Search results for: vacuum pressure
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1451

Search results for: vacuum pressure

1421 Discontinuous Spacetime with Vacuum Holes as Explanation for Gravitation, Quantum Mechanics and Teleportation

Authors: Constantin Z. Leshan

Abstract:

Hole Vacuum theory is based on discontinuous spacetime that contains vacuum holes. Vacuum holes can explain gravitation, some laws of quantum mechanics and allow teleportation of matter. All massive bodies emit a flux of holes which curve the spacetime; if we increase the concentration of holes, it leads to length contraction and time dilation because the holes do not have the properties of extension and duration. In the limited case when space consists of holes only, the distance between every two points is equal to zero and time stops - outside of the Universe, the extension and duration properties do not exist. For this reason, the vacuum hole is the only particle in physics capable of describing gravitation using its own properties only. All microscopic particles must 'jump' continually and 'vibrate' due to the appearance of holes (impassable microscopic 'walls' in space), and it is the cause of the quantum behavior. Vacuum holes can explain the entanglement, non-locality, wave properties of matter, tunneling, uncertainty principle and so on. Particles do not have trajectories because spacetime is discontinuous and has impassable microscopic 'walls' due to the simple mechanical motion is impossible at small scale distances; it is impossible to 'trace' a straight line in the discontinuous spacetime because it contains the impassable holes. Spacetime 'boils' continually due to the appearance of the vacuum holes. For teleportation to be possible, we must send a body outside of the Universe by enveloping it with a closed surface consisting of vacuum holes. Since a material body cannot exist outside of the Universe, it reappears instantaneously in a random point of the Universe. Since a body disappears in one volume and reappears in another random volume without traversing the physical space between them, such a transportation method can be called teleportation (or Hole Teleportation). It is shown that Hole Teleportation does not violate causality and special relativity due to its random nature and other properties. Although Hole Teleportation has a random nature, it can be used for colonization of extrasolar planets by the help of the method called 'random jumps': after a large number of random teleportation jumps, there is a probability that the spaceship may appear near a habitable planet. We can create vacuum holes experimentally using the method proposed by Descartes: we must remove a body from the vessel without permitting another body to occupy this volume.

Keywords: Border of the universe, causality violation, perfect isolation, quantum jumps.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1184
1420 Characteristics Analysis of Thermal Resistance of Cryogenic Pipeline in Vacuum Environment

Authors: Wang Zijuan, Ding Wenjing, Liu Ran

Abstract:

If an unsteady heat transfer or heat impulse happens in part of the cryogenic pipeline system of large space environment simulation equipment while running in vacuum environment, it will lead to abnormal flow of the cryogenic fluid in the pipeline. When the situation gets worse, the cryogenic fluid in the pipeline will have phase change and a gas block which results in the malfunction of the cryogenic pipeline system. Referring to the structural parameter of a typical cryogenic pipeline system and the basic equation, an analytical model and a calculation model for cryogenic pipeline system can be built. The various factors which influence the thermal resistance of a cryogenic pipeline system can be analyzed and calculated by using the qualitative analysis relation deduced for thermal resistance of pipeline. The research conclusion could provide theoretical support for the design and operation of a cryogenic pipeline system

Keywords: pipeline, vacuum, vapor quality

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1859
1419 Separation of Dissolved Gases from Water for a Portable Underwater Breathing

Authors: Pil Woo Heo, In Sub Park

Abstract:

Water contains oxygen which may make a human breathe under water like a fish. Centrifugal separator can separate dissolved gases from water. Carrier solution can increase the separation of dissolved oxygen from water. But, to develop an breathing device for a human under water, the enhancement of separation of dissolved gases including oxygen and portable devices which have dc battery based device and proper size are needed. In this study, we set up experimental device for analyzing separation characteristics of dissolved gases including oxygen from water using a battery based portable vacuum pump. We characterized vacuum state, flow rate of separation of dissolved gases and oxygen concentration which were influenced by the manufactured vacuum pump.

