraction middling, as well as a motor fuel (oil, biofuel) therefore studies of this type are very important. The species composition of pathogenic fungi can be an indicator of seed yield. The occurrence of oilseed rape pathogens during several years were analyzed using the sequencing method DNA ITS. The results were compared in the gene bank using the program NCBI / BLAST. In field conditions before harvest of oilseed rape presence of pathogens infesting B. napus has been assessed. For example, in 2015, 150 samples have been isolated and applied to PDA medium for the identification of belonging species. From all population has been selected mycelium of 83 isolates which were sequenced. Others (67 isolates) were pathogenic fungi of the genus Alternaria which are easily to recognize. The population of pathogenic species on oilseed rape have been identified after analyzing the DNA ITS and include: Leptosphaeria sp. 38 (L. maculans 25, L. biglobosa 13), Alternaria sp. 29, Fusarium sp. 3, Sclerotinia sclerotiorum 7, heterogeneous 6, total of 83 isolates. The genus Alternaria sp. fungi wear the largest share of B. napus pathogens in particular years. Another dangerous species for oilseed rape was Leptosphaeria sp. Populations of pathogens in each year were different. The number of pathogens occurring in the field and their composition is very important for breeders and farmers because of the possible selection of the most resistant genotypes for sowing in the next growing season.Keywords: B. napus, DNA ITS Sequencing, pathogenic fungi, population
Procedia PDF Downloads 2881605 Role of Arbuscular Mycorrhiza in Heavy Metal Tolerance in Sweet Basil Plants
Authors: Aboul-Nasr Amal, Sabry Soraya, Sabra Mayada
Abstract:
The effects of phosphorus amendments and arbuscular mycorrhizal (AM) fungi Glomus intraradices on the sweet basil (Ocimum basilicum L.), chemical composition and percent of volatile oil, and metal accumulation in plants and its availability in soil were investigated in field experiment at two seasons 2012 and 2013 under contaminated soil with Pb and Cu. The content of essential oil and shoot and root dry weights of sweet basil was increased by the application of mineral phosphorus as compared to control. Inoculation with AM fungi reduced the metal concentration in shoot, recording a lowest value of (33.24, 18.60 mg/kg) compared to the control (46.49, 23.46 mg/kg) for Pb and Cu, respectively. Availability of Pb and Cu in soil were decreased after cultivation in all treatments compared to control. However, metal root concentration increased with the inoculation, with highest values of (30.15, 39.25 mg/kg)compared to control (22.01, 33.57mg/kg) for Pb and Cu, respectively. The content of linalool and methyl chavicol in basil oil was significantly increased in all treatments compared to control. We can thus conclude that the AM-sweet basil symbiosis could be employed as an approach to bioremediate polluted soils and enhance the yield and maintain the quality of volatile oil of sweet basil plants.Keywords: arbuscular mycorrhizal fungus, heavy metals, sweet basil, oil composition
Procedia PDF Downloads 2521604 Unveiling Microbial Potential: Investigating Zinc-Solubilizing Fungi in Rhizospheric Soil Through Isolation, Characterization and Selection
Authors: Pukhrambam Helena Chanu, Janardan Yadav
Abstract:
This study investigates the potential of various fungal isolates to solubilize zinc and counteract rice pathogens, with the aim of mitigating zinc deficiency and disease prevalence in rice farming. Soil samples from the rhizosphere were collected, and zinc-solubilizing fungi were isolated and purified. Molecular analysis identified Talaromyces sp, Talaromyces versatilis, Talaromyces pinophilus, and Aspergillus terreus as effective zinc solubilizers. Through qualitative and quantitative assessments, it was observed that solubilization efficiencies varied among the isolates over time, with Talaromyces versatilis displaying the highest capacity for solubilization. This variability in solubilization rates may be attributed to differences in fungal metabolic activity and their ability to produce organic acids that facilitate zinc release from insoluble sources in the soil. In inhibition assays against rice pathogens, the fungal isolates exhibited antagonistic properties, with Talaromyces versatilis demonstrating the most significant inhibition rates. This antagonistic activity may be linked to the production of secondary metabolites, such as antibiotics or lytic enzymes by fungi, which inhibit the growth of rice pathogens. The ability of Talaromyces versatilis to outperform other isolates in both zinc solubilization and pathogen inhibition highlights its potential as a multifunctional