Search results for: wind resources.
1719 Sustainable Development in Iranian South Coastal and Islands Using Wind Energy
Authors: Amir Gandomkar
Abstract:
The development incompatible with environment cannot be sustainable. Using renewable energy sources such as solar energy, geothermal energy and wind energy can make sustainable development in a region. Iran has a lot of renewable and nonrenewable energy resources. Since Iran has a special geographic position, it has lot of solar and wind energy resources. Both solar and wind energy are free, renewable and adaptable with environment. The study of 10 year wind data in Iranian South coastal and Islands synoptic stations shows that the production of wind power electricity and water pumping is possible in this region. In this research, we studied the local and temporal distribution of wind using three – hour statistics of windspeed in Iranian South coastal and Islands synoptic stations. This research shows that the production of wind power electricity is possible in this region all the year.
Keywords: Wind energy, wind regime, wind electricity, synoptic station.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15941718 Establishing a Probabilistic Model of Extrapolated Wind Speed Data for Wind Energy Prediction
Authors: Mussa I. Mgwatu, Reuben R. M. Kainkwa
Abstract:
Wind is among the potential energy resources which can be harnessed to generate wind energy for conversion into electrical power. Due to the variability of wind speed with time and height, it becomes difficult to predict the generated wind energy more optimally. In this paper, an attempt is made to establish a probabilistic model fitting the wind speed data recorded at Makambako site in Tanzania. Wind speeds and direction were respectively measured using anemometer (type AN1) and wind Vane (type WD1) both supplied by Delta-T-Devices at a measurement height of 2 m. Wind speeds were then extrapolated for the height of 10 m using power law equation with an exponent of 0.47. Data were analysed using MINITAB statistical software to show the variability of wind speeds with time and height, and to determine the underlying probability model of the extrapolated wind speed data. The results show that wind speeds at Makambako site vary cyclically over time; and they conform to the Weibull probability distribution. From these results, Weibull probability density function can be used to predict the wind energy.Keywords: Probabilistic models, wind speed, wind energy
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23461717 Steady State Analysis of Distribution System with Wind Generation Uncertainity
Authors: Zakir Husain, Neem Sagar, Neeraj Gupta
Abstract:
Due to the increased penetration of renewable energy resources in the distribution system, the system is no longer passive in nature. In this paper, a steady state analysis of the distribution system has been done with the inclusion of wind generation. The modeling of wind turbine generator system and wind generator has been made to obtain the average active and the reactive power injection into the system. The study has been conducted on a IEEE-33 bus system with two wind generators. The present research work is useful not only to utilities but also to customers.
Keywords: Distributed generation, distribution network, radial network, wind turbine generating system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10631716 Present Energy Scenario and Potentiality of Wind Energy in Bangladesh
Authors: Md. Alamgir Hossain, Md. Raju Ahmed
Abstract:
Scarcity in energy sector is a major problem, which can hamper the growing development of a country. Bangladesh is one of the electricity-deprived countries; however, the energy demand of Bangladesh is increasing day by day. Due to the shortage of natural resources and environmental issues, many nations are now moving towards renewable energy. Among various form of renewable energy, wind energy is one of most potential source. In this paper, the present energy condition of Bangladesh is discussed and the necessity of moving towards renewable energy is clarified. The wind speed found at different locations at different heights and different years from the survey of several organizations are presented. Although, the results of installed low capacity wind turbines (from few kW to few tens of kW) operated by private or government organization at different places in Bangladesh are not so encouraging; however, it is shown that Bangladesh has a high potential of using large wind turbine (MW range) for capturing wind energy at different places. The present condition of wind energy in Bangladesh and other countries in the world are also presented to emphasize the requisite of moving towards wind energy.
Keywords: Renewable energy, wind speed, wind power, modern wind turbine, scarcity of power and gas crisis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35691715 Economic Evaluation Offshore Wind Project under Uncertainly and Risk Circumstances
Authors: Sayed Amir Hamzeh Mirkheshti
Abstract:
Offshore wind energy as a strategic renewable energy, has been growing rapidly due to availability, abundance and clean nature of it. On the other hand, budget of this project is incredibly higher in comparison with other renewable energies and it takes more duration. Accordingly, precise estimation of time and cost is needed in order to promote awareness in the developers and society and to convince them to develop this kind of energy despite its difficulties. Occurrence risks during on project would cause its duration and cost constantly changed. Therefore, to develop offshore wind power, it is critical to consider all potential risks which impacted project and to simulate their impact. Hence, knowing about these risks could be useful for the selection of most influencing strategies such as avoidance, transition, and act in order to decrease their probability and impact. This paper presents an evaluation of the feasibility of 500 MV offshore wind project in the Persian Gulf and compares its situation with uncertainty resources and risk. The purpose of this study is to evaluate time and cost of offshore wind project under risk circumstances and uncertain resources by using Monte Carlo simulation. We analyzed each risk and activity along with their distribution function and their effect on the project.
