Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 492

World Academy of Science, Engineering and Technology

[Health and Medical Engineering]

Online ISSN : 1307-6892

492 WT1 Expression in Ovarian Malignant Surface Epithelial Tumors

Authors: Mahmoodreza Tahamtan

Abstract:

Malignant surface epithelial ovarian tumors(SEOT) account for approximately 90% of primary ovarian cancer. We evaluate the immunohistochemical expression of WT1 protein among different histologic subtypes of SEOT. Immunohistochemistry for WT1 was done on 35 serous cystadenocarcinomas, 9 borderline serous tumors. A tumor was considered negative if < 1% of tumor cells were stained.Positive reactions were graded as follows:1+,1%-24%; 2+,25%-49%; 3+,50%-74%; 4+,75%-100%. Of the 35 cases of ovarian serous cystadenocarcinoma 30(85.7%)were diffusely positive(3+,4+),4 showed reactivity of < 50% of the tumor cells(1+,2+) and one were negative. All 9 borderline serous tumors showed immunoreactivity with WT1. WT1 is a good marker to distinguish primary ovarian serous carcinomas from other surface epithelial tumors.

Keywords: WT1, ovary, malignant, epithelial tumors

Procedia PDF Downloads 2
491 Automatic Classification of Lung Diseases from CT Images

Authors: Abobaker Mohammed Qasem Farhan, Shangming Yang, Mohammed Al-Nehari

Abstract:

Pneumonia is a kind of lung disease that creates congestion in the chest. Such pneumonic conditions lead to loss of life of the severity of high congestion. Pneumonic lung disease is caused by viral pneumonia, bacterial pneumonia, or Covidi-19 induced pneumonia. The early prediction and classification of such lung diseases help to reduce the mortality rate. We propose the automatic Computer-Aided Diagnosis (CAD) system in this paper using the deep learning approach. The proposed CAD system takes input from raw computerized tomography (CT) scans of the patient's chest and automatically predicts disease classification. We designed the Hybrid Deep Learning Algorithm (HDLA) to improve accuracy and reduce processing requirements. The raw CT scans have pre-processed first to enhance their quality for further analysis. We then applied a hybrid model that consists of automatic feature extraction and classification. We propose the robust 2D Convolutional Neural Network (CNN) model to extract the automatic features from the pre-processed CT image. This CNN model assures feature learning with extremely effective 1D feature extraction for each input CT image. The outcome of the 2D CNN model is then normalized using the Min-Max technique. The second step of the proposed hybrid model is related to training and classification using different classifiers. The simulation outcomes using the publically available dataset prove the robustness and efficiency of the proposed model compared to state-of-art algorithms.

Keywords: CT scan, Covid-19, deep learning, image processing, lung disease classification

Procedia PDF Downloads 1
490 WT1 Exprassion in Malignant Surface Epithelial Ovarian Tumors

Authors: Mahmoodreza Tahamtan

Abstract:

Background: Malignant surface epithelial ovarian tumors (SEOT) account for approximately 90% of primary ovarian cancer. Wilms tumor gene (WT1) product was defined as a tumor suppressor gene, but today it is considered capable of performing oncogenic functions. There seems to be differences in WT1 expression patterns among SEOT subtypes. We evaluate the immunohistochemical expression of WT1 protein among different histologic subtypes of SEOT. Materials and Methods: Immunohistochemistry for WT1 was done on 35 serous cystadenocarcinomas, 9 borderline serous tumors, 3 mucinous cystadenocarcinomas, 10 borderline mucinous tumors, 7 endometrioid ovarian carcinomas, 3 clear cell carcinomas, 1 malignant Brenner tumor, 2 metastatic adenocarcinomas, and 6 endometrial adenocarcinomas. A tumor was considered negative if < 1% of tumor cells were stained.Positive reactions were graded as follows:1+,1%-24%; 2+,25%-49%; 3+,50%-74%; 4+,75%-100%. Results: Of the 35 cases of ovarian serous cystadenocarcinoma, 30(85.7%) were diffusely positive (3+,4+),4 showed reactivity of < 50% of the tumor cells (1+,2+), and one were negative. All 9 borderline serous tumors showed immunoreactivity with WT1. All the mucinous tumors(n:13), endometrioid carcinomas (n: 7), clear cell carcinomas (n: 3), metastatic adenocarcinomas (n: 2) and primary endometrial carcinomas (n:6) were negative. The single malignant Brenner tumor showed a positive reaction for WT1(4+) Conclusion: WT1 is a good marker to distinguish primary ovarian serous carcinomas from other surface epithelial tumors (especially endometrioid subtype) and metastatic carcinomas (especially endometrial serous carcinoma), other than malignant mesothelioma. We cannot rely to the degree of expression inorder to separate high grade borderline serous tumors from low grade ones.

Keywords: WT1, ovary, epithelial tumors, malignant

Procedia PDF Downloads 3
489 Prevalence of Caesarean-Section Delivery and Its Determinants in India: Evidence for Fifth National Family Health Surveys

Authors: Daisy Saikia

Abstract:

Long-term maternal health issues with Caesarean section deliveries are significant. Thus, this study aims to investigate the prevalence of caesarean section deliveries in India and to comprehend its associated predictors in light of the high caesarean section delivery rate. The study uses data from the fifth National Family Health Surveys (NFHS-5) round. Specifically, live births to women aged 15-49 in the 5 years preceding the survey. Binary logistic regression was used to check the adjusted effects of the predictor variables on caesarean section delivery. STATA/SE v16.0 was used for the data analysis with a 5% significance level. Twenty-two per cent of the live births to women were delivered by caesarean section. There was socio-economic, demographic and geographical variation in the prevalence of caesarean section delivery in India. Increasing age, body mass index, marital status, mother’s occupation and education, birth order, place of delivery, full ANC, non-tribal status, wealth quintile and region are significantly associated with caesarean section deliveries in India. Caesarean section deliveries should only be performed when essential from a medical perspective, and regions, where the rate is too high, should follow the guidelines. Additionally, it needs to be investigated whether private hospitals compel patients to have caesarean section deliveries to increase their revenue. Thus, these unnecessary deliveries must be examined immediately for safe childbirth and the wellness of both mother and child.