biocontrol agent in rice cultivation systems. These findings emphasize the potential of fungi as natural solutions for enhancing zinc uptake and managing diseases in rice cultivation. Utilizing indigenous zinc-solubilizing fungi offers a sustainable and environmentally friendly approach to addressing zinc deficiency in soils, reducing the need for chemical fertilizers. Moreover, harnessing the antagonistic activity of these fungi can contribute to integrated disease management strategies, minimizing reliance on synthetic pesticides and promoting ecological balance in agroecosystems. Additionally, the study included the evaluation of dipping time under different concentrations, viz.,10 ppm, 20 ppm, and 30 ppm of biosynthesized nano ZnO on rice seedlings. This investigation aimed to optimize the application of nano ZnO for efficient zinc uptake by rice plants while minimizing potential risks associated with excessive nanoparticle exposure. Evaluating the effects of varying concentrations and dipping durations provides valuable insights into the safe and effective utilization of nano ZnO as a micronutrient supplement in rice farming practices.Keywords: biosynthesized nano ZnO, rice, root dipping, zinc solubilizing fungi.
Procedia PDF Downloads 491603 Screening for Antibacterial Activity of Fungi from Indian Marine Environments: A Possible Alternative for New Antibiotics for the Treatment of Skin Microbial Infections
Authors: Shivankar Agrawal, Sunil Kumar Deshmukh, Colin Barrow, Alok Adholeya
Abstract:
Millions of people worldwide are affected by infectious diseases caused by bacteria and fungi. Skin and skin structure infections (SSSI) represent a significant category of infectious disease. Unexpectedly, many pathogens have developed resistance towards current antibiotics and over the time this problem has become more and more serious. All these new problems necessitate the continuous search for novel and alternative antibiotics and antifungals. The aim of our research is the screening of extracts of marine fungi for their antibacterial activity against bacteria causing skin and wound infection in humans. A total of 40 marine samples were collected from west coast and Andaman Island of India and 35 morphologically different marine fungi were isolated using natural sea water medium. Among 35 marine fungi, eight isolates exhibited significant antimicrobial activity against human pathogens. In the course of systematic screening program for bioactive marine fungi, strain 'D5' was found to be most potent strain with MIC value of 1 mg/mL, which was morphologically identified as Simplicillium lamellicola. The effects of the most active crude extracts against their susceptible test microorganisms were also investigated by SEM analysis. Purification and characterization of crude extracts for identification of active lead molecule is under process. The results of diversity and antimicrobial activity have increased the scope of finding industrially important marine fungi from Indian marine environments and these organisms could be vital sources for the discovery of pharmaceutically useful molecules.Keywords: antimicrobial activity, antibiotic, marine fungi, skin infections
Procedia PDF Downloads 2651602 Fungal Diversity and Bioprospecting of Termite-Associated Fungi from Nothern-Western Ghats of India
Authors: Gajanan V. Mane, Rashmi More, Mahesh S. Sonawane, Tushar Lodha, Rohit Sharma
Abstract:
The diversity of fungi isolated from two different termite species viz., Odontoterms assmuthi and O. abesus was investigated by dilution- plate method, combined with morphological characteristics and sequencing of internal transcribed spacer region. In total, ninety-six fungi were isolated and purified, out of which 69 isolates were obtained from O. assmuthi belonging to 18 genera and 31 species, whereas 27 isolates were obtained from O. abesus belonging to 15 genera and 17 species. The fungal strains were screened for laccase, amylase, cellulase and pectinase enzymes production. Twenty-seven strains were positive for laccase, 59 strains were positive for amylase, 71 strains were positive for cellulase and 72 strains were positive for pectinase enzymes. The antimicrobial activities of the isolated fungi were tested by the dual plate culture method against standard pathogens. Bioactive secondary metabolites were identified by HPLC and LCMS. Four isolates viz., Penicillium goetzii MG 57, Epicoccum sp. MG 39, Penicillium tanzanicum MG 30, Aspergillus polyporicola MG 54, showed positive antimicrobial activity against standard pathogens, Streptococcus pneumonia MCC 2425, Staphylococcus aureus MCC 2408, Pseudomonas aeruginosa MCC 2080, Escherichia coli MCC 2412, Enterococcus faecalis MCC 2409, Klebsiella pneumonia MCC 2451, Micrococcus luteus MCC 2155 and Candida albicans MCC 1151. In conclusion, the study showed that the insect gut harbor fungal diversity, which is futuristic with biotechnological potential and could be a good source of enzymes and antibiotics.Keywords: termites, fungi, its, enzyme, antimicrobial activity