Keywords: Wind energy project; uncertain resources; risks; Monte Carlo simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8001714 Wind Energy Status in Turkey
Authors: Mustafa Engin Başoğlu, Bekir Çakir
Abstract:
Since large part of electricity is generated by using fossil based resources, energy is an important agenda for countries. In this context, renewable energy sources are alternative to conventional sources due to the depletion of fossil resources, increasing awareness of climate change and global warming concerns. Solar, wind and hydropower energy are the main renewable energy sources. Among of them, since installed capacity of wind power has increased approximately eight times between 2008 - November of 2014, wind energy is a promising source for Turkey. Furthermore, signing of Kyoto Protocol can be accepted as a milestone for Turkey's energy policy. Turkish Government has announced Vision 2023 (energy targets by 2023) in 2010-2014 Strategic Plan prepared by Ministry of Energy and Natural Resources (MENR). Energy targets in this plan can be summarized as follows: Share of renewable energy sources in electricity generation is 30% of total electricity generation by 2023. Installed capacity of wind energy will be 20 GW by 2023. Other renewable energy sources such as solar, hydropower and geothermal are encouraged with new incentive mechanisms. Dependence on foreign energy is reduced for sustainability and energy security. On the other hand, since Turkey is surrounded by three coastal areas, wind energy potential is convenient for wind power application. As of November of 2014, total installed capacity of wind power plants is 3.51 GW and a lot of wind power plants are under construction with capacity 1.16 GW. Turkish government also encourages the locally manufactured equipments. In this context, one of the projects funded by private sector, universities and TUBİTAK names as MILRES is an important project aimed to promote the use wind energy in electricity generation. Within this project, wind turbine with 500 kW power has been produced and will be installed at the beginning of the 2015. After that, by using the experience obtained from the first phase of the project, a wind turbine with 2.5 MW power will be manufactured in an industrial scale.
Keywords: Wind energy, wind speed, Vision 2023, MILRES (national wind energy system), wind energy potential, Turkey.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32721713 Real Time Remote Monitoring and Fault Detection in Wind Turbine
Authors: Saad Chakkor, Mostafa Baghouri, Abderrahmane Hajraoui
Abstract:
In new energy development, wind power has boomed. It is due to the proliferation of wind parks and their operation in supplying the national electric grid with low cost and clean resources. Hence, there is an increased need to establish a proactive maintenance for wind turbine machines based on remote control and monitoring. That is necessary with a real-time wireless connection in offshore or inaccessible locations while the wired method has many flaws. The objective of this strategy is to prolong wind turbine lifetime and to increase productivity. The hardware of a remote control and monitoring system for wind turbine parks is designed. It takes advantage of GPRS or Wi-Max wireless module to collect data measurements from different wind machine sensors through IP based multi-hop communication. Computer simulations with Proteus ISIS and OPNET software tools have been conducted to evaluate the performance of the studied system. Study findings show that the designed device is suitable for application in a wind park.