Keywords: caesarean section, delivery, maternal health, India

Procedia PDF Downloads 2
488 The Effect of the Organization of Mental Health Care on General Practitioners’ Prescription Behavior of Psychotropics for Adolescents in Belgium

Authors: Ellen Lagast, Melissa Ceuterick, Mark Leys

Abstract:

Although adolescence is a stressful period with an increased risk for mental illnesses such as anxiety and depression, little in-depth knowledge is available on the determinants of the use of psychotropic drugs (BZD/SSRIs) and the effects. A qualitative research with adolescents in Flanders was performed. Based on indepth interviews, the interviewees indicate feelings of ambiguity towards their medication use because on the one hand the medication helps to manage their mental vulnerability and disrupted lives, but on the other hand they experience a loss of control of their self and their environment. Undesired side-effects and stigma led to a negative pharmaceutical self. The interviewed youngsters also express dissatisfaction about the prescription behavior with regard to psychotropic drugs of their general practitioner (GP). They wished to have received more information about alternative non-pharmaceutical treatment options. Notwithstanding these comments, the majority of the interviewees maintained trust in their GP to act in their best interest. This paper will relate the prescription behavior in primary care to the organization of mental health care to better understand the “phamaceuticalization” and medicalization of mental health problems in Belgium. Belgium implemented fundamental mental health care reforms to collaborate, to integrate care and to optimize continuity of care. Children and adolescents still are confronted with long waiting lists to access (non-medicalized) mental health services. This access to mental health care partly explains general practitioners’ prescription behavior of psychotropics. Moreover, multidisciplinary practices have not pervaded primary health care yet. Medicalization and pharmaceuticalization of mental health vulnerabilities of youth are both a structural and cultural problem.

Keywords: adolescents, antidepressants, benzodiazepines, mental health system, psychotropic drugs

Procedia PDF Downloads 3
487 Factors Influencing Infection Prevention and Control Practices in the Emergency Department of Mbarara Regional Referral Hospital in Mbarara District-Uganda

Authors: Baluku Nathan

Abstract:

Infection prevention and control (IPC) is a practical, evidence-based approach that prevents patients and emergency health workers from being harmed by avoidable infections as a result of antimicrobial resistance; all hospital infection control programs put together various practices which, when used appropriately, restrict the spread of infection. A breach in these control practices facilitates the transmission of infections from patients to health workers, other patients, and attendants. It is, therefore important for all emergency medical technicians (EMTs) and patients to strictly adhere to them. It is also imperative for administrators to ensure the implementation of the infection control programme for their facilities. Purpose: The purpose of this study was to investigate the influencing factors of prevention practices against infection exposure among emergency medical technicians (EMTs) in the emergency department at Mbarara hospital. Methodology: This was a descriptive cross-sectional study that employed a self-reported questionnaire that was filled out by 32 EMTs in the emergency department from 12th February to 3rd march 2022. The questionnaire consisted of items concerning the defensive environment and other factors influencing infection prevention and control practices in the accident and emergency department of Mbarara hospital. Results: From the findings, the majority 16 (50%) always used protective gear when doing clinical work, 14 (43.8%) didn’t use protective gear, citing they were only assisting those performing resuscitations, gumboots were the least used protective gear with only3(9.4%) usage. About disposal techniques of specific products like blood and sharps, results showed 10 (31.3%) said blood is disposed of in red buckets, 5 (15.6%) in yellow buckets, and only 5(15.6%) in black buckets, and 12(37.5%) didn’t respond, however, 28(87.5%) said sharps were disposed of in a sharps container. The majority, 17 (53.1%), were not aware of the infection control guidelines even though they were pinned on walls of the emergency rooms, 15(46.9%) said they have never had quality assurance monitoring events, 14(43.8%) said monitoring was continuous while 15(46.9 %) said it was discrete. Conclusions: The infection control practices at the emergency department were inadequate in view of less than 100% of the EMTs observing the five principles of infection prevention, such as the use of personal protective equipment and proper waste disposal in appropriate color-coded bins. Dysfunctional infection prevention and control committees accompanied by inadequate supervision to ensure infection control remained a big challenge.

Keywords: emergency medical technician, infection prevention, influencing factors, infection control

Procedia PDF Downloads 1
486 Automated Prediction of HIV-associated Cervical Cancer Patients Using Data Mining Techniques for Survival Analysis

Authors: O. J. Akinsola, Yinan Zheng, Rose Anorlu, F. T. Ogunsola, Lifang Hou, Robert Leo-Murphy

Abstract:

Cervical Cancer (CC) is the 2nd most common cancer among women living in low and middle-income countries, with no associated symptoms during formative periods. With the advancement and innovative medical research, there are numerous preventive measures being utilized, but the incidence of cervical cancer cannot be truncated with the application of only screening tests. The mortality associated with this invasive cervical cancer can be nipped in the bud through the important role of early-stage detection. This study research selected an array of different top features selection techniques which was aimed at developing a model that could validly diagnose the risk factors of cervical cancer. A retrospective clinic-based cohort study was conducted on 178 HIV-associated cervical cancer patients in Lagos University teaching Hospital, Nigeria (U54 data repository) in April 2022. The outcome measure was the automated prediction of the HIV-associated cervical cancer cases, while the predictor variables include: demographic information, reproductive history, birth control, sexual history, cervical cancer screening history for invasive cervical cancer. The proposed technique was assessed with R and Python programming software to produce the model by utilizing the classification algorithms for the detection and diagnosis of cervical cancer disease. Four machine learning classification algorithms used are: the machine learning model was split into training and testing dataset into ratio 80:20. The numerical features were also standardized while hyperparameter tuning was carried out on the machine learning to train and test the data. Logistic Regression (LR), Decision Tree (DT), Random Forest (RF), and K-Nearest Neighbor (KNN). Some fitting features were selected for the detection and diagnosis of cervical cancer diseases from selected characteristics in the dataset using the contribution of various selection methods for the classification cervical cancer into healthy or diseased status. The mean age of patients was 49.7±12.1 years, mean age at pregnancy was 23.3±5.5 years, mean age at first sexual experience was 19.4±3.2 years, while the mean BMI was 27.1±5.6 kg/m2. A larger percentage of the patients are Married (62.9%), while most of them have at least two sexual partners (72.5%). Age of patients (OR=1.065, p<0.001**), marital status (OR=0.375, p=0.011**), number of pregnancy live-births (OR=1.317, p=0.007**), and use of birth control pills (OR=0.291, p=0.015**) were found to be significantly associated with HIV-associated cervical cancer. On top ten 10 features (variables) considered in the analysis, RF claims the overall model performance, which include: accuracy of (72.0%), the precision of (84.6%), a recall of (84.6%) and F1-score of (74.0%) while LR has: an accuracy of (74.0%), precision of (70.0%), recall of (70.0%) and F1-score of (70.0%). The RF model identified 10 features predictive of developing cervical cancer. The age of patients was considered as the most important risk factor, followed by the number of pregnancy livebirths, marital status, and use of birth control pills, The study shows that data mining techniques could be used to identify women living with HIV at high risk of developing cervical cancer in Nigeria and other sub-Saharan African countries.