Procedia PDF Downloads 1041601 Application of Arbuscular Mycorrhizal Fungi as Biologically Based Strategy for Mitigation of Adverse Impact of Salt Stress on Wheat
Authors: Abeer Hashem, Khalid F. Almutairi, Ulkar Ibrahimova, Elsayed Fathi Abdallah
Abstract:
Salinity poses a significant challenge to wheat production, necessitating the exploration of strategies to mitigate its adverse effects. The present investigation aims to study the impact of arbuscular mycorrhizal fungi (AMF) application to improve plant tolerance in terms of growth, carbohydrate, photosynthetic characteristics, and antioxidant enzyme activities under salt stress conditions. So, a randomized complete block design with five replications was employed comprising various treatments of AMF application under salinity stress (200mM), and control samples were used for each treatment. The obtained results demonstrated significantly that AMF used in this study showed beneficial impacts in all parameters used as sensitive monitor for relation of plant-salt microbe interaction. The root colonization by AMF showed the highest plant growth criteria, relative water content, soluble sugar, starch, and total non-structural carbohydrates under both control and salinity stress conditions. Moreover, the application of AMF-treated plants showed the highest soluble protein concentration and activity in leaves and antioxidant enzymes (catalase, superoxide dismutase, guaiacol peroxidase). These findings highlight the potential impact of AMF application as a biologically based strategy to manage the mitigation of salt stress on wheat, which increases the availability of many salt marsh habitats for sustainable agriculture of such strategy crops.Keywords: arbuscular mycorrhizal fungi, salt stress, plant growth criteria, soluble protein, antioxidant enzymes, wheat plant
Procedia PDF Downloads 471600 Variability of the Arbuscular Mycorrhizal Fungi Communities Associated with Wild Agraz Plants (Vaccinium meridionale Swartz) in the Colombian Andes
Authors: Gabriel Roveda-Hoyos, Margarita Ramirez-Gomez, Adrian Perez, Diana Paola Serralde
Abstract:
The objective of this study was to determine the variability of arbuscular mycorrhizal fungi (HFMA) communities associated with wild agraz plants (Vaccinium meridionale Swartz) in the Colombian Andes. This species is one of the most promising fruits within the genus Vaccinium because of the high content of anthocyanins and antioxidants in its fruits, and like other species of the Ericaceae family, it depends on the association with HFM for its development in the natural environment. In this study, the presence of mycorrhizae in wild communities of V. meridionale was evaluated, and their relationship with the edaphic and climatic conditions of the study area was analyzed. Sampling was conducted in the rural area of the municipalities of Raquira, and Chiquinquira, Chia, and Tabio in the departments of Cundinamarca and Boyaca, Colombia. Seven sites were selected, and in each site, 5 plants were randomly selected, root and soil samples were taken from each plant in the rhizosphere zone for the quantification of colonization and the presence of spores. The samples were collected on different soils, taxonomic orders Entisols, Inceptisols, and Alfisols, located at altitudes between 2,600 and 3,000 above sea level in the Eastern Cordillera of Colombia. The physicochemical characteristics of the soil were compared with the density of spores and the percentage of presence of mycorrhizae in the roots and variables with the morphometric and physiological characteristics of the plants. Four types of mutual associations were found: arbuscular mycorrhizae, ectendomycorrhiza, ericoid mycorrhizae, and endophytic septate fungi. The main results obtained show a predominance of spores of the genera Glomus and Acaulsopora, in most of the soils analyzed. The spore density of Glomeromycete fungi in the soil varied considerably between the different sites; it was higher ( > 50 spores/g of dry soil) in soil samples with lower bulk density and higher content of organic matter; in these soils a higher cation exchange capacity was found, as well as of nitrogen, calcium, magnesium, manganese and zinc concentration. It can be concluded that Vaccinium meridionale is able to establish in a natural way, association with HFMA.Keywords: Ericaceae, Arbuscular mycorrhizae, Andes, soils, Glomus sp.
