Search results for: HIV sentinel surveillance
528 Exploring the Capabilities of Sentinel-1A and Sentinel-2A Data for Landslide Mapping
Authors: Ismayanti Magfirah, Sartohadi Junun, Samodra Guruh
Abstract:
Landslides are one of the most frequent and devastating natural disasters in Indonesia. Many studies have been conducted regarding this phenomenon. However, there is a lack of attention in the landslide inventory mapping. The natural condition (dense forest area) and the limited human and economic resources are some of the major problems in building landslide inventory in Indonesia. Considering the importance of landslide inventory data in susceptibility, hazard, and risk analysis, it is essential to generate landslide inventory based on available resources. In order to achieve this, the first thing we have to do is identify the landslides' location. The presence of Sentinel-1A and Sentinel-2A data gives new insights into land monitoring investigation. The free access, high spatial resolution, and short revisit time, make the data become one of the most trending open sources data used in landslide mapping. Sentinel-1A and Sentinel-2A data have been used broadly for landslide detection and landuse/landcover mapping. This study aims to generate landslide map by integrating Sentinel-1A and Sentinel-2A data use change detection method. The result will be validated by field investigation to make preliminary landslide inventory in the study area.Keywords: change detection method, landslide inventory mapping, Sentinel-1A, Sentinel-2A
Procedia PDF Downloads 171527 Analysis of Sentinel Epidemiological Surveillance of Severe Acute Respiratory Infections in the Republic of Kazakhstan during Seasons 2014/2015 - 2015/2016
Authors: Ardak Myrzabekova
Abstract:
Sentinel epidemiological surveillance (SES) of severe acute respiratory infections (SARI) was introduced in the Republic of Kazakhstan in 2008. The purpose of this study was to analyze SES of flu among SARI patients in the Republic of Kazakhstan during last two flu seasons. Comparative analysis was conducted of SARI morbidity during 40 – 23 weeks of 2014/2015 (season 2014) and 2015/2016 (season 2015) in online base (http:\\ses.dec.kz). In the database during season 2014 were 1,398 SARI patients and 1,985 patients during season 2015. Individual data (clinical, epidemiological and laboratory) of SARI cases were collected based on the questionnaire and were put into the flu electronic system. The studied population was residents of the Republic of Kazakhstan who addressed for medical help in 24 sentinel in-patient clinics in 9 sentinel regions of the country. Swabs from nose and throat were taken for laboratory testing from SARI patients who met the standard case definition. The samples were examined in virology labs of sentinel regions using PCR and 'AmpliSens' test systems made in Russia. The first positive results for flu during season 2014 were obtained on 48 week, during season 2015 – on 46 week. The increase of the number of hospitalized SARI patients was observed during 42 week of 2015 – 01 week of 2016, and during 03 - 06 weeks of 2016, with fluctuating SARI incidence rate from 171 to 444 per 1,000 hospitalized. The highest SARI incidence rate during season 2014 were observed during 01 - 03 weeks of 2015: from 389 to 466 per 1,000 hospitalized. Patients admitted to the ICU during season 2015 were 3.0% (60) SARI patients, compared to 2.7% (38) in 2014 (p=0.3), obtaining oxygen therapy 1.0% (21) compared to 0.3% (5), accordingly, (р=0.009); with shortness of breath 74.8% (1,486) compared to 72.6% (1,015), (р=0.07); with impairment of consciousness 1.0% (21) compared to 0.6% (9), (р=0.11); with muscle pain 19.3% (384) compared to 13.6% (191), (р < 0.001); with joint pain 13.3% (265) compared to 9.3% (131), (p < 0.001). During season 2015 the prevailing subtype of flu А was А/Н1N1-09, it was observed mainly in the age group 30-64: 32.5% (169/520). During season 2014 flu А/Н3N2 was observed mainly in the age group 15-29: 43.6% (106/243). Among children under 14 flu А/Н1N1-09 during season 2015 was 37.3% (194/520), during season 2014 flu А/Н3N2 – 34.9% (85/243). Earlier beginning of the flu season was noted in 2015-2016 and a longer period of hospitalization of SARI patients, with high SARI morbidity rates, unlike season 2014-2015. Season 2015-2016 was characterized by prevailing circulation of virus of flu А/Н1N1-09, mainly in the age group 30-64, and also among children under 14. During season 2014-2015 the virus circulating in the country was А/Н3N2, which was observed mainly in the age group 15-29 and among children under 14.Keywords: flu, electronic system, sentinel epidemiological surveillance, severe acute respiratory infections
Procedia PDF Downloads 226526 Evaluation of the Notifiable Diseases Surveillance System, South, Haiti, 2022
Authors: Djeamsly Salomon
Abstract:
Background: Epidemiological surveillance is a dynamic national system used to observe all aspects of the evolution of priority health problems, through: collection, analysis, systematic interpretation of information, and dissemination of results with necessary recommendations. The study was conducted to assess the mandatory disease surveillance system in the Sud Department. Methods: A study was conducted from March to May 2021 with key players involved in surveillance at the level of health institutions in the department . The CDC's 2021 updated guideline was used to evaluate the system. We collected information about the operation, attributes, and usefulness of the surveillance system using interviewer-administered questionnaires. Epi-Info7.2 and Excel 2016 were used to generate the mean, frequencies and proportions. Results: Of 30 participants, 23 (77%) were women. The average age was 39 years[30-56]. 25 (83%) had training in epidemiological surveillance. (50%) of the forms checked were signed by the supervisor. Collection tools were available at (80%). Knowledge of at least 7 notifiable diseases was high (100%). Among the respondents, 29 declared that the collection tools were simple, 27 had already filled in a notification form. The maximum time taken to fill out a form was 10 minutes. The feedback between the different levels was done at (60%). Conclusion: The surveillance system is useful, simple, acceptable, representative, flexible, stable and responsive. The data generated was of high quality. However, it is threatened by the lack of supervision of sentinel sites, lack of investigation and weak feedback. This evaluation demonstrated the urgent need to improve supervision in the sites and to feedback information. Strengthen epidemiological surveillance.Keywords: evaluation, notifiable diseases, surveillance, system
Procedia PDF Downloads 78525 Setting the Baseline for a Sentinel System for the Identification of Occupational Risk Factors in Africa
Authors: Menouni Aziza, Chbihi Kaoutar, Duca Radu Corneliu, Gilissen Liesbeth, Bounou Salim, Godderis Lode, El Jaafari Samir
