Search results for: transmission power control.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6537

Search results for: transmission power control.

6447 Wind Farm Modeling for Steady State and Dynamic Analysis

Authors: G.Kabashi, K.Kadriu, A.Gashi, S.Kabashi, G, Pula, V.Komoni

Abstract:

This paper focuses on PSS/E modeling of wind farms of Doubly-fed Induction Generator (DFIG) type and their impact on issues of power system operation. Since Wind Turbine Generators (WTG) don-t have the same characteristics as synchronous generators, the appropriate modeling of wind farms is essential for transmission system operators to analyze the best options of transmission grid reinforcements as well as to evaluate the wind power impact on reliability and security of supply. With the high excepted penetration of wind power into the power system a simultaneous loss of Wind Farm generation will put at risk power system security and reliability. Therefore, the main wind grid code requirements concern the fault ride through capability and frequency operation range of wind turbines. In case of grid faults wind turbines have to supply a definite reactive power depending on the instantaneous voltage and to return quickly to normal operation.

Keywords: Power System transients, PSS/E dynamic simulationDouble-fed Induction Generator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4574
6446 Transmission Line Congestion Management Using Hybrid Fish-Bee Algorithm with Unified Power Flow Controller

Authors: P. Valsalal, S. Thangalakshmi

Abstract:

There is a widespread changeover in the electrical power industry universally from old-style monopolistic outline towards a horizontally distributed competitive structure to come across the demand of rising consumption. When the transmission lines of derestricted system are incapable to oblige the entire service needs, the lines are overloaded or congested. The governor between customer and power producer is nominated as Independent System Operator (ISO) to lessen the congestion without obstructing transmission line restrictions. Among the existing approaches for congestion management, the frequently used approaches are reorganizing the generation and load curbing. There is a boundary for reorganizing the generators, and further loads may not be supplemented with the prevailing resources unless more private power producers are added in the system by considerably raising the cost. Hence, congestion is relaxed by appropriate Flexible AC Transmission Systems (FACTS) devices which boost the existing transfer capacity of transmission lines. The FACTs device, namely, Unified Power Flow Controller (UPFC) is preferred, and the correct placement of UPFC is more vital and should be positioned in the highly congested line. Hence, the weak line is identified by using power flow performance index with the new objective function with proposed hybrid Fish – Bee algorithm. Further, the location of UPFC at appropriate line reduces the branch loading and minimizes the voltage deviation. The power transfer capacity of lines is determined with and without UPFC in the identified congested line of IEEE 30 bus structure and the simulated results are compared with prevailing algorithms. It is observed that the transfer capacity of existing line is increased with the presented algorithm and thus alleviating the congestion.

Keywords: Available line transfer capability, congestion management, FACTS device, hybrid fish-bee algorithm, ISO, UPFC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1533
6445 Dynamic Programming Based Algorithm for the Unit Commitment of the Transmission-Constrained Multi-Site Combined Heat and Power System

Authors: A. Rong, P. B. Luh, R. Lahdelma

Abstract:

High penetration of intermittent renewable energy sources (RES) such as solar power and wind power into the energy system has caused temporal and spatial imbalance between electric power supply and demand for some countries and regions. This brings about the critical need for coordinating power production and power exchange for different regions. As compared with the power-only systems, the combined heat and power (CHP) systems can provide additional flexibility of utilizing RES by exploiting the interdependence of power and heat production in the CHP plant. In the CHP system, power production can be influenced by adjusting heat production level and electric power can be used to satisfy heat demand by electric boiler or heat pump in conjunction with heat storage, which is much cheaper than electric storage. This paper addresses multi-site CHP systems without considering RES, which lay foundation for handling penetration of RES. The problem under study is the unit commitment (UC) of the transmission-constrained multi-site CHP systems. We solve the problem by combining linear relaxation of ON/OFF states and sequential dynamic programming (DP) techniques, where relaxed states are used to reduce the dimension of the UC problem and DP for improving the solution quality. Numerical results for daily scheduling with realistic models and data show that DP-based algorithm is from a few to a few hundred times faster than CPLEX (standard commercial optimization software) with good solution accuracy (less than 1% relative gap from the optimal solution on the average).

Keywords: Dynamic programming, multi-site combined heat and power system, relaxed states, transmission-constrained generation unit commitment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1638
6444 Intelligent Agent Approach to the Control of Critical Infrastructure Networks

Authors: James D. Gadze, Niki Pissinou, Kia Makki

Abstract:

In this paper we propose an intelligent agent approach to control the electric power grid at a smaller granularity in order to give it self-healing capabilities. We develop a method using the influence model to transform transmission substations into information processing, analyzing and decision making (intelligent behavior) units. We also develop a wireless communication method to deliver real-time uncorrupted information to an intelligent controller in a power system environment. A combined networking and information theoretic approach is adopted in meeting both the delay and error probability requirements. We use a mobile agent approach in optimizing the achievable information rate vector and in the distribution of rates to users (sensors). We developed the concept and the quantitative tools require in the creation of cooperating semiautonomous subsystems which puts the electric grid on the path towards intelligent and self-healing system.