Procedia PDF Downloads 1761599 Endophytic Fungi Recovered from Lycium arabicum as an Eco-Friendly Alternative for Fusarium Crown and Root Rot Disease Control and Tomato Growth Enhancement
Authors: Ahlem Nefzi, Rania Aydi Ben Abdallah, Hayfa Jabnoun-Khiareddine, Ammar Nawaim, Rabiaa Haouala, Mejda Daami-Remadi
Abstract:
Seven endophytic fungi were isolated from the wild Solanaceous species Lycium arabicum growing in the Tunisian Centre-East and were assessed for their ability to suppress Fusarium Crown and Root Rot disease caused by Fusarium oxysporum f. sp. radicis lycopersici (FORL) and to enhance plant growth. Fungal isolates were shown able to colonize tomato cv. Rio Grande roots, crowns, and stems. A significant promotion in all studied growth parameters (root length, shoot height, and roots and shoots fresh weight) was recorded in tomato plants treated with fungal conidial suspensions or their cell-free culture filtrates compared to FORL-inoculated or pathogen-free controls. I15 and I18 isolates were shown to be the most effective leading to 85.7-87.5 and 93.6-98.4% decrease in leaf and root damage index and the vascular discoloration extent, respectively, over FORL-inoculated and untreated control. These two bioactive and growth-promoting isolates (I15 and I18) were morphologically characterized and identified using rDNA sequencing gene as being Alternaria alternata (MF693801) and Fusarium fujikuroi (MF693802). These fungi significantly suppressed FORL mycelial growth and showed chitinolytic, proteolytic and amylase activities whereas only F. fujikuroi displayed a lipolytic activity. This study clearly demonstrated the potential use of fungi naturally associated with L. arabicum as biocontrol and bio-fertilizing agents.Keywords: biocontrol, endophytic fungi, Fusarium oxysporum f. sp. radicis-lycopersici, tomato promotion, Lycium arabicum
Procedia PDF Downloads 1731598 Effects of Conversion of Indigenous Forest to Plantation Forest on the Diversity of Macro-Fungi in Kereita Forest, Kikuyu Escarpment, Kenya
Authors: Susan Mwai, Mary Muchane, Peter Wachira, Sheila Okoth, Muchai Muchane, Halima Saado
Abstract:
Tropical forests harbor a wide range of biodiversity and rich macro-fungi diversity compared to the temperate regions in the World. However, biodiversity is facing the threat of extinction following the rate of forest loss taking place before proper study and documentation of macrofungi is achieved. The present study was undertaken to determine the effect of converting indigenous habitat to plantation forest on macrofungi diversity. To achieve the objective of this study, an inventory focusing on macro-fungi diversity was conducted within Kereita block in Kikuyu Escarpment forest which is on the southern side of Aberdare mountain range. The macrofungi diversity was conducted in the indigenous forest and in more than 15 year old Patula plantation forest , during the wet (long rain season, December 2014) and dry (Short rain season, May, 2015). In each forest type, 15 permanent (20m x 20m) sampling plots distributed across three (3) forest blocks were used. Both field and laboratory methods involved recording abundance of fruiting bodies, taxonomic identity of species and analysis of diversity indices and measures in terms of species richness, density and diversity. R statistical program was used to analyze for species diversity and Canoco 4.5 software for species composition. A total