Keywords: Portable, breathing, water, separation, battery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2058
1418 The Suitability of Potato Cultivars in Production of Chips and Sticks by Using Microwave-Vacuum Drier

Authors: Solvita Kampuse, Kristaps Siljanis, Tatjana Rakcejeva, Irisa Murniece

Abstract:

The aim of present experiment was to evaluate the influence of cultivar to quality parameters of dried potato chips and sticks produced in microwave-vacuum drier. The potatoes before drying were blanched in oil and water at 180ºC and at 85ºC respectively. The moisture content, crispiness, the colour (CIE L*a*b*), the content of ascorbic acid, total carotenoids and total fat content of dried potato chips and sticks was determined The highest ascorbic acid content, high content of carotenoids, low total fat content, low acrylamide content and good crispiness (low breaking force) especially for sticks was determined in the samples of Gundega cultivar.

Keywords: Potato, chips, sticks, vacuum-microwave, drying, cultivar, blanching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2295
1417 Improving the Design of Blood Pressure and Blood Saturation Monitors

Authors: L. Parisi

Abstract:

A blood pressure monitor or sphygmomanometer can be either manual or automatic, employing respectively either the auscultatory method or the oscillometric method. The manual version of the sphygmomanometer involves an inflatable cuff with a stethoscope adopted to detect the sounds generated by the arterial walls to measure blood pressure in an artery. An automatic sphygmomanometer can be effectively used to monitor blood pressure through a pressure sensor, which detects vibrations provoked by oscillations of the arterial walls. The pressure sensor implemented in this device improves the accuracy of the measurements taken.

Keywords: Blood pressure, blood saturation, sensors, actuators, design improvement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3689
1416 Design of SiC Capacitive Pressure Sensor with LC-Based Oscillator Readout Circuit

Authors: Azza M. Anis, M. M. Abutaleb, Hani F. Ragai, M. I. Eladawy

Abstract:

This paper presents the characterization and design of a capacitive pressure sensor with LC-based 0.35 µm CMOS readout circuit. SPICE is employed to evaluate the characteristics of the readout circuit and COMSOL multiphysics structural analysis is used to simulate the behavior of the pressure sensor. The readout circuit converts the capacitance variation of the pressure sensor into the frequency output. Simulation results show that the proposed pressure sensor has output frequency from 2.50 to 2.28 GHz in a pressure range from 0.1 to 2 MPa almost linearly. The sensitivity of the frequency shift with respect to the applied pressure load is 0.11 GHz/MPa.

Keywords: CMOS LC-based oscillator, micro pressure sensor, silicon carbide

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1605
1415 Pressure Swing Adsorption with Cassava Adsorbent for Dehydration of Ethanol Vapor

Authors: Chontira Boonfung, Panarat Rattanaphanee

Abstract:

Ethanol has become more attractive in fuel industry either as fuel itself or an additive that helps enhancing the octane number and combustibility of gasoline. This research studied a pressure swing adsorption using cassava-based adsorbent prepared from mixture of cassava starch and cassava pulp for dehydration of ethanol vapor. The apparatus used in the experiments consisted of double adsorption columns, an evaporator, and a vacuum pump. The feed solution contained 90-92 %wt of ethanol. Three process variables: adsorption temperatures (110, 120 and 130°C), adsorption pressures (1 and 2 bar gauge) and feed vapor flow rate (25, 50 and 75 % valve opening of the evaporator) were investigated. According to the experimental results, the optimal operating condition for this system was found to be at 2 bar gauge for adsorption pressure, 120°C for adsorption temperature and 25% valve opening of the evaporator. Production of 1.48 grams of ethanol with concentration higher than 99.5 wt% per gram of adsorbent was obtained. PSA with cassavabased adsorbent reported in this study could be an alternative method for production of nearly anhydrous ethanol. Dehydration of ethanol vapor achieved in this study is due to an interaction between free hydroxyl group on the glucose units of the starch and the water molecules.