Keywords: associated cervical cancer, data mining, random forest, logistic regression

Procedia PDF Downloads 1
485 Retinal Changes in Patients with Idiopathic Inflammatory Myopathies: A Case-Control Study

Authors: Rachna Agarwal, R. Naveen, Darpan Thakre, Rohit Shahi, Maryam Abbasi, Upendra Rathore, Latika Gupta

Abstract:

Aim: Retinal changes are the window to systemic vasculature. Therefore, we explored retinal changes in patients with idiopathic inflammatory myopathies (IIM) as a surrogate for vascular health. Methods: Adult and juvenile IIM patients visiting a tertiary care centre in 2021 satisfying the International Myositis Classification Criteria were enrolled for detailed ophthalmic examination in comparison with healthy controls (HC). Patients with conditions that precluded thorough posterior chamber examination were excluded. Scale variables are expressed as median (IQR). Multivariate analysis (binary logistic regression-BLR) was conducted, adjusting for age, gender, and comorbidities besides factors significant in univariate analysis. Results: 43 patients with IIM [31 females; age 36 (23-45) years; disease duration 5.5 (2-12) months] were enrolled for participation. DM (44%) was the most common diagnosis. IIM patients exhibited frequent attenuation of retinal vessels (32.6% vs. 4.3%, p <0.001), AV nicking (14% vs. 2.2%, p=0.053), and vascular tortuosity (18.6% vs. 2.2%, p=0.012), besides decreased visual acuity (53.5% vs. 10.9%, p<0.001) and immature cataracts (34.9% vs. 2.2%, p<0.001). Attenuation of vessels [OR 10.9 (1.7-71), p=0.004] emerged as significantly different from HC after adjusting for covariates in BLR. Notably, adults with IIM were more predisposed to retinal abnormalities [21 (57%) vs. 1 (16%), p=0.068], especially attenuation of vessels [14(38%) vs. 0(0), p=0.067] than jIIM. However, no difference was found in retinal features amongst the subtypes of adult IIM, nor did they correlate with MDAAT, MDI, or HAQ-DI. Conclusion: Retinal microvasculopathy and diminution of vision occur in nearly one-third to half of the patients with IIM. Microvasculopathy occurs across subtypes of IIM, and more so in adults, calling for further investigation as a surrogate for damage assessment and potentially even systemic vascular health.

Keywords: idiopathic inflammatory myopathies, vascular health, retinal microvasculopathy, arterial attenuation

Procedia PDF Downloads 2
484 A Profile of Out-of-Hospital Cardiac Arrest in ‘Amang’ Rodriguez Memorial Medical Center: A Prospective Cohort Study

Authors: Donna Erika E. De Jesus

Abstract:

Introduction: Cardiac arrest occurs when abrupt cessation of cardiac function results in loss of effective circulation and complete cardiovascular collapse. For every minute of cardiac arrest without early intervention (cardiopulmonary resuscitation [CPR], defibrillation), chances of survival drop by 7-10%. It is crucial that CPR be initiated within 4-6 minutes to avoid brain death. Most out-of-hospital cardiac arrests (OHCA) occur in a residential setting where access to trained personnel and equipment is not readily available, resulting in poor victim outcomes. Methods: This is a descriptive study done from August to November 2021 using a prospective cohort design. Participants of the study include adult patients aged 18 years and above brought to the emergency room who suffered from out-of-hospital cardiac arrest. Out of the total 102 cases of OHCA, 63 participants were included in the study. Descriptive statistics were used to summarize the demographic and clinical characteristics of the patients. Results: 43 were male patients, comprising the majority at 73.02%. Hypertension was identified as the top co-morbidity, followed by diabetes mellitus, heart failure, and chronic kidney disease (CKD). Medical causes of arrest were identified in 96.83% of the cases. 90.48% of cardiac arrests occurred at home. Only 26 patients (41.27%) received pre-hospital intervention prior to ER arrival, which comprised only hands-only CPR. Twenty-three of which were performed by individuals with background knowledge of CPR. 60.32% were brought via self-conduction, the remainder by ambulances, which were noted to have no available equipment necessary to provide proper resuscitation. The average travel time from dispatch to ER arrival is 20 minutes. Conclusion: Overall survival of OHCA in our local setting remains dismal, as a return of spontaneous circulation was not achieved in any of the patients. The small number of patients having pre-hospital CPR indicates the need for emphasis on training and community education.

Keywords: out-of-hospital cardiac arrest, cardiopulmonary resuscitation, basic life support, emergency medical services

Procedia PDF Downloads 6
483 Hospital 4.0 Maturity Assessment Model Development: Case of Moroccan Public Hospitals

Authors: T. Benazzouz, K. Auhmani

Abstract:

This paper presents a Hospital 4.0 Maturity Assessment Model based on the Industry 4.0 concepts. The self-assessment model defines current and target states of digital transformation by considering multiple aspects of a hospital and a healthcare supply chain. The developed model was validated and evaluated on real-life cases. The resulting model consisted of 5 domains: Technology, Strategy 4.0, Human resources 4.0 & Culture 4.0, Supply chain 4.0 management, and Patient journeys management. Each domain is further divided into several sub-domains, totally 34 sub-domains are identified, that reflect different facets of a hospital 4.0 mature organization.

Keywords: hospital 4.0, Industry 4.0, maturity assessment model, supply chain 4.0, patient

Procedia PDF Downloads 4
482 Evaluation of Clinical Decision Support System in Electronic Medical Record System: A Case of Malawi National Art Electronic Medical Record System

Authors: Pachawo Bisani, Goodall Nyirenda

Abstract:

The Malawi National Antiretroviral Therapy (NART) Electronic Medical Record (EMR) system was designed and developed with guidance from the Ministry of Health through the Department of HIV and AIDS (DHA) with the aim of supporting the management of HIV patient data and reporting in high prevalence ART clinics. As of 2021, the system has been scaled up to over 206 facilities across the country. The system is integrated with the clinical decision support system (CDSS) to assist healthcare providers in making a decision about an individual patient at a particular point in time. Despite NART EMR undergoing several evaluations and assessments, little has been done to evaluate the clinical decision support system in the NART EMR system. Hence, the study aimed to evaluate the use of CDSS in the NART EMR system in Malawi. The study adopted a mixed-method approach, and data was collected through interviews, observations, and questionnaires. The study has revealed that the CDSS tools were integrated into the ART clinic workflow, making it easy for the user to use it. The study has also revealed challenges in system reliability and information accuracy. Despite the challenges, the study further revealed that the system is effective and efficient, and overall, users are satisfied with the system. The study recommends that the implementers focus more on the logic behind the clinical decision-support intervention in order to address some of the concerns and enhance the accuracy of the information supplied. The study further suggests consulting the system's actual users throughout implementation.