number of 76 genera in 28 families and 224 species were encountered in both forest types. The most represented taxa belonged to the Agaricaceae (16%), Polyporaceae (12%), Marasmiaceae, Mycenaceae (7%) families respectively. Most of the recorded macro-fungi were saprophytic, mostly colonizing the litter 38% and wood 34% based substrates, which was followed by soil organic dwelling species (17%). Ecto-mycorrhiza fungi (5%) and parasitic fungi (2%) were the least encountered. The data established that indigenous forests (native ecosystems) hosts a wide range of macrofungi assemblage in terms of density (2.6 individual fruit bodies / m2), species richness (8.3 species / plot) and species diversity (1.49/ plot level) compared to the plantation forest. The Conversion of native forest to plantation forest also interfered with species composition though did not alter species diversity. Seasonality was also shown to significantly affect the diversity of macro-fungi and 61% of the total species being present during the wet season. Based on the present findings, forested ecosystems in Kenya hold diverse macro-fungi community which warrants conservation measures.Keywords: diversity, Indigenous forest, macro-fungi, plantation forest, season
Procedia PDF Downloads 2141597 Efficiency for Enzyme Production of Fungi Isolated from the Stomach of Buffalo
Authors: Suphalucksana, Wichai, Sangsoponjit Settasit, Soytong Kasem
Abstract:
A study on the efficiency for enzyme production of fungi isolated from stomach of buffalo was conducted. The fungi were collected from 4 parts of stomach as rumen, reticulum, omasum and abomasums. The objective to study the efficiency of fungi from stomach of buffalo had effected to produced enzyme and to selected fungi for their ability to produced enzyme cellulase, hemicellulase and ligninase. Results shown that the fungi isolated from rumen were: Eupenicillium sp. (B-RU-01-1), Eupenicillium sp. (B-RU-02-3G), Rhyzopus stolonifer (B-RU-01-4) and Trichoderma sp. (B-RU-01-2). From the reticulum, Aspergillus glaucus (B-RET-02-3), Aspergillus orchraceus (B-RET-02-2) and Penicillium sp. (B-RET-02-4) were found. In the omasum Aspergillus fumigatus (B-OMA-01-1G), Eurotium sp. (B-OMA-01-4) and Rhizopus stolonifer (B-OMA-02-3) were isolated and in the abomasums Aspergillus flavas (B-ABO-02-3), Aspergillus fumigatus (B-ABO-02-1), Aspergillus niger (B-ABO-01-3G), Aspergillius terreus (B-ABO-02-4) and Mucor sp. (B-ABO-02-4G). Results of enzyme analysis revealed that cellulase was produced by isolated: Eupenicillium sp. (B-RU-02-3G), Eupenicillium sp. (B-RU-01-1), Penicillium sp. (B-RET-02-4), Aspergillius glaucus (B-RET-02-3), Aspergillus ochraceus (B-RET-02-2), Aspergillius fumigatus (B-OMA-01-1G), Eurotium sp. (B-OMA-01-4), Aspergillius flavus (B-ABO-02-3), Aspergillius fumigatus (B-ABO-02-1), Aspergillius niger (B-ABO-01-3G), Aspergillius terreus (B-ABO-02-4). Hemicellulase was produced Eupenicillium sp. (B-RU-02-3G), Eupenicillium sp. (B-RU-01-1), Rhizopus stolonifer (B-RU-01-4), Trichoderma sp. (B-RU-01-2), Aspergillius glaucus (B-RET-02-3), Aspergillus ochraceus (B-RET-02-2), Penicillium sp. (B-RET-02-4), Aspergillius fumigatus (B-OMA-01-1G), Eurotium sp. (B-OMA -01-4), Aspergillius flavus (B-ABO-02-3), Aspergillius fumigatus (B-ABO-02-1) Aspergillius niger (B-ABO-01-3G), Aspergillius terreus (B-ABO-02-4), Mucor sp. (B-ABO-02-4G). For the enzyme ligninase, two isolates were found to produced this enzyme namely : Trichoderma sp. (B-RU-01-2) and Mucor sp. (B-ABO-02-4G).Keywords: enzyme production from fungi, enzyme production, fungi, agricultural technology