Keywords: Adsorption, PSA, Ethanol, Dehydration, Cassava.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2763
1414 Estimation of Systolic and Diastolic Pressure using the Pulse Transit Time

Authors: Soo-young Ye, Gi-Ryon Kim, Dong-Keun Jung, Seong-wan Baik, Gye-rok Jeon

Abstract:

In this paper, algorithm estimating the blood pressure was proposed using the pulse transit time (PTT) as a more convenient method of measuring the blood pressure. After measuring ECG and pressure pulse, and photoplethysmography, the PTT was calculated from the acquired signals. Thereafter, the system to indirectly measure the systolic pressure and the diastolic pressure was composed using the statistic method. In comparison between the blood pressure indirectly measured by proposed algorithm estimating the blood pressure and real blood pressure measured by conventional sphygmomanometer, the systolic pressure indicates the mean error of ±3.24mmHg and the standard deviation of 2.53mmHg, while the diastolic pressure indicates the satisfactory result, that is, the mean error of ±1.80mmHg and the standard deviation of 1.39mmHg. These results are satisfied with the regulation of ANSI/AAMI for certification of sphygmomanometer that real measurement error value should be within the mean error of ±5mmHg and the standard deviation of 8mmHg. These results are suggest the possibility of applying to portable and long time blood pressure monitoring system hereafter.

Keywords: Blood pressure, Systolic, Diastolic, Pulse transit time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6528
1413 Metal Berthelot Tubes with Windows for Observing Cavitation under Static Negative Pressure

Authors: K. Hiro, Y. Imai, T. Sasayama

Abstract:

Cavitation under static negative pressure is not revealed well. The Berthelot method to generate such negative pressure can be a means to study cavitation inception. In this study, metal Berthelot tubes built in observation windows are newly developed and are checked whether high static negative pressure is generated or not. Negative pressure in the tube with a pair of a corundum plate and an aluminum gasket increased with temperature cycles. The trend was similar to that as reported before.

Keywords: Berthelot method, negative pressure, cavitation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1009
1412 Evaluation of Carbon Dioxide Pressure through Radial Velocity Difference in Arterial Blood Modeled by Drift Flux Model

Authors: Aicha Rima Cheniti, Hatem Besbes, Joseph Haggege, Christophe Sintes

Abstract:

In this paper, we are interested to determine the carbon dioxide pressure in the arterial blood through radial velocity difference. The blood was modeled as a two phase mixture (an aqueous carbon dioxide solution with carbon dioxide gas) by Drift flux model and the Young-Laplace equation. The distributions of mixture velocities determined from the considered model permitted the calculation of the radial velocity distributions with different values of mean mixture pressure and the calculation of the mean carbon dioxide pressure knowing the mean mixture pressure. The radial velocity distributions are used to deduce a calculation method of the mean mixture pressure through the radial velocity difference between two positions which is measured by ultrasound. The mean carbon dioxide pressure is then deduced from the mean mixture pressure.

Keywords: Mean carbon dioxide pressure, mean mixture pressure, mixture velocity, radial velocity difference.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1126
1411 Design of Saddle Support for Horizontal Pressure Vessel

Authors: Vinod Kumar, Navin Kumar, Surjit Angra, Prince Sharma

Abstract:

This paper presents the design analysis of saddle support of a horizontal pressure vessel. Since saddle have the vital role to support the pressure vessel and to maintain its stability, it should be designed in such a way that it can afford the vessel load and internal pressure of the vessel due to liquid contained in the vessel. A model of horizontal pressure vessel and saddle support is created in ANSYS. Stresses are calculated using mathematical approach and ANSYS software. The analysis reveals the zone of high localized stress at the junction part of the pressure vessel and saddle support due to operating conditions. The results obtained by both the methods are compared with allowable stress value for safe designing.