Keywords: clinical decision support system, electronic medical record system, usability, antiretroviral therapy

Procedia PDF Downloads 7
481 Health Information Seeking Estonians Aged ≥ 50 Years during the COVID-19 Pandemic

Authors: Marianne Paimre

Abstract:

The COVID-19 crisis has prompted older people to adopt new technologies to facilitate their daily life. This study explored the relationships between socioeconomic indicators, technology acceptance, online health information seeking (OHIS), and health behavior (HB), including readiness for COVID-19 vaccination among Estonian older adults. A cross-sectional survey was conducted among 501 people aged ≥ 50 in 2020. Its findings indicate that the more recurrent the need for health information was (rho = .11, p<.05), and the more regularly one searched for it (rho = .14, p<.01), the more willing a person was to get vaccinated. Also, interest in digital applications corresponded to vaccination readiness (rho = .25, p<.001). However, this relationship did not emerge in the case of other health behaviors such as healthy diet and exercise. Differences in health information behavior (HIB) should be considered when developing effective means of health communication designed especially for crisis situations.

Keywords: older adults, technology acceptance, health information behavior, health behavior, COVID-19 pandemic

Procedia PDF Downloads 3
480 A Machine Learning-Based Analysis of Autism Prevalence Rates across US States against Multiple Potential Explanatory Variables

Authors: Ronit Chakraborty, Sugata Banerji

Abstract:

There has been a marked increase in the reported prevalence of Autism Spectrum Disorder (ASD) among children in the US over the past two decades. This research has analyzed the growth in state-level ASD prevalence against 45 different potentially explanatory factors, including socio-economic, demographic, healthcare, public policy, and political factors. The goal was to understand if these factors have adequate predictive power in modeling the differential growth in ASD prevalence across various states and if they do, which factors are the most influential. The key findings of this study include (1) the confirmation that the chosen feature set has considerable power in predicting the growth in ASD prevalence, (2) the identification of the most influential predictive factors, (3) given the nature of the most influential predictive variables, an indication that a considerable portion of the reported ASD prevalence differentials across states could be attributable to over and under diagnosis, and (4) identification of Florida as a key outlier state pointing to a potential under-diagnosis of ASD there.

Keywords: autism spectrum disorder, clustering, machine learning, predictive modeling

Procedia PDF Downloads 4
479 Spatial Temporal Change of COVID-19 Vaccination Condition in the US: An Exploration Based on Space Time Cube

Authors: Yue Hao

Abstract:

COVID-19 vaccines not only protect individuals but society as a whole. In this case, having an understanding of the change and trend of vaccination conditions may shed some light on revising and making up-to-date policies regarding large-scale public health promotions and calls in order to lead and encourage the adoption of COVID-19 vaccines. However, vaccination status change over time and vary from place to place hidden patterns that were not fully explored in previous research. In our research, we took advantage of the spatial-temporal analytical methods in the domain of geographic information science and captured the spatial-temporal changes regarding COVID-19 vaccination status in the United States during 2020 and 2021. After conducting the emerging hot spots analysis on both the state level data of the US and county level data of California we found that: (1) at the macroscopic level, there is a continuously increasing trend of the vaccination rate in the US, but there is a variance on the spatial clusters at county level; (2) spatial hotspots and clusters with high vaccination amount over time were clustered around the west and east coast in regions like California and New York City where are densely populated with considerable economy conditions; (3) in terms of the growing trend of the daily vaccination among, Los Angeles County alone has very high statistics and dramatic increases over time. We hope that our findings can be valuable guidance for supporting future decision-making regarding vaccination policies as well as directing new research on relevant topics.

Keywords: COVID-19 vaccine, GIS, space time cube, spatial-temporal analysis

Procedia PDF Downloads 1
478 Hand Hygiene Habits of Ghanaian Youths in Accra

Authors: Cecilia Amponsem-Boateng, Timothy B. Oppong, Haiyan Yang, Guangcai Duan

Abstract:

The human palm has been identified as one of the richest habitats for human microbial accommodation making hand hygiene essential to primary prevention of infection. Since the hand is in constant contact with fomites which have been proven to be mostly contaminated, building hand hygiene habits is essential for the prevention of infection. This research was conducted to assess the hand hygiene habits of Ghanaian youths in Accra. This study used a survey as a quantitative method of research. The findings of the study revealed that out of the 254 participants who fully answered the questionnaire, 22% had the habit of washing their hands after outings while only 51.6% had the habit of washing their hands after using the bathroom. However, about 60% of the participants said they sometimes ate with their hands while 28.9% had the habit of eating with the hand very often, a situation that put them at risk of infection from their hands since some participants had poor handwashing habits; prompting the need for continuous education on hand hygiene.

Keywords: hand hygiene, hand hygiene habit, hand washing, hand sanitizer use

Procedia PDF Downloads 6
477 Interpretable Deep Learning Models for Medical Condition Identification

Authors: Dongping Fang, Lian Duan, Xiaojing Yuan, Mike Xu, Allyn Klunder, Kevin Tan, Suiting Cao, Yeqing Ji

Abstract:

Accurate prediction of a medical condition with straight clinical evidence is a long-sought topic in the medical management and health insurance field. Although great progress has been made with machine learning algorithms, the medical community is still, to a certain degree, suspicious about the model's accuracy and interpretability. This paper presents an innovative hierarchical attention deep learning model to achieve good prediction and clear interpretability that can be easily understood by medical professionals. This deep learning model uses a hierarchical attention structure that matches naturally with the medical history data structure and reflects the member’s encounter (date of service) sequence. The model attention structure consists of 3 levels: (1) attention on the medical code types (diagnosis codes, procedure codes, lab test results, and prescription drugs), (2) attention on the sequential medical encounters within a type, (3) attention on the medical codes within an encounter and type. This model is applied to predict the occurrence of stage 3 chronic kidney disease (CKD3), using three years’ medical history of Medicare Advantage (MA) members from a top health insurance company. The model takes members’ medical events, both claims and electronic medical record (EMR) data, as input, makes a prediction of CKD3 and calculates the contribution from individual events to the predicted outcome. The model outcome can be easily explained with the clinical evidence identified by the model algorithm. Here are examples: Member A had 36 medical encounters in the past three years: multiple office visits, lab tests and medications. The model predicts member A has a high risk of CKD3 with the following well-contributed clinical events - multiple high ‘Creatinine in Serum or Plasma’ tests and multiple low kidneys functioning ‘Glomerular filtration rate’ tests. Among the abnormal lab tests, more recent results contributed more to the prediction. The model also indicates regular office visits, no abnormal findings of medical examinations, and taking proper medications decreased the CKD3 risk. Member B had 104 medical encounters in the past 3 years and was predicted to have a low risk of CKD3, because the model didn’t identify diagnoses, procedures, or medications related to kidney disease, and many lab test results, including ‘Glomerular filtration rate’ were within the normal range. The model accurately predicts members A and B and provides interpretable clinical evidence that is validated by clinicians. Without extra effort, the interpretation is generated directly from the model and presented together with the occurrence date. Our model uses the medical data in its most raw format without any further data aggregation, transformation, or mapping. This greatly simplifies the data preparation process, mitigates the chance for error and eliminates post-modeling work needed for traditional model explanation. To our knowledge, this is the first paper on an interpretable deep-learning model using a 3-level attention structure, sourcing both EMR and claim data, including all 4 types of medical data, on the entire Medicare population of a big insurance company, and more importantly, directly generating model interpretation to support user decision. In the future, we plan to enrich the model input by adding patients’ demographics and information from free-texted physician notes.