Procedia PDF Downloads 3901596 The Importance of Fungi and Plants for a More Sustainable on Our Planet Earth
Authors: Njabe Christelle
Abstract:
Fungal products are essential building blocks for change towards a more sustainable future for our planet. In nature, fungi are special in breaking down plant material by means of a rich spectrum of plant cell wall degrading enzymes. Enzymes serve as catalysts in organic synthesis. Imagine the immense benefits that the known 250000 plant genes might provide in the future through scientific investigation. Plants are the primary basis for human sustenance, used directly for food, clothing, and shelter or indirectly in processed form and through animal feeding. Fungi are the only organisms known to extensively degrade lignin, a major component of wood. Although humans cannot digest cellulose and lignin, many fungi, through their assimilation of these substances, produce food in the form of edible mushrooms.Keywords: plants, fungi, sustainable use, planet earth
Procedia PDF Downloads 811595 Biological Control of Tuta absoluta (Meyrick) (Lep: Gelechiidae) with Enthomopathogenic Fungi
Authors: Dahliz Abderrahmène, Lakhdari Wassim, Bouchikh Yamina, Hammi Hamida, Soud Adila, M’lik Randa, Benglia Sara
Abstract:
Devastating insects constitute one of strains for cultivate tomato. Among this vandal insects, the tomato leafminer (T. absoluta), which has been introduced in Algeria constitute a challenge for both agricultures and scientists. Firstly, this insect is introduced without their natural enemies which may reduce their damage. Secondly, this species has developed insecticide resistance to many active matters. To contribute to establish a control strategy for T. absoluta we have mad an inventory for their enthomopathogenic fungi. Two fungi were identified among others taken from adults and pupae. These fungi are Aspergillus flavus and Metarhizium sp. A study was conducted in laboratory to recognize the efficiency of these antagonists. These species had unregistered a mortality mounts of 42% and 56% respectively.Keywords: Tuta absoluta, enthomopathogenic fungi, Aspergillus flavus, Metarhizium sp, control strategy
Procedia PDF Downloads 4551594 Selection of Endophytcs Fungi Isolated from Date Palm, Halotolerants and Productors of Secondary Metabolite
Authors: Fadila Mohamed Mahmoud., Derkaoui I., Krimi Z.
Abstract:
Date palm is a plant which presents a very good adaptation to the difficult conditions of the environment in particular to the drought and saline stress even at high temperatures. This adaptation is related on the biology of the plant and to the presence of a microflora endophyte which live inside its tissues. Fifteen endophytics fungi isolated from date palm were tested in vitro in the presence of various NaCl concentrations to select halotolerantes isolates. These same endophytes were tested for their colonizing capacity by the description of the production of secondary metabolites more particularly the enzymes (pectinases, proteases, and phosphorylases), and the production of antibiotics and growth hormones. Significant difference was observed between the isolates with respect to the tests carried out.Keywords: Date palm, Halotolerantes, endophyte, Secondary metabolites.