Keywords: Embedded System, Monitoring, Wind Turbine, Faults Diagnosis, TCP/IP Protocol, Real Time, Web.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39771712 Direct Measurements of Wind Data over 100 Meters above the Ground in the Site of Lendinara, Italy
Authors: A. Dal Monte, M. Raciti Castelli, G. B. Bellato, L. Stevanato, E. Benini
Abstract:
The wind resource in the Italian site of Lendinara (RO) is analyzed through a systematic anemometric campaign performed on the top of the bell tower, at an altitude of over 100 m above the ground. Both the average wind speed and the Weibull distribution are computed. The resulting average wind velocity is in accordance with the numerical predictions of the Italian Wind Atlas, confirming the accuracy of the extrapolation of wind data adopted for the evaluation of wind potential at higher altitudes with respect to the commonly placed measurement stations.Keywords: Anemometric campaign, wind resource, Weibull distribution, wind atlas
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19581711 Emulation of a Wind Turbine Using Induction Motor Driven by Field Oriented Control
Authors: L. Benaaouinate, M. Khafallah, A. Martinez, A. Mesbahi, T. Bouragba
Abstract:
This paper concerns with the modeling, simulation, and emulation of a wind turbine emulator for standalone wind energy conversion systems. By using emulation system, we aim to reproduce the dynamic behavior of the wind turbine torque on the generator shaft: it provides the testing facilities to optimize generator control strategies in a controlled environment, without reliance on natural resources. The aerodynamic, mechanical, electrical models have been detailed as well as the control of pitch angle using Fuzzy Logic for horizontal axis wind turbines. The wind turbine emulator consists mainly of an induction motor with AC power drive with torque control. The control of the induction motor and the mathematical models of the wind turbine are designed with MATLAB/Simulink environment. The simulation results confirm the effectiveness of the induction motor control system and the functionality of the wind turbine emulator for providing all necessary parameters of the wind turbine system such as wind speed, output torque, power coefficient and tip speed ratio. The findings are of direct practical relevance.
Keywords: Wind turbine, modeling, emulator, electrical generator, renewable energy, induction motor drive, field oriented control, real time control, wind turbine emulator, pitch angle control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13751710 Wind Speed Data Analysis using Wavelet Transform
Authors: S. Avdakovic, A. Lukac, A. Nuhanovic, M. Music
Abstract:
Renewable energy systems are becoming a topic of great interest and investment in the world. In recent years wind power generation has experienced a very fast development in the whole world. For planning and successful implementations of good wind power plant projects, wind potential measurements are required. In these projects, of great importance is the effective choice of the micro location for wind potential measurements, installation of the measurement station with the appropriate measuring equipment, its maintenance and analysis of the gained data on wind potential characteristics. In this paper, a wavelet transform has been applied to analyze the wind speed data in the context of insight in the characteristics of the wind and the selection of suitable locations that could be the subject of a wind farm construction. This approach shows that it can be a useful tool in investigation of wind potential.Keywords: Wind potential, Wind speed data, Wavelettransform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26321709 A Study of Wind Speed Characteristic in PI Controller based DFIG Wind Turbine
Authors: T. Unchim, A. Oonsivilai
Abstract:
The Wind Turbine Modeling in Wind Energy Conversion System (WECS) using Doubly-Fed Induction Generator (DFIG) PI Controller based design is presented. To study about the variable wind speed. The PI controller performs responding to the dynamic performance. The objective is to study the characteristic of wind turbine and finding the optimum wind speed suitable for wind turbine performance. This system will allow the specification setting (2.5MW). The output active power also corresponding same the input is given. And the reactive power produced by the wind turbine is regulated at 0 Mvar. Variable wind speed is optimum for drive train performance at 12.5 m/s (at maximum power coefficient point) from the simulation of DFIG by Simulink is described.
Keywords: DFIG, wind speed, PI controller, the output power.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33271708 A Study on Method for Identifying Capacity Factor Declination of Wind Turbines
Authors: Dongheon Shin, Kyungnam Ko, Jongchul Huh
Abstract:
The investigation on wind turbine degradation was carried out using the nacelle wind data. The three Vestas V80-2MW wind turbines of Sungsan wind farm in Jeju Island, South Korea were selected for this work. The SCADA data of the wind farm for five years were analyzed to draw power curve of the turbines. It is assumed that the wind distribution is the Rayleigh distribution to calculate the normalized capacity factor based on the drawn power curve of the three wind turbines for each year. The result showed that the reduction of power output from the three wind turbines occurred every year and the normalized capacity factor decreased to 0.12%/year on average.
Keywords: Wind energy, Power curve, Capacity factor, Annual energy production.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29521707 Preliminary Evaluation of Feasibility for Wind Energy Production on Offshore Extraction Platforms
Authors: M. Raciti Castelli, S. De Betta, E. Benini
Abstract:
A preliminary evaluation of the feasibility of installing small wind turbines on offshore oil and gas extraction platforms is presented. Some aerodynamic considerations are developed in order to determine the best rotor architecture to exploit the wind potential on such installations, assuming that wind conditions over the platforms are similar to those registered on the roofs of urban buildings. Economical considerations about both advantages and disadvantages of the exploitation of wind energy on offshore extraction platforms with respect to conventional offshore wind plants, is also presented. Finally, wind charts of European offshore winds are presented together with a map of the major offshore installations.