Keywords: deep learning, interpretability, attention, big data, medical conditions

Procedia PDF Downloads 8
476 Educational Sustainability: Teaching the Next Generation of Educators in Medical Simulation

Authors: Thomas Trouton, Sebastian Tanner, Manvir Sandher

Abstract:

The use of simulation in undergraduate and postgraduate medical curricula is ever-growing, is a useful addition to the traditional apprenticeship model of learning within medical education, and better prepares graduates for the team-based approach to healthcare seen in real-life clinical practice. As a learning tool, however, undergraduate medical students often have little understanding of the theory behind the use of medical simulation and have little experience in planning and delivering their own simulated teaching sessions. We designed and implemented a student-selected component (SSC) as part of the undergraduate medical curriculum at the University of Buckingham Medical School to introduce students to the concepts behind the use of medical simulation in education and allow them to plan and deliver their own simulated medical scenario to their peers. The SSC took place over a 2-week period in the 3rd year of the undergraduate course. There was a mix of lectures, seminars and interactive group work sessions, as well as hands-on experience in the simulation suite, to introduce key concepts related to medical simulation, including technical considerations in simulation, human factors, debriefing and troubleshooting scenarios. We evaluated the success of our SSC using “Net Promotor Scores” (NPS) to assess students’ confidence in planning and facilitating a simulation-based teaching session, as well as leading a debrief session. In all three domains, we showed an increase in the confidence of the students. We also showed an increase in confidence in the management of common medical emergencies as a result of the SSC. Overall, the students who chose our SSC had the opportunity to learn new skills in medical education, with a particular focus on the use of simulation-based teaching, and feedback highlighted that a number of students would take these skills forward in their own practice. We demonstrated an increase in confidence in several domains related to the use of medical simulation in education and have hopefully inspired a new generation of medical educators.

Keywords: simulation, SSC, teaching, medical students

Procedia PDF Downloads 10
475 A Study on Functional Performance and Physical Self-esteem Levels of Differently-Abled Basket Ballplayers: A Case Series

Authors: Prerna Mohan Saxena, Avni Joshi, Raju K Parasher

Abstract:

Disability is a state of decreased functioning associated with disease, disorder, injury, or other health condition, which in the context of one’s environment is experienced as an impairment, activity limitation, or participation restriction. With the concept of disability evolving over the years, the current ICF model of disability has integrated this concept into a comprehensive whole of multiple dimensions of human functioning, including biological, psychological, social, and environmental aspects. Wheelchair basketball is one of the greatest examples of adapted sports for the disabled. Through this study, we aim to evaluate the functional performance and self-esteem levels in differently-abled pediatric wheelchair basketball players, providing an insight on their abilities and deficits and how they can be worked on at a larger level to improve overall performance. The study was conducted on 9 pediatric wheelchair basketball players at Amar Jyoti school for inclusive education Delhi their physical performance was assessed using a battery of tests, and physical self esteem was assessed using the Physical self-description instrument (PSDQ-S). Results showed that 9 participants age ranged between 10-21 years, mostly males with BMI ranging between 16.7 to 28.9 kg/m2 most of them had the experience of 5 to 6 years of playing the sport. The data showed physical performance in accordance to years of experience of playing, physical self esteem showed a different perspective, with experience players scoring less on it. This study supports a multidimensional construct of physical performance and physical self-esteem, suggesting that both may be applied on the wheelchair basketball players at competitive levels.

Keywords: ase series, physical performance, physical self-esteem, wheelchair basketball

Procedia PDF Downloads 16
474 Central Line Stock and Use Audit in Adult Patients: A Quality Improvement Project on Central Venous Catheter Standardisation Across Hospital Departments

Authors: Gregor Moncrieff, Ursula Bahlmann

Abstract:

A number of incident reports were filed from the intensive care unit with regards to adult patients admitted following operations who had a central venous catheter inserted of the incorrect length for the relevant anatomical site and catheters not compatible with pressurised injection inserted whilst in theatre. Incorrect catheter length can lead to a variety of complications and pressurised injection is a requirement for contrast enhanced computerised tomography scans. This led to several patients having a repeat procedure to insert a catheter of the correct length and also compatible with pressurised injection. This project aimed to identify the types of central venous catheters used in theatres and ensure the correct equipment would be stocked and used in future cases in accordance the existing Association of Anaesthetics of Great Britain and Northern Ireland guidelines. A questionnaire was sent out to all of the anaesthetic department in our hospital aiming to determine what types of central venous catheters were preferably used by anaesthetists and why these had been chosen. We also explored any concerns regarding introduction of standardised, pressure injectable central venous catheters to the theatre department which were already in use in other parts of the hospital and in keeping with national guidance. A total of 56 responses were collected. 64% of respondents routinely used a central venous catheter which was significantly shorter than the national recommended guidance with a further 4 different types of central venous catheters used which were different to other areas of the hospital and not pressure injectable. 75% of respondents were in agreement to standardised introduction of the pressure injectable catheters of the recommended length in accordance with national guidance. Reasons why 25% respondents were opposed to introduction of these catheters were explored and discussed. We were successfully able to introduce the standardised central catheters to the theatre department following presentation at the local anaesthetic quality and safety meeting. Reasons against introduction of the catheters were discussed and a compromise was reached that the existing catheters would continue to be stocked but would only be available on request, with a focus on encouraging use of the standardised catheters. Additional changes achieved included removing redundant catheters from the theatre stock. Ongoing data is being collected to analyse positive and negative feedback from use of the introduced catheters.