Keywords: ANSYS, Pressure Vessel, Saddle, Support.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26026
1410 Parametric Analysis in the Electronic Sensor Frequency Adjustment Process

Authors: Rungchat Chompu-Inwai, Akararit Charoenkasemsuk

Abstract:

The use of electronic sensors in the electronics industry has become increasingly popular over the past few years, and it has become a high competition product. The frequency adjustment process is regarded as one of the most important process in the electronic sensor manufacturing process. Due to inaccuracies in the frequency adjustment process, up to 80% waste can be caused due to rework processes; therefore, this study aims to provide a preliminary understanding of the role of parameters used in the frequency adjustment process, and also make suggestions in order to further improve performance. Four parameters are considered in this study: air pressure, dispensing time, vacuum force, and the distance between the needle tip and the product. A full factorial design for experiment 2k was considered to determine those parameters that significantly affect the accuracy of the frequency adjustment process, where a deviation in the frequency after adjustment and the target frequency is expected to be 0 kHz. The experiment was conducted on two levels, using two replications and with five center-points added. In total, 37 experiments were carried out. The results reveal that air pressure and dispensing time significantly affect the frequency adjustment process. The mathematical relationship between these two parameters was formulated, and the optimal parameters for air pressure and dispensing time were found to be 0.45 MPa and 458 ms, respectively. The optimal parameters were examined by carrying out a confirmation experiment in which an average deviation of 0.082 kHz was achieved.

Keywords: Design of Experiment, Electronic Sensor, Frequency Adjustment, Parametric Analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1355
1409 The Effect of Angle of Attack on Pressure Drag from a Cam Shaped Tube

Authors: Arash Mir Abdolah Lavasani

Abstract:

The pressure drag from a cam shaped tube in cross flows have been investigated experimentally using pressure distribution measurement. The range of angle of attack and Reynolds number based on an equivalent circular tube are within 0≤α≤360° and 2×104< Reeq < 3.4 ×104, respectively. It is found that the pressure drag coefficient is at its highest at α=90° and 270° over the whole range of Reynolds number. Results show that the pressure drag coefficient of the cam shaped tube is lower than that of circular tube with the same surface area for more of the angles of attack. Furthermore, effects of the diameter ratio and finite length of the cam shaped tube upon the pressure drag coefficient are discussed.

Keywords: Pressure Drag, Cam Shaped, Experimental.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2340
1408 Effect of L/D Ratio on the Performance of a Four-Lobe Pressure Dam Bearing

Authors: G. Bhushan, S. S. Rattan, N. P. Mehta

Abstract:

A four-lobe pressure dam bearing which is produced by cutting two pressure dams on the upper two lobes and two relief-tracks on the lower two lobes of an ordinary four-lobe bearing is found to be more stable than a conventional four-lobe bearing. In this paper a four-lobe pressure dam bearing supporting rigid and flexible rotors is analytically investigated to determine its performance when L/D ratio is varied in the range 0.75 to 1.5. The static and dynamic characteristics are studied at various L/D ratios. The results show that the stability of a four-lobe pressure dam bearing increases with decrease in L/D ratios both for rigid as well as flexible rotors.

Keywords: Four-lobe pressure dam bearing, finite-elementmethod, L/D ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2581
1407 Effect of Blanching on the Quality of Microwave Vacuum Dried Dill (Anethum graveolens L.)

Authors: Evita Straumite, Zanda Kruma, Ruta Galoburda, Kaiva Saulite

Abstract:

Dill (Anethum graveolens L.) is a popular herb used in many regions, including Baltic countries. Dill is widely used for flavoring foods and beverages due to its pleasant spicy aroma. The aim of this work was to determine the best blanching method for processing of dill prior to microwave vacuum drying based on sensory properties, color and volatile compounds in dried product. Two blanching mediums were used – water and steam, and for part of samples microwave pretreatment was additionally used. Evaluation of dried dill volatile aroma compounds, color changes and sensory attributes was performed. Results showed that blanching significantly influences the quality of dried dill. After evaluation of volatile aroma compounds, color and sensory properties of microwave vacuum dried dill, as the best method for dill pretreatment was established blanching at 90 °C for 30 s.