Abstract:
In Africa, environmental and occupational health risks are mostly underreported. The aim of this research is to develop and implement a sentinel surveillance system comprising training and guidance of occupational physicians (OC) who will report new work-related diseases in African countries. A group of 30 OC are recruited and trained in each of the partner countries (Morocco, Benin and Ethiopia). Each committed OC is asked to recruit 50 workers during a consultation in a time-frame of 6 months (1500 workers per country). Workers are asked to fill out an online questionnaire about their health status and work conditions, including exposure to 20 chemicals. Urine and blood samples are then collected for human biomonitoring of common exposures. Some preliminary results showed that 92% of the employees surveyed are exposed to physical constraints, 44% to chemical agents, and 24% to biological agents. The most common physical constraints are manual handling of loads, noise pollution and thermal pollution. The most frequent chemical risks are exposure to pesticides and fuels. This project will allow a better understanding of effective sentinel systems as a promising method to gather high quality data, which can support policy-making in terms of preventing emerging work-related diseases.Keywords: sentinel system, occupational diseases, human biomonitoring, Africa
Procedia PDF Downloads 82524 Flood Monitoring in the Vietnamese Mekong Delta Using Sentinel-1 SAR with Global Flood Mapper
Authors: Ahmed S. Afifi, Ahmed Magdy
Abstract:
Satellite monitoring is an essential tool to study, understand, and map large-scale environmental changes that affect humans, climate, and biodiversity. The Sentinel-1 Synthetic Aperture Radar (SAR) instrument provides a high collection of data in all-weather, short revisit time, and high spatial resolution that can be used effectively in flood management. Floods occur when an overflow of water submerges dry land that requires to be distinguished from flooded areas. In this study, we use global flood mapper (GFM), a new google earth engine application that allows users to quickly map floods using Sentinel-1 SAR. The GFM enables the users to adjust manually the flood map parameters, e.g., the threshold for Z-value for VV and VH bands and the elevation and slope mask threshold. The composite R:G:B image results by coupling the bands of Sentinel-1 (VH:VV:VH) reduces false classification to a large extent compared to using one separate band (e.g., VH polarization band). The flood mapping algorithm in the GFM and the Otsu thresholding are compared with Sentinel-2 optical data. And the results show that the GFM algorithm can overcome the misclassification of a flooded area in An Giang, Vietnam.Keywords: SAR backscattering, Sentinel-1, flood mapping, disaster
Procedia PDF Downloads 104523 Strategic Cyber Sentinel: A Paradigm Shift in Enhancing Cybersecurity Resilience
Authors: Ayomide Oyedele
Abstract:
In the dynamic landscape of cybersecurity, "Strategic Cyber Sentinel" emerges as a revolutionary framework, transcending traditional approaches. This paper pioneers a holistic strategy, weaving together threat intelligence, machine learning, and adaptive defenses. Through meticulous real-world simulations, we demonstrate the unprecedented resilience of our framework against evolving cyber threats. "Strategic Cyber Sentinel" redefines proactive threat mitigation, offering a robust defense architecture poised for the challenges of tomorrow.Keywords: cybersecurity, resilience, threat intelligence, machine learning, adaptive defenses
Procedia PDF Downloads 83522 Extending ACOSOG Z0011 to Encompass Mastectomy Patients: A Retrospective Review
Authors: Ruqayya Naheed Khan, Awais Amjad Malik, Awais Naeem, Amina Khan, Asad Parvaiz
Abstract:
Introduction: Axillary nodal status in breast cancer patients is a paramount prognosticator, next to primary tumor size and grade. It has been well established that patients with negative sentinel lymph node biopsy can safely avoid axillary lymph node dissection. A positive sentinel lymph node has traditionally required subsequent axillary dissection. According to ACOSOG Z11 trial, patients who underwent axillary dissection with 3 or more positive sentinel nodes or opted for observation in case of negative sentinel lymph node, did not find any difference in Overall Survival (OS) and Disease Free Survival (DFS). The Z11 trial included patients who underwent breast conserving surgery and excluded patients with mastectomies. The purpose of this study is to determine whether Z0011 can be applied to mastectomy patients as well in 1-3 positive sentinel lymph nodes and avoid unnecessary ALND. Methods: A retrospective review was conducted at Shaukat Khanam Memorial Cancer Hospital Pakistan from Jan 2015 to Dec 2017 including patients who were treated for invasive breast cancer and required upfront mastectomy. They were clinically node negative, so sentinel lymph node biopsy was performed. Patients underwent ALND with positive sentinel lymph node. A total of 156 breast cancer patients with mastectomies were reviewed. Results: 95% of the patients were female while 3% were male. Average age was 44 years. There was no difference in race, comorbidities, histology, T stage, N stage, and overall stage, use of adjuvant chemotherapy and radiation therapy. 64 patients underwent ALND for positive lymph node while 92 patients were spared of axillary dissection due to negative sentinel lymph node biopsy. Out of 64 patients, 38 patients (59%) had only 1 lymph node positive which was the sentinel node. 18 patients (28%) had 2 lymph nodes positive including the sentinel node while only 8 patients (13%) had 3 or more positive nodes. Conclusion: Keeping in mind the complications related to ALND, above results clearly show that ALND could have been avoided in 87% of patients in the setting of adjuvant radiation, possibly avoiding the morbidity associated with axillary lymphadenectomy although a prospective randomized trial needs to confirm these results.Keywords: mastectomy, sentinel lymph node biopsy, axillary lymph node dissection, breast cancer
Procedia PDF Downloads 195521 Horse Exposition to Coxiella burnetii in France: Antibody Dynamics in Serum, Environmental Risk Assessment and Potential Links with Symptomatology
Authors: Joulié Aurélien, Isabelle Desjardins, Elsa Jourdain, Sophie Pradier, Dufour Philippe, Elodie Rousset, Agnès Leblond
Abstract:
Q fever is a worldwide zoonosis caused by the bacterium Coxiella burnetii. It may infect a broad range of host species, including horses. Although the role of horses in C. burnetii infections remains unknown, their use as sentinel species may be interesting to better assess the human risk exposure. Thus, we aimed to assess the C. burnetii horse exposition in a French endemic area by describing the antibody dynamics detected in serum; investigating the pathogen circulation in the horse environment, and exploring potential links with unexplained syndromes. Blood samples were collected in 2015 and 2016 on 338 and 294 horses, respectively and analyzed by ELISA. Ticks collected on horses were identified, and C. burnetii DNA detection was performed by qPCR targeting the IS1111 gene. Blood sample analyses revealed a significant increase of the seroprevalence in horses between both years, from 11% [7.67; 14.43] to 25% [20.06; 29.94]. On 36 seropositive horses in 2015 and 73 in 2016, 5 and four respectively showed clinical signs compatible with a C. burnetii infection (i.e., chronic fever or respiratory disorders, unfitness and unexplained weight loss). DNA was detected in almost 40% of ticks (n=59/148 in 2015 and n=103/305 in 2016) and exceptionally in dust samples (n=2/46 in 2015 and n=1/14 in 2016) every year. The C. burnetti detection in both the serum and the environment of horses confirm their exposure to the bacterium. Therefore, consideration should be given to target a relevant sentinel species to better assess the Q fever surveillance depending on the epidemiological context.Keywords: ELISA, Q fever, qPCR, syndromic surveillance
Procedia PDF Downloads 269520 Measurement and Modelling of HIV Epidemic among High Risk Groups and Migrants in Two Districts of Maharashtra, India: An Application of Forecasting Software-Spectrum
Authors: Sukhvinder Kaur, Ashok Agarwal
Abstract:
Background: For the first time in 2009, India was able to generate estimates of HIV incidence (the number of new HIV infections per year). Analysis of epidemic projections helped in revealing that the number of new annual HIV infections in India had declined by more than 50% during the last decade (GOI Ministry of Health and Family Welfare, 2010). Then, National AIDS Control Organisation (NACO) planned to scale up its efforts in generating projections through epidemiological analysis and modelling by taking recent available sources of evidence such as HIV Sentinel Surveillance (HSS), India Census data and other critical data sets. Recently, NACO generated current round of HIV estimates-2012 through globally recommended tool “Spectrum Software” and came out with the estimates for adult HIV prevalence, annual new infections, number of people living with HIV, AIDS-related deaths and treatment needs. State level prevalence and incidence projections produced were used to project consequences of the epidemic in spectrum. In presence of HIV estimates generated at state level in India by NACO, USIAD funded PIPPSE project under the leadership of NACO undertook the estimations and projections to district level using same Spectrum software. In 2011, adult HIV prevalence in one of the high prevalent States, Maharashtra was 0.42% ahead of the national average of 0.27%. Considering the heterogeneity of HIV epidemic between districts, two districts of Maharashtra – Thane and Mumbai were selected to estimate and project the number of People-Living-with-HIV/AIDS (PLHIV), HIV-prevalence among adults and annual new HIV infections till 2017. Methodology: Inputs in spectrum included demographic data from Census of India since 1980 and sample registration system, programmatic data on ‘Alive and on ART (adult and children)’,‘Mother-Baby pairs under PPTCT’ and ‘High Risk Group (HRG)-size mapping estimates’, surveillance data from various rounds of HSS, National Family Health Survey–III, Integrated Biological and Behavioural Assessment and Behavioural Sentinel Surveillance. Major Findings: Assuming current programmatic interventions in these districts, an estimated decrease of 12% points in Thane and 31% points in Mumbai among new infections in HRGs and migrants is observed from 2011 by 2017. Conclusions: Project also validated decrease in HIV new infection among one of the high risk groups-FSWs using program cohort data since 2012 to 2016. Though there is a decrease in HIV prevalence and new infections in Thane and Mumbai, further decrease is possible if appropriate programme response, strategies and interventions are envisaged for specific target groups based on this evidence. Moreover, evidence need to be validated by other estimation/modelling techniques; and evidence can be generated for other districts of the state, where HIV prevalence is high and reliable data sources are available, to understand the epidemic within the local context.Keywords: HIV sentinel surveillance, high risk groups, projections, new infections
Procedia PDF Downloads 211519 Intervention of Threat and Surveillance on the Obedience of Preschool Children
Authors: Sarah Mhae Diaz, Erika Anna De Leon, Jacklin Alwil Cartagena, Geordan Caruncong, Micah Riezl Gonzales
Abstract:
This study examined the intervention of threat and surveillance on the obedience of 100 preschool children through a task variable experiment replicated from the previous studies of Higbee (1979), and Chua, J., Chua, M., & Pico (1983). Nowadays, obedience among Filipino children to authority is disregarded since they are more outspoken and rebel due to social influences. With this, aside from corporal punishment, threat and surveillance became a mean of inducing obedience. Threat, according to the Dissonance Theory, can give attitudinal change. On the other hand, surveillance, according to the Theory of Social Facilitation, can either contribute to the completion or failure to do a task. Through a 2x2 factorial design, results show; (1) threat (F(1,96) = 12.487, p < 0.05) and (2) surveillance (F(1,96)=9.942, p<.05) had a significant main effect on obedience, suggesting that the Dissonance Theory and Theory of Social Facilitation is respectively true in the study. On the other hand, (3) no interaction (F(1,96)=1.303, p > .05) was seen since threat and surveillance both have a main effect that could be positive or negative, or could be because of their complementary property as supported by the post-hoc results. Also, (4) most effective commanding style is threat and surveillance setting (M = 30.04, SD = 7.971) due to the significant main effect of the two variables. With this, in the Filipino Setting, threat and surveillance has proven to be a very effective strategy to discipline and induce obedience from a child.Keywords: experimental study, obedience, preschool children, surveillance, threat
Procedia PDF Downloads 487518 Land Cover Classification Using Sentinel-2 Image Data and Random Forest Algorithm
Authors: Thanh Noi Phan, Martin Kappas, Jan Degener
Abstract:
The currently launched Sentinel 2 (S2) satellite (June, 2015) bring a great potential and opportunities for land use/cover map applications, due to its fine spatial resolution multispectral as well as high temporal resolutions. So far, there are handful studies using S2 real data for land cover classification. Especially in northern Vietnam, to our best knowledge, there exist no studies using S2 data for land cover map application. The aim of this study is to provide the preliminary result of land cover classification using Sentinel -2 data with a rising state – of – art classifier, Random Forest. A case study with heterogeneous land use/cover in the eastern of Hanoi Capital – Vietnam was chosen for this study. All 10 spectral bands of 10 and 20 m pixel size of S2 images were used, the 10 m bands were resampled to 20 m. Among several classified algorithms, supervised Random Forest classifier (RF) was applied because it was reported as one of the most accuracy methods of satellite image classification. The results showed that the red-edge and shortwave infrared (SWIR) bands play an important role in land cover classified results. A very high overall accuracy above 90% of classification results was achieved.Keywords: classify algorithm, classification, land cover, random forest, sentinel 2, Vietnam
Procedia PDF Downloads 387517 Signs, Signals and Syndromes: Algorithmic Surveillance and Global Health Security in the 21st Century
Authors: Stephen L. Roberts
Abstract:
This article offers a critical analysis of the rise of syndromic surveillance systems for the advanced detection of pandemic threats within contemporary global health security frameworks. The article traces the iterative evolution and ascendancy of three such novel syndromic surveillance systems for the strengthening of health security initiatives over the past two decades: 1) The Program for Monitoring Emerging Diseases (ProMED-mail); 2) The Global Public Health Intelligence Network (GPHIN); and 3) HealthMap. This article demonstrates how each newly introduced syndromic surveillance system has become increasingly oriented towards the integration of digital algorithms into core surveillance capacities to continually harness and forecast upon infinitely generating sets of digital, open-source data, potentially indicative of forthcoming pandemic threats. This article argues that the increased centrality of the algorithm within these next-generation syndromic surveillance systems produces a new and distinct form of infectious disease surveillance for the governing of emergent pathogenic contingencies. Conceptually, the article also shows how the rise of this algorithmic mode of infectious disease surveillance produces divergences in the governmental rationalities of global health security, leading to the rise of an algorithmic governmentality within contemporary contexts of Big Data and these surveillance systems. Empirically, this article demonstrates how this new form of algorithmic infectious disease surveillance has been rapidly integrated into diplomatic, legal, and political frameworks to strengthen the practice of global health security – producing subtle, yet distinct shifts in the outbreak notification and reporting transparency of states, increasingly scrutinized by the algorithmic gaze of syndromic surveillance.Keywords: algorithms, global health, pandemic, surveillance
Procedia PDF Downloads 183516 A Method for Processing Unwanted Target Caused by Reflection in Secondary Surveillance Radar
Authors: Khanh D.Do, Loi V.Nguyen, Thanh N.Nguyen, Thang M.Nguyen, Vu T.Tran
Abstract:
Along with the development of Secondary surveillance radar (SSR) in air traffic surveillance systems, the Multipath phenomena has always been a noticeable problem. This following article discusses the geometrical aspect and power aspect of the Multipath interference caused by reflection in SSR and proposes a method to deal with these unwanted multipath targets (ghosts) by false-target position predicting and adaptive target suppressing. A field-experiment example is mentioned at the end of the article to demonstrate the efficiency of this measure.Keywords: multipath, secondary surveillance radar, digital signal processing, reflection
Procedia PDF Downloads 162515 River Network Delineation from Sentinel 1 Synthetic Aperture Radar Data
Authors: Christopher B. Obida, George A. Blackburn, James D. Whyatt, Kirk T. Semple
Abstract:
In many regions of the world, especially in developing countries, river network data are outdated or completely absent, yet such information is critical for supporting important functions such as flood mitigation efforts, land use and transportation planning, and the management of water resources. In this study, a method was developed for delineating river networks using Sentinel 1 imagery. Unsupervised classification was applied to multi-temporal Sentinel 1 data to discriminate water bodies from other land covers then the outputs were combined to generate a single persistent water bodies product. A thinning algorithm was then used to delineate river centre lines, which were converted into vector features and built into a topologically structured geometric network. The complex river system of the Niger Delta was used to compare the performance of the Sentinel-based method against alternative freely available water body products from United States Geological Survey, European Space Agency and OpenStreetMap and a river network derived from a Shuttle Rader Topography Mission Digital Elevation Model. From both raster-based and vector-based accuracy assessments, it was found that the Sentinel-based river network products were superior to the comparator data sets by a substantial margin. The geometric river network that was constructed permitted a flow routing analysis which is important for a variety of environmental management and planning applications. The extracted network will potentially be applied for modelling dispersion of hydrocarbon pollutants in Ogoniland, a part of the Niger Delta. The approach developed in this study holds considerable potential for generating up to date, detailed river network data for the many countries where such data are deficient.Keywords: Sentinel 1, image processing, river delineation, large scale mapping, data comparison, geometric network
Procedia PDF Downloads 139514 Real-Time Aerial Marine Surveillance System for Safe Navigation
Authors: Vinesh Thiruchelvam, Umar Mumtaz Chowdry, Sathish Kumar Selvaperumal
Abstract:
The prime purpose of the project is to provide a sophisticated system for surveillance specialized for the Port Authorities in the Maritime Industry. The current aerial surveillance does not have a wide dimensioning view. The channels of communication is shared and not exclusive allowing for communications errors or disturbance mainly due to traffic. The scope is to analyze the various aspects as real-time aerial and marine surveillance is one of the most important methods which could ensure the domain security of the sailors. The system will improve real time data as obtained for the controller base station. The key implementation will be based on camera speed, angle and adherence to a sustainable power utilization module.Keywords: SMS, real time, GUI, maritime industry
Procedia PDF Downloads 498513 Detection and Tracking for the Protection of the Elderly and Socially Vulnerable People in the Video Surveillance System
Authors: Mobarok Hossain Bhuyain
Abstract:
Video surveillance processing has attracted various security fields transforming it into one of the leading research fields. Today's demand for detection and tracking of human mobility for security is very useful for human security, such as in crowded areas. Accordingly, video surveillance technology has seen a rapid advancement in recent years, with algorithms analyzing the behavior of people under surveillance automatically. The main motivation of this research focuses on the detection and tracking of the elderly and socially vulnerable people in crowded areas. Degenerate people are a major health concern, especially for elderly people and socially vulnerable people. One major disadvantage of video surveillance is the need for continuous monitoring, especially in crowded areas. To assist the security monitoring live surveillance video, image processing, and artificial intelligence methods can be used to automatically send warning signals to the monitoring officers about elderly people and socially vulnerable people.Keywords: human detection, target tracking, neural network, particle filter
Procedia PDF Downloads 166512 Description and Evaluation of the Epidemiological Surveillance System for Meningitis in the Province of Taza Between 2016 and 2020
Authors: Bennasser Samira
Abstract:
Meningitis, especially the meningococcal one, is a serious problem of public health. A system of vigilanceand surveillance is in place to allow effective actions to be taken on actual or potential health problems caused by all forms of meningitis. Objectives: 1. Describe the epidemiological surveillance system for meningitis in the province of Taza. 2. Evaluate the quality and responsiveness of the epidemiological surveillance system for meningitis in the province of Taza. 3. Propose measures to improve this system at the provincial level. Methods: This was a descriptive study with a purely quantitative approach by evaluating the quality and responsiveness of the system during 5 years between January 2016 and December 2020. We usedfor that the investigation files of meningitis cases and the provincial database of meningitis. We calculated some quality indicators of surveillance system already defined by the National Program for the Prevention and Control of Meningitis. Results: The notification is passive, the completeness of the data is quite good (94%), and the timeliness don’t exceed 71%. The quality of the data is acceptable (91% agreement). The systematic and rapid performance of lumbar punctures increases the diagnostic capabilities of the system. The local response actions are effected in 100%. Conclusion: The improvement of this surveillance system depends on strengthening the staff skills in diagnostic, reviewing surveillance tools, and encouraging judicious use of the data.Keywords: evaluation, meningitis, system, taza, morocco
Procedia PDF Downloads 160511 Land Use/Land Cover Mapping Using Landsat 8 and Sentinel-2 in a Mediterranean Landscape
Authors: Moschos Vogiatzis, K. Perakis
Abstract:
Spatial-explicit and up-to-date land use/land cover information is fundamental for spatial planning, land management, sustainable development, and sound decision-making. In the last decade, many satellite-derived land cover products at different spatial, spectral, and temporal resolutions have been developed, such as the European Copernicus Land Cover product. However, more efficient and detailed information for land use/land cover is required at the regional or local scale. A typical Mediterranean basin with a complex landscape comprised of various forest types, crops, artificial surfaces, and wetlands was selected to test and develop our approach. In this study, we investigate the improvement of Copernicus Land Cover product (CLC2018) using Landsat 8 and Sentinel-2 pixel-based classification based on all available existing geospatial data (Forest Maps, LPIS, Natura2000 habitats, cadastral parcels, etc.). We examined and compared the performance of the Random Forest classifier for land use/land cover mapping. In total, 10 land use/land cover categories were recognized in Landsat 8 and 11 in Sentinel-2A. A comparison of the overall classification accuracies for 2018 shows that Landsat 8 classification accuracy was slightly higher than Sentinel-2A (82,99% vs. 80,30%). We concluded that the main land use/land cover types of CLC2018, even within a heterogeneous area, can be successfully mapped and updated according to CLC nomenclature. Future research should be oriented toward integrating spatiotemporal information from seasonal bands and spectral indexes in the classification process.Keywords: classification, land use/land cover, mapping, random forest
Procedia PDF Downloads 125510 Syndromic Surveillance Framework Using Tweets Data Analytics
Authors: David Ming Liu, Benjamin Hirsch, Bashir Aden
Abstract:
Syndromic surveillance is to detect or predict disease outbreaks through the analysis of medical sources of data. Using social media data like tweets to do syndromic surveillance becomes more and more popular with the aid of open platform to collect data and the advantage of microblogging text and mobile geographic location features. In this paper, a Syndromic Surveillance Framework is presented with machine learning kernel using tweets data analytics. Influenza and the three cities Abu Dhabi, Al Ain and Dubai of United Arabic Emirates are used as the test disease and trial areas. Hospital cases data provided by the Health Authority of Abu Dhabi (HAAD) are used for the correlation purpose. In our model, Latent Dirichlet allocation (LDA) engine is adapted to do supervised learning classification and N-Fold cross validation confusion matrix are given as the simulation results with overall system recall 85.595% performance achieved.Keywords: Syndromic surveillance, Tweets, Machine Learning, data mining, Latent Dirichlet allocation (LDA), Influenza
Procedia PDF Downloads 116509 Monitoring Large-Coverage Forest Canopy Height by Integrating LiDAR and Sentinel-2 Images
Authors: Xiaobo Liu, Rakesh Mishra, Yun Zhang
Abstract:
Continuous monitoring of forest canopy height with large coverage is essential for obtaining forest carbon stocks and emissions, quantifying biomass estimation, analyzing vegetation coverage, and determining biodiversity. LiDAR can be used to collect accurate woody vegetation structure such as canopy height. However, LiDAR’s coverage is usually limited because of its high cost and limited maneuverability, which constrains its use for dynamic and large area forest canopy monitoring. On the other hand, optical satellite images, like Sentinel-2, have the ability to cover large forest areas with a high repeat rate, but they do not have height information. Hence, exploring the solution of integrating LiDAR data and Sentinel-2 images to enlarge the coverage of forest canopy height prediction and increase the prediction repeat rate has been an active research topic in the environmental remote sensing community. In this study, we explore the potential of training a Random Forest Regression (RFR) model and a Convolutional Neural Network (CNN) model, respectively, to develop two predictive models for predicting and validating the forest canopy height of the Acadia Forest in New Brunswick, Canada, with a 10m ground sampling distance (GSD), for the year 2018 and 2021. Two 10m airborne LiDAR-derived canopy height models, one for 2018 and one for 2021, are used as ground truth to train and validate the RFR and CNN predictive models. To evaluate the prediction performance of the trained RFR and CNN models, two new predicted canopy height maps (CHMs), one for 2018 and one for 2021, are generated using the trained RFR and CNN models and 10m Sentinel-2 images of 2018 and 2021, respectively. The two 10m predicted CHMs from Sentinel-2 images are then compared with the two 10m airborne LiDAR-derived canopy height models for accuracy assessment. The validation results show that the mean absolute error (MAE) for year 2018 of the RFR model is 2.93m, CNN model is 1.71m; while the MAE for year 2021 of the RFR model is 3.35m, and the CNN model is 3.78m. These demonstrate the feasibility of using the RFR and CNN models developed in this research for predicting large-coverage forest canopy height at 10m spatial resolution and a high revisit rate.Keywords: remote sensing, forest canopy height, LiDAR, Sentinel-2, artificial intelligence, random forest regression, convolutional neural network
Procedia PDF Downloads 92508 Machine Learning Classification of Fused Sentinel-1 and Sentinel-2 Image Data Towards Mapping Fruit Plantations in Highly Heterogenous Landscapes
Authors: Yingisani Chabalala, Elhadi Adam, Khalid Adem Ali
Abstract:
Mapping smallholder fruit plantations using optical data is challenging due to morphological landscape heterogeneity and crop types having overlapped spectral signatures. Furthermore, cloud covers limit the use of optical sensing, especially in subtropical climates where they are persistent. This research assessed the effectiveness of Sentinel-1 (S1) and Sentinel-2 (S2) data for mapping fruit trees and co-existing land-use types by using support vector machine (SVM) and random forest (RF) classifiers independently. These classifiers were also applied to fused data from the two sensors. Feature ranks were extracted using the RF mean decrease accuracy (MDA) and forward variable selection (FVS) to identify optimal spectral windows to classify fruit trees. Based on RF MDA and FVS, the SVM classifier resulted in relatively high classification accuracy with overall accuracy (OA) = 0.91.6% and kappa coefficient = 0.91% when applied to the fused satellite data. Application of SVM to S1, S2, S2 selected variables and S1S2 fusion independently produced OA = 27.64, Kappa coefficient = 0.13%; OA= 87%, Kappa coefficient = 86.89%; OA = 69.33, Kappa coefficient = 69. %; OA = 87.01%, Kappa coefficient = 87%, respectively. Results also indicated that the optimal spectral bands for fruit tree mapping are green (B3) and SWIR_2 (B10) for S2, whereas for S1, the vertical-horizontal (VH) polarization band. Including the textural metrics from the VV channel improved crop discrimination and co-existing land use cover types. The fusion approach proved robust and well-suited for accurate smallholder fruit plantation mapping.Keywords: smallholder agriculture, fruit trees, data fusion, precision agriculture
Procedia PDF Downloads 54507 Medical Surveillance Management
Authors: Jina K., Kittinan C. Athitaya J., Weerapat B., Amornrat T., Waraphan N.
Abstract:
Working in the exploration and production of petroleum exposed workers to various health risks, including but not limited to physical and chemical risks. Although lots of barriers have been put in place, e.g., hazard monitoring in the workplace, appropriate training on health hazards, proper personal protective equipment (PPE), the health hazard may harm the workers if the barriers are not effectively implemented. To prove the effectiveness of these barriers, it is necessary to monitor exposure by putting in place the medical surveillance program via biological monitoring of chemical hazards and physical check-ups for physical hazards. Medical surveillance management is the systematic assessment and monitoring of employees exposed or potentially exposed to occupational hazards with the goal of reducing and ultimately preventing occupational illness and injury. The paper aims to demonstrate the effectiveness of medical surveillance management in mitigating health risks associated with physical and chemical hazards in the petroleum industry by focusing on implementing programs for biological monitoring and physical examinations, including defining procedures for biological monitoring, urine sample collection, physical examinations, and result management on offshore petroleum platforms. The implementation of medical surveillance management has proven effective in monitoring worker exposure to physical and chemical hazards, leading to reduced medical expenses and the risk associated with work-related diseases significantly.Keywords: medical surveillance, petroleum industry, occupational hazards, medical surveillance process
Procedia PDF Downloads 17506 Assessing the Theoretical Suitability of Sentinel-2 and Worldview-3 Data for Hydrocarbon Mapping of Spill Events, Using Hydrocarbon Spectral Slope Model
Authors: K. Tunde Olagunju, C. Scott Allen, Freek Van Der Meer
Abstract:
Identification of hydrocarbon oil in remote sensing images is often the first step in monitoring oil during spill events. Most remote sensing methods adopt techniques for hydrocarbon identification to achieve detection in order to model an appropriate cleanup program. Identification on optical sensors does not only allow for detection but also for characterization and quantification. Until recently, in optical remote sensing, quantification and characterization are only potentially possible using high-resolution laboratory and airborne imaging spectrometers (hyperspectral data). Unlike multispectral, hyperspectral data are not freely available, as this data category is mainly obtained via airborne survey at present. In this research, two (2) operational high-resolution multispectral satellites (WorldView-3 and Sentinel-2) are theoretically assessed for their suitability for hydrocarbon characterization, using the hydrocarbon spectral slope model (HYSS). This method utilized the two most persistent hydrocarbon diagnostic/absorption features at 1.73 µm and 2.30 µm for hydrocarbon mapping on multispectral data. In this research, spectra measurement of seven (7) different hydrocarbon oils (crude and refined oil) taken on ten (10) different substrates with the use of laboratory ASD Fieldspec were convolved to Sentinel-2 and WorldView-3 resolution, using their full width half maximum (FWHM) parameter. The resulting hydrocarbon slope values obtained from the studied samples enable clear