Procedia PDF Downloads 5191593 Evaluation of the Pathogenicity Test of Some Entomopathogenic Fungus Isolates against Tomato Leaf Miner Tuta Absoluta (Meyrick) Larvae [Lepidoptera: Gelechiidae])
Authors: Tadesse Kebede, Orkun Baris Kovanci
Abstract:
Tomatoes leaf minor (Tutaabasoluta) is one of the most economically important insect pest in tomatoes production. The use of biological control such as entomopathogen fungi isolates would be a long-term and cost-effective solution to control insects pest. Therefore, identifying the most virulent and pathogenic entomopathogen fungi is one of the basic requirements for effective management options to combat Tomatoes leaf minor (Tutaabasoluta). Furthermore, the pathogenicity and virulence difference among entomopathogenfungus strains is not widely well investıgated. The current study was therefore initiated to test the pathogenicity of some entomopathogenic fungus isolates against Tutaabsoluta. The experiment was conducted at Bursa Uludag University, Agiculutre faculty, horticulture department glasshouse in 2020/2021. Tutabasoluta adult were collected, and masslarvae were reared in a growth chamber. Then, ten third instar larvae were inoculated with four entomopathogen fungi isolates (Beuaveriabassania Ak-10, Beuaveriabassania Ak-14, Metarhziumanisoplai Ak-11, and Metarhziumanisoplai Ak-12) with different inoculum suspension (0, 1x10⁶, 1x10⁷,,4 × 10⁸, 4× 10⁹ and 1×10¹⁰ conidia /ml) in a factorial experiment arranged in randomized complete block design with three replication. Mortality data assessment was done on the 3rd, 5thand 7th days after treatment and analyzed. The analysis of variance for mortality rate revealed significant variations (p<0.05) among entomoptahogen fungi isolates and conidia concentrations. The results revealed thatMetarhziumanisoplai Ak-12was found to show the lowest mortality percentage80.77%, highest LC50 2.3x108, and the longest incubation period, LT50, 4.9 and LT90, 9.9daysand considered to be less pathogenic fungi. On the other hand, Beuaveriabassania Ak-10 isolate showed the highest mortality percentage, 91%, and the lowest LT50, 4, and LT90, 7.6 values at 1×10¹⁰ conidia /ml, followed by Beuaveriabassania Ak-14 and being considered as the most aggressive bio-agent. Metarhziumanisoplai Ak-11 was determined as moderately virulent, having a mortality rate 27-81%. Results also revealed that among conidia concentrations, 1x10⁹ and 1x10¹⁰ suspensions is the most effective, while 1x10⁶ conidia/ml concentration is the least effective. Hence, results indicated that EPF tested were effective against T. absoluta larvae. As the current work revealed the potential variation among entomopathogen fungi isolates and concentration against third instar larvae.Keywords: tuta absoluta, tomato, metarhizium anisopliae, beauveria bassiana, biological control
Procedia PDF Downloads 1281592 Microbial Diversity of El-Baida Marsh: Setif, Algeria
Authors: H. Necef, A. Benayad
Abstract:
Fungi are becoming more and more important in our life. Therefore, as a start for the symposium on filamentous fungi in biotechnology a short survey of the role of fungi in biotechnology. Salin soils occupy about 7% of land area; they are characterized by unsuitable physical conditions for the growth of living organisms. However, researches showed that some microorganisms especially fungi are able to grow and adapt to such extreme conditions; it is due to their ability to develop different physiological mechanisms in their adaptation. This is the first study on the physiological and biological characteristics of El-Beida marsh. Nine soil samples were taken at different points in two steps, the first was in winter (low temperature), and the second was in summer (high temperature). The physicochemical analyses of the soil were conducted, then the isolation process was applied using two methods, direct method and dilution method (10-1, 10-2, 10-3, 10-4). Different species of fungi were identified belong to 21 genera in addition to 3 yeast species, Aspergillus showed the highest proportion by 43%, then Penicillium by 20% then Alternaria by 7%, in addition to various genera in different proportions. As for the sampling periods, it was observed that the spread of fungi in winter was higher than in summer with the proportion 75.47% and 24.53% respectively. Some halotolerant fungi have a biotechnological importance especially if the salinity of the medium is necessary for the fermentation, and if the halotolerance genes of the fungus will define, this will open the research to study and improve this property for the industrial important micro-organisms.Keywords: salinity, identification, aspergillus oryzae, halotolerance, fungi