Keywords: Mobile agent, power system operation and control, real time, wireless communication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1629
6443 Transmission Loss Allocation via Loss Function Decomposition and Current Projection Concept

Authors: M.R. Ebrahimi, Z. Ghofrani, M. Ehsan

Abstract:

One of the major problems in liberalized power markets is loss allocation. In this paper, a different method for allocating transmission losses to pool market participants is proposed. The proposed method is fundamentally based on decomposition of loss function and current projection concept. The method has been implemented and tested on several networks and one sample summarized in the paper. The results show that the method is comprehensive and fair to allocating the energy losses of a power market to its participants.

Keywords: Transmission loss, loss allocation, current projectionconcept, loss function decomposition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1697
6442 Vector Control of Multimotor Drive

Authors: Archana S. Nanoty, A. R. Chudasama

Abstract:

Three-phase induction machines are today a standard for industrial electrical drives. Cost, reliability, robustness and maintenance free operation are among the reasons these machines are replacing dc drive systems. The development of power electronics and signal processing systems has eliminated one of the greatest disadvantages of such ac systems, which is the issue of control. With modern techniques of field oriented vector control, the task of variable speed control of induction machines is no longer a disadvantage. The need to increase system performance, particularly when facing limits on the power ratings of power supplies and semiconductors, motivates the use of phase number other than three, In this paper a novel scheme of connecting two, three phase induction motors in parallel fed by two inverters; viz. VSI and CSI and their vector control is presented.

Keywords: Field oriented control, multiphase induction motor, power electronics converter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3346
6441 Radio Technology Frequency Identification Applied in High-Voltage Power Transmission- Line for Sag Measurement

Authors: Tlotlollo Sidwell Hlalele, Shengzhi Du

Abstract:

High-voltage power transmission lines are the back bone of electrical power utilities. The stability and continuous monitoring of this critical infrastructure is pivotal. Nine-Sigma representing Eskom Holding SOC limited, South Africa has a major problem on proactive detection of fallen power lines and real time sagging measurement together with slipping of such conductors. The main objective of this research is to innovate RFID technology to solve this challenge. Various options and technologies such as GPS, PLC, image processing, MR sensors and etc., have been reviewed and draw backs were made. The potential of RFID to give precision measurement will be observed and presented. The future research will look at magnetic and electrical interference as well as corona effect on the technology.

Keywords: Precision Measurement, RFID and Sag.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2384
6440 Design and Control Algorithms for Power Electronic Converters for EV Applications

Authors: Ilya Kavalchuk, Mehdi Seyedmahmoudian, Ben Horan, Aman Than Oo, Alex Stojcevski

Abstract:

The power electronic components within Electric Vehicles (EV) need to operate in several important modes. Some modes directly influence safety, while others influence vehicle performance. Given the variety of functions and operational modes required of the power electronics, it needs to meet efficiency requirements to minimize power losses. Another challenge in the control and construction of such systems is the ability to support bidirectional power flow. This paper considers the construction, operation, and feasibility of available converters for electric vehicles with feasible configurations of electrical buses and loads. This paper describes logic and control signals for the converters for different operations conditions based on the efficiency and energy usage bases.

Keywords: Electric Vehicles, Electrical Machines Control, Power Electronics, Powerflow Regulations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2446
6439 Multi-Line Flexible Alternating Current Transmission System (FACTS) Controller for Transient Stability Analysis of a Multi-Machine Power System Network

Authors: A.V.Naresh Babu, S.Sivanagaraju

Abstract:

A considerable progress has been achieved in transient stability analysis (TSA) with various FACTS controllers. But, all these controllers are associated with single transmission line. This paper is intended to discuss a new approach i.e. a multi-line FACTS controller which is interline power flow controller (IPFC) for TSA of a multi-machine power system network. A mathematical model of IPFC, termed as power injection model (PIM) presented and this model is incorporated in Newton-Raphson (NR) power flow algorithm. Then, the reduced admittance matrix of a multi-machine power system network for a three phase fault without and with IPFC is obtained which is required to draw the machine swing curves. A general approach based on L-index has also been discussed to find the best location of IPFC to reduce the proximity to instability of a power system. Numerical results are carried out on two test systems namely, 6-bus and 11-bus systems. A program in MATLAB has been written to plot the variation of generator rotor angle and speed difference curves without and with IPFC for TSA and also a simple approach has been presented to evaluate critical clearing time for test systems. The results obtained without and with IPFC are compared and discussed.