Keywords: dried dill, sensory panel, sensory properties, aroma compounds, color

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2136
1406 Modeling the Vapor Pressure of Biodiesel Fuels

Authors: O. Castellanos Díaz, F. Schoeggl, H. W. Yarranton, M. A. Satyro, T. M. Lovestead, T. J. Bruno

Abstract:

The composition, vapour pressure, and heat capacity of nine biodiesel fuels from different sources were measured. The vapour pressure of the biodiesel fuels is modeled assuming an ideal liquid phase of the fatty acid methyl esters constituting the fuel. New methodologies to calculate the vapour pressure and ideal gas and liquid heat capacities of the biodiesel fuel constituents are proposed. Two alternative optimization scenarios are evaluated: 1) vapour pressure only; 2) vapour pressure constrained with liquid heat capacity. Without physical constraints, significant errors in liquid heat capacity predictions were found whereas the constrained correlation accurately fit both vapour pressure and liquid heat capacity.

Keywords: Biodiesel fuels, Fatty acid methyl ester, Heat capacity, Modeling, Vapour pressure

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5960
1405 Physicochemical Stability of Pulse Spreads during Storage after Sous Vide Treatment and High Pressure Processing

Authors: Asnate Kirse, Daina Karklina, Sandra Muizniece-Brasava, Ruta Galoburda

Abstract:

Pulses are high in plant protein and dietary fiber, and contain slowly digestible starches. Innovative products from pulses could increase their consumption and benefit consumer health. This study was conducted to evaluate physicochemical stability of processed cowpea (Vigna unguiculata (L.) Walp. cv. Fradel) and maple pea (Pisum sativum var. arvense L. cv. Bruno) spreads at 5 °C temperature during 62-day storage. Physicochemical stability of pulse spreads was compared after sous vide treatment (80 °C/15 min) and high pressure processing (700 MPa/10 min/20 °C). Pulse spreads were made by homogenizing cooked pulses in a food processor together with salt, citric acid, oil, and bruschetta seasoning. A total of four different pulse spreads were studied: Cowpea spread without and with seasoning, maple pea spread without and with seasoning. Transparent PA/PE and light proof PET/ALU/PA/PP film pouches were used for packaging of pulse spreads under vacuum. The parameters investigated were pH, water activity and mass losses. Pulse spreads were tested on days 0, 15, 29, 42, 50, 57 and 62. The results showed that sous-vide treatment and high pressure processing had an insignificant influence on pH, water activity and mass losses after processing, irrespective of packaging material did not change (p>0.1). pH and water activity of sous-vide treated and high pressure processed pulse spreads in different packaging materials proved to be stable throughout the storage. Mass losses during storage accounted to 0.1% losses. Chosen sous-vide treatment and high pressure processing regimes and packaging materials are suitable to maintain consistent physicochemical quality of the new products during 62-day storage.

Keywords: Cowpea, flexible packaging, maple pea, pH, water activity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1246
1404 Measurement of Reverse Flow Generated at Cold Exit of Vortex Tube

Authors: Mohd Hazwan bin Yusof, Hiroshi Katanoda

Abstract:

In order to clarify the structure of the cold flow discharged from the vortex tube (VT), the pressure of the cold flow was measured, and a simple flow visualization technique using a 0.75mm-diameter needle and an oily paint is made to study the reverse flow at the cold exit. It is clear that a negative pressure and positive pressure region exist at a certain pressure and cold fraction area, and that a reverse flow is observed in the negative pressure region.