Keywords: Extraction platform, offshore wind energy, verticalaxis wind turbine (VAWT).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18141706 Reliability-based Selection of Wind Turbines for Large-Scale Wind Farms
Authors: M. Fotuhi-Firuzabad, A. Salehi Dobakhshari
Abstract:
This paper presents a reliability-based approach to select appropriate wind turbine types for a wind farm considering site-specific wind speed patterns. An actual wind farm in the northern region of Iran with the wind speed registration of one year is studied in this paper. An analytic approach based on total probability theorem is utilized in this paper to model the probabilistic behavior of both turbines- availability and wind speed. Well-known probabilistic reliability indices such as loss of load expectation (LOLE), expected energy not supplied (EENS) and incremental peak load carrying capability (IPLCC) for wind power integration in the Roy Billinton Test System (RBTS) are examined. The most appropriate turbine type achieving the highest reliability level is chosen for the studied wind farm.
Keywords: Wind Turbine Generator, Wind Farm, Power System Reliability, Wind Turbine Type Selection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17761705 Optimal Type and Installation Time of Wind Farm in a Power System, Considering Service Providers
Authors: M. H. Abedi, A. Jalilvand
Abstract:
The economic development benefits of wind energy may be the most tangible basis for the local and state officials’ interests. In addition to the direct salaries associated with building and operating wind projects, the wind energy industry provides indirect jobs and benefits. The optimal planning of a wind farm is one most important topic in renewable energy technology. Many methods have been implemented to optimize the cost and output benefit of wind farms, but the contribution of this paper is mentioning different types of service providers and also time of installation of wind turbines during planning horizon years. Genetic algorithm (GA) is used to optimize the problem. It is observed that an appropriate layout of wind farm can cause to minimize the different types of cost.Keywords: Renewable energy, wind farm, optimization, planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11381704 Wind Energy Resources Assessment and Micrositting on Different Areas of Libya: The Case Study in Darnah
Authors: F. Ahwide, Y. Bouker, K. Hatem
Abstract:
This paper presents long term wind data analysis in terms of annual and diurnal variations at different areas of Libya. The data of the wind speed and direction are taken each ten minutes for a period, at least two years, are used in the analysis. ‘WindPRO’ software and Excel workbook were used for the wind statistics and energy calculations. As for Darnah, average speeds are 10m, 20m and 40m and 6.57 m/s, 7.18 m/s, and 8.09 m/s, respectively. Highest wind speeds are observed at SSW, followed by S, WNW and NW sectors. Lowest wind speeds are observed between N and E sectors. Most frequent wind directions are NW and NNW. Hence, wind turbines can be installed against these directions. The most powerful sector is NW (31.3% of total expected wind energy), followed by 17.9% SSW, 11.5% NNW and 8.2% WNW
In Excel workbook, an estimation of annual energy yield at position of Derna, Al-Maqrun, Tarhuna and Al-Asaaba meteorological mast has been done, considering a generic wind turbine of 1.65 MW. (mtORRES, TWT 82-1.65MW) in position of meteorological mast. Three other turbines have been tested and a reduction of 18% over the net AEP. At 80m, the estimation of energy yield for Derna, Al- Maqrun, Tarhuna and Asaaba is 6.78 GWh or 3390 equivalent hours, 5.80 GWh or 2900 equivalent hours, 4.91 GWh or 2454 equivalent hours and 5.08 GWh or 2541 equivalent hours respectively. It seems a fair value in the context of a possible development of a wind energy project in the areas, considering a value of 2400 equivalent hours as an approximate limit to consider a wind warm economically profitable. Furthermore, an estimation of annual energy yield at positions of Misalatha, Azizyah and Goterria meteorological mast has been done, considering a generic wind turbine of 2 MW. We found that, at 80 m the estimation of energy yield is 3.12 GWh or 1557 equivalent hours, 4.47 GWh or 2235 equivalent hours and 4.07GWh or 2033 respectively.
It seems a very poor value in the context of possible development of a wind energy project in the areas, considering a value of 2400 equivalent hours as an approximate limit to consider a wind warm economically profitable. Anyway, more data and a detailed wind farm study would be necessary to draw conclusions.