Keywords: central venous catheter, medical equipment, medical safety, quality improvement

Procedia PDF Downloads 19
473 Understanding Knowledge, Skills and Competency Needs in Digital Health for Current and Future Health Workforce

Authors: Sisira Edirippulige

Abstract:

Background: Digital health education and training (DHET) is imperative for preparing current and future clinicians to work competently in digitally enabled environments. Despite rapid integration of digital health in modern health services, systematic education and training opportunities for health workers is still lacking. Objectives: This study aimed to investigate healthcare professionals’ perspectives and expectations regarding the knowledge, skills and competency needs in digital health for current and future healthcare workforce. Methods: A qualitative study design with semi-structured individual interviews was employed. A purposive sample method was adopted to collect relevant information from the health workers. Inductive thematic analysis was used to analyse data. Interviews were audio-recorded and transcribed verbatim. Consolidated Criteria for Reporting Qualitative Research (COREQ) was followed when we reported this study. Results: Two themes emerged while analysing the data: (1) what to teach in DHET and (2) how to teach DHET. Overall, healthcare professionals agreed that DHET is important for preparing current and future clinicians for working competently in digitally enabled environments. Knowledge relating to what is digital health, types of digital health, use of technology and human factors in digital health were considered as important to be taught in DHET. Skills relating to digital health consultations, clinical information system management and remote monitoring were considered important to be taught. Blended learning which combined e-learning and classroom-based teaching, simulation sessions and clinical rotations were suggested by healthcare professionals as optimal approaches to deliver the above-mentioned content. Conclusions: This study is the first of its kind to investigate health professionals’ perspectives and expectations relating to the knowledge, skills and competency needs in digital health for current and future healthcare workforce. Healthcare workers are keen to acquire relevant knowledge, skills and competencies related to digital health. Different modes of education delivery is of interest to fit in with busy schedule of health workers.

Keywords: digital health, telehealth, telemedicine, education, curriculum

Procedia PDF Downloads 29
472 Personal and Household Hygiene Measures for Prevention of Upper Respiratory Tract Infections among Children: A Cross Sectional Survey on Parental Knowledge, Attitudes and Practices

Authors: Man Wai Leung, Margaret O’Donoghue, Lorna K. P. Suen

Abstract:

Personal and household hygiene measures are important to prevent upper respiratory tract infections (URTIs) and other infectious diseases, including coronavirus disease 2019 (COVID-19). An online survey recruited 414 eligible parents in Hong Kong to study their hygiene knowledge, attitudes, and practices (KAP) in the prevention of URTIs among their children. The average knowledge score was high (10.2/12.0), but some misconceptions were identified. The majority of participants agreed that good personal hygiene (93.5%) and good environmental hygiene (92.8%) can prevent URTIs. The average score for hand hygiene practices was high (3.78/4.00), but only 56.8% of parents always perform hand hygiene before touching their mouth, nose, or eyes. For environmental hygiene, only some household items were disinfected with disinfectants (69.8%: door handles, 60.4%: toilet seats, 42.8%: floor, 24.2%: dining chairs, 20.5%: dining tables). Higher knowledge score was associated with parents having a tertiary educational level or above, working as healthcare professionals, living at private residential flat or staff quarter, and having a household income of $70,000 or above. Hand hygiene practices varied significantly with parents’ age and income. During the 5th wave of the COVID-19 epidemic, misconceptions about hygiene knowledge were found among parents. Health promotion programs should target parents, especially those who are in old age, obtain lower educational levels, live in public housing, or have a lower income. Hand hygiene moments and proper use of disinfectants could be one of the targeted educational topics.

Keywords: hygiene, upper respiratory tract infection, parents, children, COVID-19

Procedia PDF Downloads 26
471 Development of a Miniature and Low-Cost IoT-Based Remote Health Monitoring Device

Authors: Sreejith Jayachandran, Mojtaba Ghods, Morteza Mohammadzaheri

Abstract:

The modern busy world is running behind new embedded technologies based on computers and software; meanwhile, some people forget to do their health condition and regular medical check-ups. Some of them postpone medical check-ups due to a lack of time and convenience, while others skip these regular evaluations and medical examinations due to huge medical bills and hospital expenses. Engineers and medical experts have come together to give birth to a new device in the telemonitoring system capable of monitoring, checking, and evaluating the health status of the human body remotely through the internet for the needs of all kinds of people. The remote health monitoring device is a microcontroller-based embedded unit. Various types of sensors in this device are connected to the human body, and with the help of an Arduino UNO board, the required analogue data is collected from the sensors. The microcontroller on the Arduino board processes the analogue data collected in this way into digital data and transfers that information to the cloud, and stores it there, and the processed digital data is instantly displayed through the LCD attached to the machine. By accessing the cloud storage with a username and password, the concerned person’s health care teams/doctors and other health staff can collect this data for the assessment and follow-up of that patient. Besides that, the family members/guardians can use and evaluate this data for awareness of the patient's current health status. Moreover, the system is connected to a Global Positioning System (GPS) module. In emergencies, the concerned team can position the patient or the person with this device. The setup continuously evaluates and transfers the data to the cloud, and also the user can prefix a normal value range for the evaluation. For example, the blood pressure normal value is universally prefixed between 80/120 mmHg. Similarly, the RHMS is also allowed to fix the range of values referred to as normal coefficients. This IoT-based miniature system (11×10×10) cm³ with a low weight of 500 gr only consumes 10 mW. This smart monitoring system is manufactured with 100 GBP, which can be used not only for health systems, it can be used for numerous other uses including aerospace and transportation sections.

Keywords: embedded technology, telemonitoring system, microcontroller, Arduino UNO, cloud storage, global positioning system, remote health monitoring system, alert system

Procedia PDF Downloads 9
470 Wearable Devices Could Reduce the Risk of Injury in Parasomnias Phenotypes

Authors: Vivian Correa

Abstract:

Hypothesis There are typical patterns - phenotypes - of sleep behaviors by age and biological sex groups of parasomnia patients where wearable devices could avoid injuries. Materials and methods We analyzed public video records on sleep-related behaviors likely representing parasomnias, looking for phenotypes in different groups. We searched public internet databases using the keywords “sleepwalking”, “sleep eating,” “sleep sex”, and “aggression in sleep” in six languages. Poor-quality vide-records and those showing apparently faked sleep behaviors were excluded. We classified the videos into estimated sex and age (children, adults, elderly) groups; scored the activity types by a self-made scoring scale; and applied binary logistic regression for analyzing the association between sleep behaviors versus the groups by STATA package providing 95% confidence interval and the probability of statistical significance. Results 224 videos (102 women) were analyzed. The odds of sleepwalking and related dangerous behaviors were lower in the elderly than in adults (P<0.025). Females performed complex risky behaviors during sleepwalking more often than males (P<0.012). Elderly people presented emotional behaviors less frequently than adults (P<0.004), and females showed them twice often as males. Elderly males had 40-fold odds compared to adults and children to perform aggressive movements and 70-fold odds of complex movements in the bed compared to adults. Conclusion Unlike other groups, the high chances of adults being sleepwalkers and elderly males performing intense and violent movements in bed showed us the importance of developing wearable parasomnia devices to prevent injuries.