Keywords: Flow visualization, Pressure measurement, Reverse flow, Vortex tube.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1878
1403 Fracture Pressure Predict Based on Well Logs of Depleted Reservoir in Southern Iraqi Oilfield

Authors: Raed H. Allawi

Abstract:

Fracture pressure is the main parameter applied in wells design and used to avoid drilling problems like lost circulation. Thus, this study aims to predict the fracture pressure of oil reservoirs in the southern Iraq Oilfield. The data required to implement this study included bulk density, compression wave velocity, gamma-ray, and leak-off test. In addition, this model is based on the pore pressure which is measured based on the Modular Formation Dynamics Tester (MDT). Many measured values of pore pressure were used to validate the accurate model. Using sonic velocity approaches, the mean absolute percentage error (MAPE) was about 4%. The fracture pressure results were consistent with the measurement data, actual drilling report, and events. The model's results will be a guide for successful drilling in future wells in the same oilfield.

Keywords: Pore pressure, fracture pressure, overburden pressure, effective stress, drilling events.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 84
1402 Removal of Volatile Organic Compounds from Contaminated Surfactant Solution using Co-Curren Vacuum Stripping

Authors: Pornchai Suriya-Amrit, Suratsawadee Kungsanant, Boonyarach Kitiyanan

Abstract:

There has been a growing interest in utilizing surfactants in remediation processes to separate the hydrophobic volatile organic compounds (HVOCs) from aqueous solution. One attractive process is cloud point extraction (CPE), which utilizes nonionic surfactants as a separating agent. Since the surfactant cost is a key determination of the economic viability of the process, it is important that the surfactants are recycled and reused. This work aims to study the performance of the co-current vacuum stripping using a packed column for HVOCs removal from contaminated surfactant solution. Six types HVOCs are selected as contaminants. The studied surfactant is the branched secondary alcohol ethoxylates (AEs), Tergitol TMN-6 (C14H30O2). The volatility and the solubility of HVOCs in surfactant system are determined in terms of an apparent Henry’s law constant and a solubilization constant, respectively. Moreover, the HVOCs removal efficiency of vacuum stripping column is assessed in terms of percentage of HVOCs removal and the overall liquid phase volumetric mass transfer coefficient. The apparent Henry’s law constant of benzenz , toluene, and ethyl benzene were 7.00×10-5, 5.38×10-5, 3.35× 10-5 respectively. The solubilization constant of benzene, toluene, and ethyl benzene were 1.71, 2.68, 7.54 respectively. The HVOCs removal for all solute were around 90 percent.

Keywords: Apparent Henry’s law constant, Branched secondary alcohol ethoxylates, Vacuum Stripping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1634
1401 Evaluation of Longitudinal and Hoop Stresses and a Critical Study of Factor of Safety (FoS) in Design of a Glass-Fiber Pressure Vessel

Authors: Zainul Huda, Muhammad Hani Ajani

Abstract:

The design, manufacture, and operation of thin-walled pressure vessels must be based on maximum safe operating pressure and an adequate factor of safety (FoS). This research paper first reports experimental evaluation of longitudinal and hoops stresses based on working pressure as well as maximum pressure; and then includes a critical study of factor of safety (FoS) in the design of a glass fiber pressure vessel. Experimental work involved the use of measuring instruments and the readings from pressure gauges. Design calculations involved the computations of design stress and FoS; the latter was based on breaking strength of 55 MPa for the glass fiber (pressure-vessel material). The experimentally determined FoS value has been critically compared with the general FoS allowed in the design of glass fiber pressure vessels.

Keywords: Thin-walled pressure vessel, hoop stress, longitudinal stress, factor of safety (FoS), fiberglass.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7728
1400 Study the Influence of Chemical Treatment on the Compositional Changes and Defect Structures of ZnS Thin Film

Authors: N. Dahbi, D-E. Arafah

Abstract:

The effect of chemical treatment in CdCl2 on the compositional changes and defect structures of potentially useful ZnS solar cell thin films prepared by vacuum deposition method was studied using the complementary Rutherford backscattering (RBS) and Thermoluminesence (TL) techniques. A series of electron and hole traps are found in the various as deposited samples studied. After treatment, perturbation on the intensity is noted; mobile defect states and charge conversion and/or transfer between defect states are found.