Procedia PDF Downloads 3991591 Chemotrophic Signal Exchange between the Host Plant Helianthemum sessiliflorum and Terfezia boudieri
Authors: S. Ben-Shabat, T. Turgeman, O. Leubinski, N. Roth-Bejerano, V. Kagan-Zur, Y. Sitrit
Abstract:
The ectomycorrhizal (ECM) desert truffle Terfezia boudieri produces edible fruit bodies and forms symbiosis with its host plant Helianthemum sessiliflorum (Cistaceae) in the Negev desert of Israel. The symbiosis is vital for both partners' survival under desert conditions. Under desert habitat conditions, ECMs must form symbiosis before entering the dry season. To secure a successful encounter, in the course of evolution, both partners have responded by evolving special signals exchange that facilitates recognition. Members of the Cistaceae family serve as host plants for many important truffles. Conceivably, during evolution a common molecule present in Cistaceae plants was recruited to facilitate successful encounter with ectomycorrhizas. Arbuscular vesicular fungi (AM) are promiscuous in host preferences, in contrast, ECM fungi show specificity to host plants. Accordingly, we hypothesize that H. sessiliflorum secretes a chemotrophic-signaling, which is common to plants hosting ECM fungi belonging to the Pezizales. However, thus far no signaling molecules have been identified in ECM fungi. We developed a bioassay for chemotrophic activity. Fractionation of root exudates revealed a substance with chemotrophic activity and molecular mass of 534. Following the above concept, screening the transcriptome of Terfezia, grown under chemoattraction, discovered genes showing high homology to G proteins-coupled receptors of plant pathogens involved in positive chemotaxis and chemotaxis suppression. This study aimed to identify the active molecule using analytical methods (LC-MS, NMR etc.). This should contribute to our understanding of how ECM fungi communicate with their hosts in the rhizosphere. In line with the ability of Terfezia to form also endomycorrhizal symbiosis like AM fungi, analysis of the mechanisms may likewise be applicable to AM fungi. Developing methods to manipulate fungal growth by the chemoattractant can open new ways to improve inoculation of plants.Keywords: chemotrophic signal, Helianthemum sessiliflorum, Terfezia boudieri, ECM
Procedia PDF Downloads 4091590 Antifungal Nature of Bacillus Subtilis in Controlling Post Harvest Fungal Rot of Yam
Authors: Ifueko Oghogho Ukponmwan, Mike O. Orji
Abstract:
This study investigated the antifungal activity of Bacilluss subtilis in the control of postharvest fungal rot of white yam (Dioscorea spp). Bacillus subtilis was isolated from the soil and fungi (Aspergillus spp, Mucor and yeasts) were isolated from rotten yam. The organisms were paired in yam nutrient agar (YNA) and yam Sabourraud dextrose agar media. In the yam dextrose agar media (YSDA) plates, the Bacillus grew rapidly and established itself and restricted the growth of the fungi organisms, but there was no zone of inhibition. This behaviour of Bacillus on the plates of YSDA was also observed in the yams where the fungi caused rot but the rot was suppressed by the presence of the Bacillus as compared to the degree of rot observed in the control that had only spoilage fungi. The control yam showed greater rot than other yams that contained a combination of Bacillus and fungi. The t-Test analysis showed that the difference in the rot between the treated samples and the control sample is significant and this implies that the presence of Bacillus significantly reduced the growth of fungi in the samples (yams). It was revealed from this study that Bacillus subtilis treatment can be successfully used to preserve white yams in storage. Its fast growth and early establishment in the sample accounts for its antifungal strength.Keywords: Bacillus subtilis, rot, fungi, yam
Procedia PDF Downloads 181