Keywords: Wind turbines, wind data, energy yield, micrositting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26371703 Estimation of Wind Characteristics and Energy Yield at Different Towns in Libya
Authors: Farag Ahwide, Souhel Bousheha
Abstract:
A technical assessment has been made of electricity generation, considering wind turbines ranging between Vestas (V80-2.0 MW and V112-3.0 MW) and the air density is equal to 1.225 Kg/m3, at different towns in Libya. Wind speed might have been measured each 3 hours during 10 m stature at a time for 10 quite sometime between 2000 Furthermore 2009, these towns which are spotted on the bank from claiming Mediterranean ocean also how in the desert, which need aid Derna 1, Derna 2, Shahat, Benghazi, Ajdabya, Sirte, Misurata, Tripoli-Airport, Al-Zawya, Al-Kofra, Sabha, Nalut. The work presented long term "wind data analysis in terms of annual, seasonal, monthly and diurnal variations at these sites. Wind power density with different heights has been studied. Excel sheet program was used to calculate the values of wind power density and the values of wind speed frequency for the stations; their seasonally values have been estimated. Limit variable with rated wind pace to 10 different wind turbines need to be been estimated, which is used to focus those required yearly vitality yield of a wind vitality change framework (WECS), acknowledging wind turbines extending between 600 kW and 3000 kW).
Keywords: Energy yield, wind turbines, wind speed, wind power density.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11501702 Power Reference Control of Wind Farms Based On the Operational Limit
Authors: Dae-Hee Son, Seung-Hwa Kang, Sang-Hee Kang, Soon-Ryul Nam
Abstract:
Wind farms usually produce power irregularly, due to unpredictable change of wind speed. Accordingly, we should determine the penetration limit of wind power to consider stability of power system and build a facility to control the wind power. The operational limit of wind power is determined as the minimum between the technical limit and the dynamic limit of wind power. The technical limit is calculated by the number of generators and the dynamic limit is calculated by the constraint of frequency variation when a wind farm is disconnected suddenly. According to the determined operational limit of wind power, pitch angles of wind generators are controlled. PSS/E simulation results show that the pitch angles were correctly controlled when wind speeds are changed in addition to loads.
Keywords: Pitch Angle, Dynamic limit, Operational limit, Technical limit.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17131701 Development of Wind Turbine Simulator for Generator Torque Control
Authors: Jae-Kyung Lee, Joon-Young Park, Ki-Yong Oh, Jun-Shin Park
Abstract:
Wind turbine should be controlled to capture maximum wind energy and to prevent the turbine from being stalled. To achieve those two goals, wind turbine controller controls torque on generator and limits input torque from wind by pitching blade. Usually, torque on generator is controlled using inverter torque set point. However, verifying a control algorithm in actual wind turbine needs a lot of efforts to test and the actual wind turbine could be broken while testing a control algorithm. So, several software have developed and commercialized by Garrad Hassan, GH Bladed, and NREL, FAST. Even though, those programs can simulate control system modeling with subroutines or DLLs. However, those simulation programs are not able to emulate detailed generator or PMSG. In this paper, a small size wind turbine simulator is developed with induction motor and small size drive train. The developed system can simulate wind turbine control algorithm in the region before rated power.Keywords: Wind turbine, simulator, wind turbine control, wind turbine torque control
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31291700 Estimated Production Potential Types of Wind Turbines Connected to the Network Using Random Numbers Simulation
Authors: Saeid Nahi, Seyed Mohammad Hossein Nabavi
Abstract:
Nowadays, power systems, energy generation by wind has been very important. Noting that the production of electrical energy by wind turbines on site to several factors (such as wind speed and profile site for the turbines, especially off the wind input speed, wind rated speed and wind output speed disconnect) is dependent. On the other hand, several different types of turbines in the market there. Therefore, selecting a turbine that its capacity could also answer the need for electric consumers the efficiency is high something is important and necessary. In this context, calculating the amount of wind power to help optimize overall network, system operation, in determining the parameters of wind power is very important. In this article, to help calculate the amount of wind power plant, connected to the national network in the region Manjil wind, selecting the best type of turbine and power delivery profile appropriate to the network using Monte Carlo method has been. In this paper, wind speed data from the wind site in Manjil, as minute and during the year has been. Necessary simulations based on Random Numbers Simulation method and repeat, using the software MATLAB and Excel has been done.Keywords: wind turbine, efficiency, wind turbine work points, Random Numbers, reliability
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14101699 Wind Power Forecast Error Simulation Model
Authors: Josip Vasilj, Petar Sarajcev, Damir Jakus
Abstract:
One of the major difficulties introduced with wind power penetration is the inherent uncertainty in production originating from uncertain wind conditions. This uncertainty impacts many different aspects of power system operation, especially the balancing power requirements. For this reason, in power system development planing, it is necessary to evaluate the potential uncertainty in future wind power generation. For this purpose, simulation models are required, reproducing the performance of wind power forecasts. This paper presents a wind power forecast error simulation models which are based on the stochastic process simulation. Proposed models capture the most important statistical parameters recognized in wind power forecast error time series. Furthermore, two distinct models are presented based on data availability. First model uses wind speed measurements on potential or existing wind power plant locations, while the seconds model uses statistical distribution of wind speeds.