Keywords: chemical treatment, defect, glow curve, RBS, thinfilm, thermoluminescence, ZnS, vacuum deposition

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1552
1399 Pressure Study on Mn Doped KDP System under Hydrostatic Pressure

Authors: W. Paraguassu, S. Guerini, C. M. R. Remédios, P. T. C. Freire

Abstract:

High Pressure Raman scattering measurements of KDP:Mn were performed at room temperatures. The X-ray powder diffraction patterns taken at room temperature by Rietveld refinement showed that doped samples of KDP-Mn have the same tetragonal structure of a pure KDP crystal, but with a contraction of the crystalline cell. The behavior of the Raman spectra, in particular the emergence of a new modes at 330 cm-1, indicates that KDP:Mn undergoes a structural phase transition with onset at around 4 GP. First principle density-functional theory (DFT) calculations indicate that tetrahedral rotation with pressure is predominantly around the c crystalline direction. Theoretical results indicates that pressure induced tetrahedral rotations leads to change tetrahedral neighborhood, activating librations/bending modes observed for high pressure phase of KDP:Mn with stronger Raman activity.

Keywords: Dipotassium molybdate, High pressure, Raman scattering, Phase transition, ab initio

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1490
1398 Design of a MSF Desalination Plant to be Supplied by a New Specific 42 MW Power Plant Located in Iran

Authors: Rouzbeh Shafaghat, Hoda Shafaghat, Fatemeh Ghanbari, Pouya Sirous Rezaei, Rohollah Espanani

Abstract:

Nowadays, desalination of salt water is considered an important industrial process. In many parts of the world, particularly in the gulf countries, the multi-stage flash (MSF) water desalination has an essential contribution in the production of fresh water. In this study, a simple mathematical model is defined to design a MSF desalination system and the feasibility of using the MSF desalination process in proximity of a 42 MW power plant is investigated. This power plant can just provide 10 ton/h superheated steam from low pressure (LP) section of heat recovery steam generator (HRSG) for thermal desalting system. The designed MSF system with gained output ratio (GOR) of 10.3 has 24 flashing stages and can produce 2480 ton/d of fresh water. The expected performance characteristics of the designed MSF desalination plant are determined. In addition, the effect of motive water pressure on the amount of non-condensable gases removed by water jet vacuum pumps is investigated.

Keywords: Design, dual-purpose power plant, mathematical model, MSF desalination.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3935
1397 Sensing Pressure for Authentication System Using Keystroke Dynamics

Authors: Hidetoshi Nonaka, Masahito Kurihara

Abstract:

In this paper, an authentication system using keystroke dynamics is presented. We introduced pressure sensing for the improvement of the accuracy of measurement and durability against intrusion using key-logger, and so on, however additional instrument is needed. As the result, it has been found that the pressure sensing is also effective for estimation of real moment of keystroke.

Keywords: Biometric authentication, Keystroke dynamics, Pressure sensing, Time-frequency analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2172
1396 A CFD Analysis of Flow through a High-Pressure Natural Gas Pipeline with an Undeformed and Deformed Orifice Plate

Authors: R. Kiš, M. Malcho, M. Janovcová

Abstract:

This work aims to present a numerical analysis of the natural gas which flows through a high-pressure pipeline and an orifice plate, through the use of CFD methods. The paper contains CFD calculations for the flow of natural gas in a pipe with different geometry used for the orifice plates. One of them has a standard geometry and a shape without any deformation and the other is deformed by the action of the pressure differential. It shows the behavior of natural gas in a pipeline using the velocity profiles and pressure fields of the gas in both models with their differences. The entire research is based on the elimination of any inaccuracy which should appear in the flow of the natural gas measured in the high-pressure pipelines of the gas industry and which is currently not given in the relevant standard.