Keywords: parasomnia, wearable devices, sleepwalking, RBD

Procedia PDF Downloads 19
469 Feeding Patterns and Diarrhea Incidence Among Children in Bangladesh: A Study Using Data from Demographic and Health Survey, 2014

Authors: Iqbal Ahmed Chowdhury

Abstract:

Diarrhea is considered to be one of the influential factors of child death in Bangladesh. While it is known that diarrhea is a water-driven disease, due to the lack of studies, little is known about the extent to which various feeding patterns contribute to such an incidence. Our paper intends to fill this gap by looking into different feeding patterns and their influence on diarrhea incidence among children in Bangladesh. Using data collected for the Demographic and Health Survey, 2014, this paper reveals that feeding patterns can influence the diarrhea incidence among this group of children to a great extent. This paper finds that the incidence of diarrhea is likely to elevate if diarrhea-affected children are fed plain water from any source and any kind of juice. However, breastfeeding, feeding soup or clear broth, prescribed baby food, and clean water from a tube well tend to help fight diarrhea incidence among children in Bangladesh. The results are found to be consistent even after controlling for sociodemographic variables, including age and sex of children, age and education qualification of the parent, and the number of children in the family. The results of this study could contribute to treating diarrhea among children in Bangladesh as well as similar other countries in the world.

Keywords: feeding patterns, diarrhea, Bangladesh, children

Procedia PDF Downloads 20
468 Wearable System for Prolonged Cooling and Dehumidifying of PPE in Hot Environments

Authors: Lun Lou, Jintu Fan

Abstract:

While personal protective equipment (PPE) prevents the healthcare personnel from exposing to harmful surroundings, it creates a barrier to the dissipation of body heat and perspiration, leading to severe heat stress during prolonged exposure, especially in hot environments. It has been found that most of the existed personal cooling strategies have limitations in achieving effective cooling performance with long duration and lightweight. This work aimed to develop a lightweight (<1.0 kg) and less expensive wearable air cooling and dehumidifying system (WCDS) that can be applied underneath the protective clothing and provide 50W mean cooling power for more than 5 hours at 35°C environmental temperature without compromising the protection of PPE. For the WCDS, blowers will be used to activate an internal air circulation inside the clothing microclimate, which doesn't interfere with the protection of PPE. An air cooling and dehumidifying chamber (ACMR) with a specific design will be developed to reduce the air temperature and humidity inside the protective clothing. Then the cooled and dried air will be supplied to upper chest and back areas through a branching tubing system for personal cooling. A detachable ice cooling unit will be applied from the outside of the PPE to extract heat from the clothing microclimate. This combination allows for convenient replacement of the cooling unit to refresh the cooling effect, which can realize a continuous cooling function without taking off the PPE or adding too much weight. A preliminary thermal manikin test showed that the WCDS was able to reduce the microclimate temperature inside the PPE averagely by about 8°C for 60 minutes when the environmental temperature was 28.0 °C and 33.5 °C, respectively. Replacing the ice cooling unit every hour can maintain this cooling effect, while the longest operation duration is determined by the battery of the blowers, which can last for about 6 hours. This unique design is especially helpful for the PPE users, such as health care workers in infectious and hot environments when continuous cooling and dehumidifying are needed, but the change of protective clothing may increase the risk of infection. The new WCDS will not only improve the thermal comfort of PPE users but can also extend their safe working duration.

Keywords: personal thermal management, heat stress, ppe, health care workers, wearable device

Procedia PDF Downloads 19
467 Nutritionists' Perspective on the Conception of a Telenutrition Platform for Diabetes Care: Qualitative Study

Authors: Choumous Mannoubi, Dahlia Kairy, Brigitte Vachon

Abstract:

The use of technology allows clinicians to provide an individualized approach in a cost-effective manner and to reach a broader client base more easily. Such interventions can be effective in ensuring self-management and follow-up of people with diabetes, reducing the risk of complications by improving accessibility to care services, and better adherence to health recommendations. Consideration of users' opinions and fears to inform the design and implementation stages of these telehealth services seems to be essential to improve their acceptance and usability. The objective of this study is to describe the telepractice of nutritionists supporting the therapeutic management of diabetic patients and document the functional requirements of nutritionists for the design of a tele-nutrition platform. To best identify the requirements and constraints of nutritionists, we conducted individual semi-structured interviews with 10 nutritionists who offered tele-nutrition services. Using a qualitative design with a descriptive approach based on the Nutrition Care Process Model (mNCP) framework, we explored in depth the state of nutritionists' telepractice in public and private health care settings, as well as their requirements for teleconsultation. Qualitative analyses revealed that nutritionists primarily used telephone calls during the COVID 19 pandemic to provide teleconsultations. Nutritionists identified the following important features for the design of a tele-nutrition platform: it should support interprofessional collaboration, allow for the development and monitoring of a care plan, integrate with the existing IT environment, be easy to use, accommodate different levels of patient literacy, and allow for easy sharing of educational materials to support nutrition education.

Keywords: telehealth, nutrition, diabetes, telenutrition, teleconsultation, telemonitoring

Procedia PDF Downloads 20
466 An Audit of Climate Change and Sustainability Teaching in Medical School

Authors: Karolina Wieczorek, Zofia Przypaśniak

Abstract:

Climate change is a rapidly growing threat to global health, and part of the responsibility to combat it lies within the healthcare sector itself, including adequate education of future medical professionals. To mitigate the consequences, the General Medical Council (GMC) has equipped medical schools with a list of outcomes regarding sustainability teaching. Students are expected to analyze the impact of the healthcare sector’s emissions on climate change. The delivery of the related teaching content is, however, often inadequate and insufficient time is devoted for exploration of the topics. Teaching curricula lack in-depth exploration of the learning objectives. This study aims to assess the extent and characteristics of climate change and sustainability subjects teaching in the curriculum of a chosen UK medical school (Barts and The London School of Medicine and Dentistry). It compares the data to the national average scores from the Climate Change and Sustainability Teaching (C.A.S.T.) in Medical Education Audit to draw conclusions about teaching on a regional level. This is a single-center audit of the timetabled sessions of teaching in the medical course. The study looked at the academic year 2020/2021 which included a review of all non-elective, core curriculum teaching materials including tutorials, lectures, written resources, and assignments in all five years of the undergraduate and graduate degrees, focusing only on mandatory teaching attended by all students (excluding elective modules). The topics covered were crosschecked with GMC Outcomes for graduates: “Educating for Sustainable Healthcare – Priority Learning Outcomes” as gold standard to look for coverage of the outcomes and gaps in teaching. Quantitative data was collected in form of time allocated for teaching as proxy of time spent per individual outcomes. The data was collected independently by two students (KW and ZP) who have received prior training and assessed two separate data sets to increase interrater reliability. In terms of coverage of learning outcomes, 12 out of 13 were taught (with the national average being 9.7). The school ranked sixth in the UK for time spent per topic and second in terms of overall coverage, meaning the school has a broad range of topics taught with some being explored in more detail than others. For the first outcome 4 out of 4 objectives covered (average 3.5) with 47 minutes spent per outcome (average 84 min), for the second objective 5 out of 5 covered (average 3.5) with 46 minutes spent (average 20), for the third 3 out of 4 (average 2.5) with 10 mins pent (average 19 min). A disproportionately large amount of time is spent delivering teaching regarding air pollution (respiratory illnesses), which resulted in the topic of sustainability in other specialties being excluded from teaching (musculoskeletal, ophthalmology, pediatrics, renal). Conclusions: Currently, there is no coherent strategy on national teaching of climate change topics and as a result an unstandardized amount of time spent on teaching and coverage of objectives can be observed.