Keywords: Wind power, Uncertainty, Stochastic process, Monte Carlo simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39271698 Mathematical Determination of Tall Square Building Height under Peak Wind Loads
Authors: Debojyoti Mitra
Abstract:
The present study concentrates on solving the along wind oscillation problem of a tall square building from first principles and across wind oscillation problem of the same from empirical relations obtained by experiments. The criterion for human comfort at the worst condition at the top floor of the building is being considered and a limiting value of height of a building for a given cross section is predicted. Numerical integrations are carried out as and when required. The results show severeness of across wind oscillations in comparison to along wind oscillation. The comfort criterion is combined with across wind oscillation results to determine the maximum allowable height of a building for a given square cross-section.
Keywords: Tall Building, Along-wind Response, Across-wind Response, Human Comfort.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14781697 A Retrospective of Wind Turbine Architectural Integration in the Built Environment
Authors: Stefano Degrassi, Marco Raciti Castelli, Ernesto Benini
Abstract:
Since the European renewable energy directives set the target for 22.1% of electricity generation to be supplied by 2010 [1], there has been increased interest in using green technologies also within the urban enviroment. The most commonly considered installations are solar thermal and solar photovoltaics. Nevertheless, as observed by Bahaj et al. [2], small scale turbines can reduce the built enviroment related CO2 emissions. Thus, in the last few years, an increasing number of manufacturers have developed small wind turbines specifically designed for the built enviroment. The present work focuses on the integration into architectural systems of such installations and presents a survey of successful case studies.Keywords: Wind turbines, architectural integration, wind resources, urban areas, built enviroment, renewable technologies.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27841696 Vibration Signals of Small Vertical Axis Wind Turbines
Authors: Aqoul H. H. Alanezy, Ali M. Abdelsalam, Nouby M. Ghazaly
Abstract:
In recent years, progress has been made in increasing the renewable energy share in the power sector particularly in the wind. The experimental study conducted in this paper aims to investigate the effects of number of blades and inflow wind speed on vibration signals of a vertical axis Savonius type wind turbine. The operation of the model of Savonius type wind turbine is conducted to compare two, three and four blades wind turbines to show vibration amplitudes related with wind speed. It is found that the increase of the number of blades leads to decrease of the vibration magnitude. Furthermore, inflow wind speed has reduced effect on the vibration level for higher number of blades.
Keywords: Savonius wind turbine, number of blades, vibration amplitude, renewable energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9481695 Evaluation of Wind Potential for the Lagoon of Venice (Italy) and Estimation of the Annual Energy Output for two Candidate Horizontal- Axis Low-Wind Turbines
Authors: M. Raciti Castelli, L. M. Moglia, E. Benini
Abstract:
This paper presents an evaluation of the wind potential in the area of the Lagoon of Venice (Italy). A full anemometric campaign of 2 year measurements, performed by the "Osservatorio Bioclimatologico dell'Ospedale al Mare di Venezia" has been analyzed to obtain the Weibull wind speed distribution and the main wind directions. The annual energy outputs of two candidate horizontal-axis wind turbines (“Aventa AV-7 LoWind" and “Gaia Wind 133-11kW") have been estimated on the basis of the computed Weibull wind distribution, registering a better performance of the former turbine, due to a higher ratio between rotor swept area and rated power of the electric generator, determining a lower cut-in wind speed.