qualitative discrimination of most hydrocarbons, despite the presence of different background substrates, particularly on WorldView-3. Due to close conformity of central wavelengths and narrow bandwidths to key hydrocarbon bands used in HYSS, the statistical significance for qualitative analysis on WorldView-3 sensors for all studied hydrocarbon oil returned with 95% confidence level (P-value ˂ 0.01), except for Diesel. Using multifactor analysis of variance (MANOVA), the discriminating power of HYSS is statistically significant for most hydrocarbon-substrate combinations on Sentinel-2 and WorldView-3 FWHM, revealing the potential of these two operational multispectral sensors as rapid response tools for hydrocarbon mapping. One notable exception is highly transmissive hydrocarbons on Sentinel-2 data due to the non-conformity of spectral bands with key hydrocarbon absorptions and the relatively coarse bandwidth (> 100 nm).Keywords: hydrocarbon, oil spill, remote sensing, hyperspectral, multispectral, hydrocarbon-substrate combination, Sentinel-2, WorldView-3
Procedia PDF Downloads 215505 Efficient Utilization of Unmanned Aerial Vehicle (UAV) for Fishing through Surveillance for Fishermen
Authors: T. Ahilan, V. Aswin Adityan, S. Kailash
Abstract:
UAV’s are small remote operated or automated aerial surveillance systems without a human pilot aboard. UAV’s generally finds its use in military and special operation application, a recent growing trend in UAV’s finds its application in several civil and non military works such as inspection of power or pipelines. The objective of this paper is the augmentation of a UAV in order to replace the existing expensive sonar (sound navigation and ranging) based equipment amongst small scale fisherman, for whom access to sonar equipment are restricted due to limited economic resources. The surveillance equipment’s present in the UAV will relay data and GPS location onto a receiver on the fishing boat using RF signals, using which the location of the schools of fishes can be found. In addition to this, an emergency beacon system is present for rescue operations and drone recovery.Keywords: UAV, Surveillance, RF signals, fishing, sonar, GPS, video stream, school of fish
Procedia PDF Downloads 457504 West Nile Virus in North-Eastern Italy: Overview of Integrated Surveillance Activities
Authors: Laura Amato, Paolo Mulatti, Fabrizio Montarsi, Matteo Mazzucato, Laura Gagliazzo, Michele Brichese, Manlio Palei, Gioia Capelli, Lebana Bonfanti
Abstract:
West Nile virus (WNV) re-emerged in north-eastern Italy in 2008, after ten years from its first appearance in Tuscany. In 2009, a national surveillance programme was implemented, and re-modulated in north-eastern Italy in 2011. Hereby, we present the results of surveillance activities in 2008-2016 in the north-eastern Italian regions, with inferences on WNV epidemiological trend in the area. The re-modulated surveillance programmes aimed at early detecting WNV seasonal reactivation by searching IgM antibodies in horses. In 2013, the surveillance plans were further modified including a risk-based approach. Spatial analysis techniques, including Bernoulli space-time scan-statistics, were applied to the results of 2010–2012 surveillance on mosquitoes, equines, and humans to identify areas where WNV reactivation was more likely to occur. From 2008 to 2016, residential horses tested positive for anti-WNV antibodies on a yearly basis (503 cases), also in areas where WNV circulation was not detected in mosquito populations. Surveillance activities detected 26 syndromic cases in horses, 102 infected mosquito pools and WNV in 18 dead wild birds. Human cases were also recurrently detected in the study area during the surveillance period (68 cases of West Nile neuroinvasive disease). The recurrent identification of WNV in animals, mosquitoes, and humans indicates the virus has likely become endemic in the area. In 2016, findings of WNV positives in horses or mosquitoes were included as triggers for enhancing screening activities in humans. The evolution of the epidemiological situation prompts for continuous and accurate surveillance measures. The results of the 2013-2016 surveillance indicate that the risk-based approach was effective in early detecting seasonal reactivation of WNV, key factor of the integrated surveillance strategy in endemic areas.Keywords: arboviruses, horses, Italy, surveillance, west nile virus, zoonoses
Procedia PDF Downloads 358503 Bayesian Prospective Detection of Small Area Health Anomalies Using Kullback Leibler Divergence
Authors: Chawarat Rotejanaprasert, Andrew Lawson
Abstract:
Early detection of unusual health events depends on the ability to detect rapidly any substantial changes in disease, thus facilitating timely public health interventions. To assist public health practitioners to make decisions, statistical methods are adopted to assess unusual events in real time. We introduce a surveillance Kullback-Leibler (SKL) measure for timely detection of disease outbreaks for small area health data. The detection methods are compared with the surveillance conditional predictive ordinate (SCPO) within the framework of Bayesian hierarchical Poisson modeling and applied to a case study of a group of respiratory system diseases observed weekly in South Carolina counties. Properties of the proposed surveillance techniques including timeliness and detection precision are investigated using a simulation study.Keywords: Bayesian, spatial, temporal, surveillance, prospective
Procedia PDF Downloads 311502 Explanation of Sentinel-1 Sigma 0 by Sentinel-2 Products in Terms of Crop Water Stress Monitoring
Authors: Katerina Krizova, Inigo Molina
Abstract:
The ongoing climate change affects various natural processes resulting in significant changes in human life. Since there is still a growing human population on the planet with more or less limited resources, agricultural production became an issue and a satisfactory amount of food has to be reassured. To achieve this, agriculture is being studied in a very wide context. The main aim here is to increase primary production on a spatial unit while consuming as low amounts of resources as possible. In Europe, nowadays, the staple issue comes from significantly changing the spatial and temporal distribution of precipitation. Recent growing seasons have been considerably affected by long drought periods that have led to quantitative as well as qualitative yield losses. To cope with such kind of conditions, new techniques and technologies are being implemented in current practices. However, behind assessing the right management, there is always a set of the necessary information about plot properties that need to be acquired. Remotely sensed data had gained attention in recent decades since they provide spatial information about the studied surface based on its spectral behavior. A number of space platforms have been launched carrying various types of