Keywords: Orifice plate, high-pressure pipeline, natural gas, CFD analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3835
1395 On the Numerical and Experimental Analysis of Internal Pressure in Air Bearings

Authors: Abdurrahim Dal, Tuncay Karaçay

Abstract:

Dynamics of a rotor supported by air bearings is strongly depends on the pressure distribution between the rotor and the bearing. In this study, internal pressure in air bearings is numerical and experimental analyzed for different radial clearances. Firstly the pressure distribution between rotor and bearing is modeled using Reynold's equation and this model is solved numerically. The rotor-bearing system is also modeled in four degree of freedom and it is simulated for different radial clearances. Then, in order to validate numerical results, a test rig is designed and the rotor bearing system is run under the same operational conditions. Pressure signals of left and right bearings are recorded. Internal pressure variations are compared for numerical and experimental results for different radial clearances.

Keywords: Air bearing, internal pressure, Reynold’s equation, rotor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2095
1394 The Effect of Chemical Treatment on TL Glow Curves of CdS/ZnS Thin Films Deposited by Vacuum Deposition Method

Authors: N. Dahbi, D-E. Arafah

Abstract:

The effect of chemical treatment in CdCl2 and thermal annealing in 400°C, on the defect structures of potentially useful ZnS\CdS solar cell thin films deposited onto quartz substrate and prepared by vacuum deposition method was studied using the Thermoluminesence (TL) techniques. A series of electron and hole traps are found in the various deposited samples studied. After annealing, however, it was observed that the intensity and activation energy of TL signal increases with loss of the low temperature electron traps.

Keywords: CdS, chemical treatment, heat treatment, Thermoluminescence, trapping parameters, thin film, vacuumdeposition, ZnS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1473
1393 About Methods of Additional Mining Pressure Figuring while Reconstruction of Tunnels

Authors: M. Moistsrapishvili, I. Ugrekhelidze, T. Baramashvili, D. Malaghuradze

Abstract:

At the end of the 20th century it was actual the development of transport corridors and the improvement of their technical parameters. With this purpose, many countries and Georgia among them manufacture to construct new highways, railways and also reconstruction-modernization of the existing transport infrastructure. It is necessary to explore the artificial structures (bridges and tunnels) on the existing tracks as they are very old. Conference report includes the peculiarities of reconstruction of tunnels, because we think that this theme is important for the modernization of the existing road infrastructure. We must remark that the methods of determining mining pressure of tunnel reconstructions are worked out according to the jobs of new tunnels but it is necessary to foresee additional mining pressure which will be formed during their reconstruction. In this report there are given the methods of figuring the additional mining pressure while reconstruction of tunnels, there was worked out the computer program, it is determined that during reconstruction of tunnels the additional mining pressure is 1/3rd of main mining pressure.

Keywords: Mining pressure, Reconstruction of tunnels.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1622
1392 Lateral Pressure in Squat Silos under Eccentric Discharge

Authors: Y. Z. Zhu, S. P. Meng, W. W. Sun

Abstract:

The influence of eccentric discharge of stored solids in squat silos has been highly valued by many researchers. However, calculation method of lateral pressure under eccentric flowing still needs to be deeply studied. In particular, the lateral pressure distribution on vertical wall could not be accurately recognized mainly because of its asymmetry. In order to build mechanical model of lateral pressure, flow channel and flow pattern of stored solids in squat silo are studied. In this passage, based on Janssen-s theory, the method for calculating lateral static pressure in squat silos after eccentric discharge is proposed. Calculative formulae are deduced for each of three possible cases. This method is also focusing on unsymmetrical distribution characteristic of silo wall normal pressure. Finite element model is used to analysis and compare the results of lateral pressure and the numerical results illustrate the practicability of the theoretical method.

Keywords: Squat silo, eccentric discharge, lateral pressure, asymmetric distribution

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3123