Keywords: audit, climate change, sustainability, education

Procedia PDF Downloads 14
465 Breast Cancer Diagnosing Based on Online Sequential Extreme Learning Machine Approach

Authors: Musatafa Abbas Abbood Albadr, Masri Ayob, Sabrina Tiun, Fahad Taha Al-Dhief, Mohammad Kamrul Hasan

Abstract:

Breast Cancer (BC) is considered one of the most frequent reasons of cancer death in women between 40 to 55 ages. The BC is diagnosed by using digital images of the FNA (Fine Needle Aspirate) for both benign and malignant tumors of the breast mass. Therefore, this work proposes the Online Sequential Extreme Learning Machine (OSELM) algorithm for diagnosing BC by using the tumor features of the breast mass. The current work has used the Wisconsin Diagnosis Breast Cancer (WDBC) dataset, which contains 569 samples (i.e., 357 samples for benign class and 212 samples for malignant class). Further, numerous measurements of assessment were used in order to evaluate the proposed OSELM algorithm, such as specificity, precision, F-measure, accuracy, G-mean, MCC, and recall. According to the outcomes of the experiment, the highest performance of the proposed OSELM was accomplished with 97.66% accuracy, 98.39% recall, 95.31% precision, 97.25% specificity, 96.83% F-measure, 95.00% MCC, and 96.84% G-Mean. The proposed OSELM algorithm demonstrates promising results in diagnosing BC. Besides, the performance of the proposed OSELM algorithm was superior to all its comparatives with respect to the rate of classification.

Keywords: breast cancer, machine learning, online sequential extreme learning machine, artificial intelligence

Procedia PDF Downloads 22
464 Neuropsychiatric Outcomes of Intensive Music Therapy in Stroke Rehabilitation A Premilitary Investigation

Authors: Honey Bryant, Elvina Chu

Abstract:

Stroke is the leading cause of disability in adults in Canada and directly related to depression, anxiety, and sleep disorders; with an estimated annual cost of $50 billion in health care. Strokes not only impact the individual but society as a whole. Current stroke rehabilitation does not include Music Therapy, although it has success in clinical research in the use of stroke rehabilitation. This study examines the use of neurologic music therapy (NMT) in conjunction with stroke rehabilitation to improve sleep quality, reduce stress levels, and promote neurogenesis. Existing research on NMT in stroke is limited, which means any conclusive information gathered during this study will be significant. My novel hypotheses are a.) stroke patients will become less depressed and less anxious with improved sleep following NMT. b.) NMT will reduce stress levels and promote neurogenesis in stroke patients admitted for rehabilitation. c.) Beneficial effects of NMT will be sustained at least short-term following treatment. Participants were recruited from the in-patient stroke rehabilitation program at Providence Care Hospital in Kingston, Ontario, Canada. All participants-maintained stroke rehabilitation treatment as normal. The study was spilt into two groups, the first being Passive Music Listening (PML) and the second Neurologic Music Therapy (NMT). Each group underwent 10 sessions of intensive music therapy lasting 45 minutes for 10 consecutive days, excluding weekends. Psychiatric Assessments, Epworth Sleepiness Scale (ESS), Hospital Anxiety & Depression Rating Scale (HADS), and Music Engagement Questionnaire (MusEQ), were completed, followed by a general feedback interview. Physiological markers of stress were measured through blood pressure measurements and heart rate variability. Serum collections reviewed neurogenesis via Brain-derived neurotrophic factor (BDNF) and stress markers of cortisol levels. As this study is still on-going, a formal analysis of data has not been fully completed, although trends are following our hypotheses. A decrease in sleepiness and anxiety is seen upon the first cohort of PML. Feedback interviews have indicated most participants subjectively felt more relaxed and thought PML was useful in their recovery. If the hypothesis is supported, larger external funding which will allow for greater investigation of the use of NMT in stroke rehabilitation. As we know, NMT is not covered under Ontario Health Insurance Plan (OHIP), so there is limited scientific data surrounding its uses as a clinical tool. This research will provide detailed findings of the treatment of neuropsychiatric aspects of stroke. Concurrently, a passive music listening study is being designed to further review the use of PML in rehabilitation as well.

Keywords: music therapy, psychotherapy, neurologic music therapy, passive music listening, neuropsychiatry, counselling, behavioural, stroke, stroke rehabilitation, rehabilitation, neuroscience

Procedia PDF Downloads 15
463 AI-based Digital Healthcare Application to Assess and Reduce Fall Risks in Residents of Nursing Homes in Germany

Authors: Knol Hester, Müller Swantje, Danchenko Natalya

Abstract:

Objective: Falls in older people cause an autonomy loss and result in an economic burden. LCare is an AI-based application to manage fall risks. The study's aim was to assess the effect of LCare use on patient outcomes in nursing homes in Germany. Methods: LCare identifies and monitors fall risks through a 3D-gait analysis and a digital questionnaire, resulting in tailored recommendations on fall prevention. A study was conducted with AOK Baden-Württemberg (01.09.2019- 31.05.2021) in 16 care facilities. Assessments at baseline and follow-up included: a fall risk score; falls (baseline: fall history in the past 12 months; follow-up: a fall record since the last analysis); fall-related injuries and hospitalizations; gait speed; fear of falling; psychological stress; nurses experience on app use. Results: 94 seniors were aged 65-99 years at the initial analysis (average 84±7 years); 566 mobility analyses were carried out in total. On average, the fall risk was reduced by 17.8 % as compared to the baseline (p<0.05). The risk of falling decreased across all subgroups, including a trend in dementia patients (p=0.06), constituting 43% of analyzed patients, and patients with walking aids (p<0.05), constituting 76% of analyzed patients. There was a trend (p<0.1) towards fewer falls and fall-related injuries and hospitalizations (baseline: 23 seniors who fell, 13 injury consequences, 9 hospitalizations; follow-up: 14 seniors who fell, 2 injury consequences, 0 hospitalizations). There was a 16% improvement in gait speed (p<0.05). Residents reported less fear of falling and psychological stress by 38% in both outcomes (p<0.05). 81% of nurses found LCare effective. Conclusions: In the presented study, the use of LCare app was associated with a reduction of fall risk among nursing home residents, improvement of health-related outcomes, and a trend toward reduction in injuries and hospitalizations. LCare may help to improve senior resident care and save healthcare costs.

Keywords: falls, digital healthcare, falls prevention, nursing homes, seniors, AI, digital assessment

Procedia PDF Downloads 27