sensors. Spectral indices based on calculations with reflectance in visible and NIR bands are nowadays quite commonly used to describe the crop status. However, there is still the staple limit by this kind of data - cloudiness. Relatively frequent revisit of modern satellites cannot be fully utilized since the information is hidden under the clouds. Therefore, microwave remote sensing, which can penetrate the atmosphere, is on its rise today. The scientific literature describes the potential of radar data to estimate staple soil (roughness, moisture) and vegetation (LAI, biomass, height) properties. Although all of these are highly demanded in terms of agricultural monitoring, the crop moisture content is the utmost important parameter in terms of agricultural drought monitoring. The idea behind this study was to exploit the unique combination of SAR (Sentinel-1) and optical (Sentinel-2) data from one provider (ESA) to describe potential crop water stress during dry cropping season of 2019 at six winter wheat plots in the central Czech Republic. For the period of January to August, Sentinel-1 and Sentinel-2 images were obtained and processed. Sentinel-1 imagery carries information about C-band backscatter in two polarisations (VV, VH). Sentinel-2 was used to derive vegetation properties (LAI, FCV, NDWI, and SAVI) as support for Sentinel-1 results. For each term and plot, summary statistics were performed, including precipitation data and soil moisture content obtained through data loggers. Results were presented as summary layouts of VV and VH polarisations and related plots describing other properties. All plots performed along with the principle of the basic SAR backscatter equation. Considering the needs of practical applications, the vegetation moisture content may be assessed using SAR data to predict the drought impact on the final product quality and yields independently of cloud cover over the studied scene.Keywords: precision agriculture, remote sensing, Sentinel-1, SAR, water content
Procedia PDF Downloads 125501 Co-Seismic Surface Deformation Induced By 24 September 2019 Mirpur, Pakistan Earthquake Along an Active Blind Fault Estimated Using Sentinel-1 TOPS Interferometry
Authors: Muhammad Ali, Zeeshan Afzal, Giampaolo Ferraioli, Gilda Schirinzi, Muhammad Saleem Mughal, Vito Pascazio
Abstract:
On 24 September 2019, an earthquake with 5.6 Mw and 10 km depth stroke in Mirpur. The Mirpur area was highly affected by this earthquake, with the death of 34 people. This study aims to estimate the surface deformation associated with this earthquake. The interferometric synthetic aperture radar (InSAR) technique is applied to study earthquake induced surface motion. InSAR data using 9 Sentinel-1A SAR images from 11 August 2019 to 22 October 2019 is used to investigate the pre, co-, and post-seismic deformation trends. Time series investigation reveals that there was not such deformation in pre-seismic time period. In the co-seismic time period, strong displacement was observed, and in post-seismic results, small displacement is seen due to aftershocks. Our results show the existence of a previously unpublished blind fault in Mirpur and help to locate the fault line. Previous this fault line was triggered during the 2005 earthquake, and now it’s activated on 24 September 2019. Study area is already facing many problems due to natural hazards where additional surface deformations, particularly because of an earthquake with an activated blind fault, have increased its vulnerability.Keywords: surface deformation, InSAR, earthquake, sentinel-1, mirpur
Procedia PDF Downloads 128500 Development and Implementation of E-Disease Surveillance Systems for Public Health Southern Africa: A Critical Review
Authors: Taurai T. Chikotie, Bruce W. Watson
Abstract:
The manifestation of ‘new’ infectious diseases and the re-emergence of ‘old’ infectious diseases now present global problems and Southern Africa has not been spared from such calamity. Although having an organized public health system, countries in this region have failed to leverage on the proliferation in use of Information and Communication Technologies to promote effective disease surveillance. Objective: The objective of this study was to critically review and analyse the crucial variables to consider in the development and implementation of electronic disease surveillance systems in public health within the context of Southern Africa. Methodology: A critical review of literature published in English using, Google Scholar, EBSCOHOST, Science Direct, databases from the Centre for Disease Control (CDC and articles from the World Health Organisation (WHO) was undertaken. Manual reference and grey literature searches were also conducted. Results: Little has been done towards harnessing the potential of information technologies towards disease surveillance and this has been due to several challenges that include, lack of funding, lack of health informatics experts, poor supporting infrastructure, an unstable socio-political and socio-economic ecosystem in the region and archaic policies towards integration of information technologies in public health governance. Conclusion: The Southern African region stands to achieve better health outcomes if they adopt the use of e-disease surveillance systems in public health. However, the dynamics and complexities of the socio-economic, socio-political and technical variables would need addressing to ensure the successful development and implementation of e-disease surveillance systems in the region.Keywords: critical review, disease surveillance, public health informatics, Southern Africa
Procedia PDF Downloads 281499 Reinforcement Learning for Classification of Low-Resolution Satellite Images
Authors: Khadija Bouzaachane, El Mahdi El Guarmah
Abstract:
The classification of low-resolution satellite images has been a worthwhile and fertile field that attracts plenty of researchers due to its importance in monitoring geographical areas. It could be used for several purposes such as disaster management, military surveillance, agricultural monitoring. The main objective of this work is to classify efficiently and accurately low-resolution satellite images by using novel technics of deep learning and reinforcement learning. The images include roads, residential areas, industrial areas, rivers, sea lakes, and vegetation. To achieve that goal, we carried out experiments on the sentinel-2 images considering both high accuracy and efficiency classification. Our proposed model achieved a 91% accuracy on the testing dataset besides a good classification for land cover. Focus on the parameter precision; we have obtained 93% for the river, 92% for residential, 97% for residential, 96% for the forest, 87% for annual crop, 84% for herbaceous vegetation, 85% for pasture, 78% highway and 100% for Sea Lake.Keywords: classification, deep learning, reinforcement learning, satellite imagery
Procedia PDF Downloads 213