Keywords: Wind potential, Annual Energy Output (AEO), Weibull distribution, Horizontal-Axis Wind Turbine (HAWT).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22231694 CFD Analysis on Aerodynamic Design Optimization of Wind Turbine Rotor Blades
Authors: R.S. Amano, R.J. Malloy
Abstract:
Wind energy has been shown to be one of the most viable sources of renewable energy. With current technology, the low cost of wind energy is competitive with more conventional sources of energy such as coal. Most blades available for commercial grade wind turbines incorporate a straight span-wise profile and airfoil shaped cross sections. These blades are found to be very efficient at lower wind speeds in comparison to the potential energy that can be extracted. However as the oncoming wind speed increases the efficiency of the blades decreases as they approach a stall point. This paper explores the possibility of increasing the efficiency of the blades at higher wind speeds while maintaining efficiency at the lower wind speeds. The design intends to maintain efficiency at lower wind speeds by selecting the appropriate orientation and size of the airfoil cross sections based on a low oncoming wind speed and given constant rotation rate. The blades will be made more efficient at higher wind speeds by implementing a swept blade profile. Performance was investigated using the computational fluid dynamics (CFD).Keywords: CFD, wind turbine blade, renewable energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38061693 Experimental Tests of a Vertical-Axis Wind Turbine with Twisted Blades
Authors: Gabriele Bedon, Marco Raciti Castelli, Ernesto Benini
Abstract:
An experimental campaign of measurements for a Darrieus vertical-axis wind turbine (VAWT) is presented for open field conditions. The turbine is characterized by a twisted bladed design, each blade being placed at a fixed distance from the rotational shaft. The experimental setup to perform the acquisitions is described. The results are lower than expected, due to the high influence of the wind shear.Keywords: Vertical-axis wind turbine, Darrieus wind turbine, twisted blades, experimental measurements, wind shear.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26131692 Simulation Study of DFIG Wind Turbine under Grid Fault
Authors: N. Zerzouri, H. Labar, S. Kechida
Abstract:
During recent years wind turbine technology has undergone rapid developments. Growth in size and the optimization of wind turbines has enabled wind energy to become increasingly competitive with conventional energy sources. As a result today-s wind turbines participate actively in the power production of several countries around the world. These developments raise a number of challenges to be dealt with now and in the future. The penetration of wind energy in the grid raises questions about the compatibility of the wind turbine power production with the grid. In particular, the contribution to grid stability, power quality and behavior during fault situations plays therefore as important a role as the reliability. In the present work, we addressed two fault situations that have shown their influence on the generator and the behavior of the wind over the defects which are briefly discussed based on simulation results.Keywords: Doubly fed induction generator (DFIG), Wind energy, grid fault
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24201691 CFD Analysis of Natural Ventilation Behaviour in Four Sided Wind Catcher
Authors: M. Hossein Ghadiri, Mohd Farid Mohamed, N. Lukman N. Ibrahim
Abstract:
Wind catchers are traditional natural ventilation systems attached to buildings in order to ventilate the indoor air. The most common type of wind catcher is four sided one which is capable to catch wind in all directions. CFD simulation is the perfect way to evaluate the wind catcher performance. The accuracy of CFD results is the issue of concern, so sensitivity analyses is crucial to find out the effect of different settings of CFD on results. This paper presents a series of 3D steady RANS simulations for a generic isolated four-sided wind catcher attached to a room subjected to wind direction ranging from 0º to 180º with an interval of 45º. The CFD simulations are validated with detailed wind tunnel experiments. The influence of an extensive range of computational parameters is explored in this paper, including the resolution of the computational grid, the size of the computational domain and the turbulence model. This study found that CFD simulation is a reliable method for wind catcher study, but it is less accurate in prediction of models with non perpendicular wind directions.Keywords: Wind catcher, CFD, natural ventilation, sensitivity study.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26941690 LQR Control for a Multi-MW Wind Turbine
Authors: Trung-Kien Pham, Yoonsu Nam, Hyungun Kim, Jaehoon Son
Abstract:
This paper addresses linear quadratic regulation (LQR) for variable speed variable pitch wind turbines. Because of the inherent nonlinearity of wind turbine, a set of operating conditions is identified and then a LQR controller is designed for each operating point. The feedback controller gains are then interpolated linearly to get control law for the entire operating region. Besides, the aerodynamic torque and effective wind speed are estimated online to get the gain-scheduling variable for implementing the controller. The potential of the method is verified through simulation with the help of MATLAB/Simulink and GH Bladed. The performance and mechanical load when using LQR are also compared with that when using PI controller.Keywords: variable speed variable pitch wind turbine, multi-MW size wind turbine, wind energy conversion system, LQR control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3536