Keywords: Flexible alternating current transmission system (FACTS), first swing stability, interline power flow controller (IPFC), power injection model (PIM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2147
6438 Optimal Power Allocation to Diversity Branches of Cooperative MISO Sensor Networks

Authors: Rooholah Hasanizadeh, Saadan Zokaei

Abstract:

In the context of sensor networks, where every few dB saving counts, the novel node cooperation schemes are reviewed where MIMO techniques play a leading role. These methods could be treated as joint approach for designing physical layer of their communication scenarios. Then we analyzed the BER performance of transmission diversity schemes under a general fading channel model and proposed a power allocation strategy to the transmitting sensor nodes. This approach is then compared to an equal-power assignment method and its performance enhancement is verified by the simulation. Another key point of the contribution lies in the combination of optimal power allocation and sensor nodes- cooperation in a transmission diversity regime (MISO). Numerical results are given through figures to demonstrate the optimality and efficiency of proposed combined approach.

Keywords: Optimal power allocation, cooperative MISO scheme, sensor networks, diversity branch.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1372
6437 Stability Enhancement of a Large-Scale Power System Using Power System Stabilizer Based on Adaptive Neuro Fuzzy Inference System

Authors: Agung Budi Muljono, I Made Ginarsa, I Made Ari Nrartha

Abstract:

A large-scale power system (LSPS) consists of two or more sub-systems connected by inter-connecting transmission. Loading pattern on an LSPS always changes from time to time and varies depend on consumer need. The serious instability problem is appeared in an LSPS due to load fluctuation in all of the bus. Adaptive neuro-fuzzy inference system (ANFIS)-based power system stabilizer (PSS) is presented to cover the stability problem and to enhance the stability of an LSPS. The ANFIS control is presented because the ANFIS control is more effective than Mamdani fuzzy control in the computation aspect. Simulation results show that the presented PSS is able to maintain the stability by decreasing peak overshoot to the value of −2.56 × 10−5 pu for rotor speed deviation Δω2−3. The presented PSS also makes the settling time to achieve at 3.78 s on local mode oscillation. Furthermore, the presented PSS is able to improve the peak overshoot and settling time of Δω3−9 to the value of −0.868 × 10−5 pu and at the time of 3.50 s for inter-area oscillation.

Keywords: ANFIS, large-scale, power system, PSS, stability enhancement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1148
6436 Investigation of Split TCSC on Kanpur-Ballabhgarh Transmission System

Authors: S. Meikandasivam, D. Vijayakumar, Rajesh Kumar Nema, Shailendra Kumar Jain

Abstract:

This paper investigates the performance of the single TCSC and proposed split TCSC on transmission system where India’s first TCSC project is installed in Kanpur - Ballabhgarh (KB) line to ensure the fine tuning of line reactance by proposed split TCSC in place of existing KB TCSC. A three phase KB transmission system is developed in MATLAB/Simulink (SimPowerSystems) for

  1. without any compensation,
  2. with fixed capacitor (FC),
  3. with FC + existing KB TCSC and
  4. with FC + proposed split TCSC

The KB system is analyzed for a step variation of load and performance of the system is investigated with a closed loop reactance control method.

Keywords: Single TCSC, Split TCSC, TCSC Reactance characteristic curve, Power flow analysis, Sensitivity analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2551
6435 Wavelet Entropy Based Algorithm for Fault Detection and Classification in FACTS Compensated Transmission Line

Authors: Amany M. El-Zonkoly, Hussein Desouki

Abstract:

Distance protection of transmission lines including advanced flexible AC transmission system (FACTS) devices has been a very challenging task. FACTS devices of interest in this paper are static synchronous series compensators (SSSC) and unified power flow controller (UPFC). In this paper, a new algorithm is proposed to detect and classify the fault and identify the fault position in a transmission line with respect to a FACTS device placed in the midpoint of the transmission line. Discrete wavelet transformation and wavelet entropy calculations are used to analyze during fault current and voltage signals of the compensated transmission line. The proposed algorithm is very simple and accurate in fault detection and classification. A variety of fault cases and simulation results are introduced to show the effectiveness of such algorithm.

Keywords: Entropy calculation, FACTS, SSSC, UPFC, wavelet transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2017
6434 New Strategy Agents to Improve Power System Transient Stability

Authors: Mansour A. Mohamed, George G. Karady, Ali M. Yousef

Abstract:

This paper proposes transient angle stability agents to enhance power system stability. The proposed transient angle stability agents divided into two strategy agents. The first strategy agent is a prediction agent that will predict power system instability. According to the prediction agent-s output, the second strategy agent, which is a control agent, is automatically calculating the amount of active power reduction that can stabilize the system and initiating a control action. The control action considered is turbine fast valving. The proposed strategies are applied to a realistic power system, the IEEE 50- generator system. Results show that the proposed technique can be used on-line for power system instability prediction and control.

Keywords: Multi-agents, Fast Valving, Power System Transient Stability, Prediction methods,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1809
6433 Artificial Intelligence Techniques for Controlling Spacecraft Power System

Authors: Hanaa T. El-Madany, Faten H. Fahmy, Ninet M. A. El-Rahman, Hassen T. Dorrah

Abstract:

Advancements in the field of artificial intelligence (AI) made during this decade have forever changed the way we look at automating spacecraft subsystems including the electrical power system. AI have been used to solve complicated practical problems in various areas and are becoming more and more popular nowadays. In this paper, a mathematical modeling and MATLAB–SIMULINK model for the different components of the spacecraft power system is presented. Also, a control system, which includes either the Neural Network Controller (NNC) or the Fuzzy Logic Controller (FLC) is developed for achieving the coordination between the components of spacecraft power system as well as control the energy flows. The performance of the spacecraft power system is evaluated by comparing two control systems using the NNC and the FLC.

Keywords: Spacecraft, Neural network, Fuzzy logic control, Photovoltaic array.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1911
6432 Clustering based Voltage Control Areas for Localized Reactive Power Management in Deregulated Power System

Authors: Saran Satsangi, Ashish Saini, Amit Saraswat

Abstract:

In this paper, a new K-means clustering based approach for identification of voltage control areas is developed. Voltage control areas are important for efficient reactive power management in power systems operating under deregulated environment. Although, voltage control areas are formed using conventional hierarchical clustering based method, but the present paper investigate the capability of K-means clustering for the purpose of forming voltage control areas. The proposed method is tested and compared for IEEE 14 bus and IEEE 30 bus systems. The results show that this K-means based method is competing with conventional hierarchical approach

Keywords: Voltage control areas, reactive power management, K-means clustering algorithm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2343
6431 Voltage Stability Assessment and Enhancement Using STATCOM - A Case Study

Authors: Puneet Chawla, Balwinder Singh

Abstract:

Recently, increased attention has been devoted to the voltage instability phenomenon in power systems. Many techniques have been proposed in the literature for evaluating and predicting voltage stability using steady state analysis methods. In this paper P-V and Q-V curves have been generated for a 57 bus Patiala Rajpura circle of India. The power-flow program is developed in MATLAB using Newton Raphson method. Using Q-V curves the weakest bus of the power system and the maximum reactive power change permissible on that bus is calculated. STATCOMs are placed on the weakest bus to improve the voltage and hence voltage stability and also the power transmission capability of the line.

Keywords: Voltage stability, Reactive power, power flow, weakest bus, STATCOM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2974
6430 Throughput Optimization on Wireless Networks by Increasing the Maximum Transmission Unit

Authors: Edward Guillén, Stephanne Rodríguez, Jhordany Rodríguez

Abstract:

Throughput enhancement can be achieved with two main approaches. The first one is by the increase of transmission rate and the second one is reducing the control traffic. This paper focuses on how the throughput can be enhanced by increasing Maximum Transmission Unit -MTU. Transmission of larger packets can cause a throughput improvement by reducing IP overhead. Analysis results are obtained by a mathematical model and simulation tools with a main focus on wireless channels.

Keywords: 802.11, Maximum Transfer Unit, throughput enhancement, wireless networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3521
6429 Power Control of DFIG in WECS Using Backstipping and Sliding Mode Controller

Authors: A. Boualouch, A. Essadki, T. Nasser, A. Boukhriss, A. Frigui

Abstract:

This paper presents a power control for a Doubly Fed Induction Generator (DFIG) using in Wind Energy Conversion System (WECS) connected to the grid. The proposed control strategy employs two nonlinear controllers, Backstipping (BSC) and slidingmode controller (SMC) scheme to directly calculate the required rotor control voltage so as to eliminate the instantaneous errors of active and reactive powers. In this paper the advantages of BSC and SMC are presented, the performance and robustness of this two controller’s strategy are compared between them. First, we present a model of wind turbine and DFIG machine, then a synthesis of the controllers and their application in the DFIG power control. Simulation results on a 1.5MW grid-connected DFIG system are provided by MATLAB/Simulink.

Keywords: Backstipping, DFIG, power control, sliding-mode, WESC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2361
6428 Simulation as an Effective Tool for the Comparative Evaluation of Field Oriented Control and Direct Torque Control of Induction Motor

Authors: Y.Srinivasa Kishore Babu, G.Tulasi Ram Das

Abstract:

This paper presents a comparative study of two most popular control strategies for Induction motor (IM) drives: Field-Oriented Control (FOC) and Direct Torque Control (DTC). The comparison is based on various criteria including basic control characteristics, dynamic performance, and implementation complexity. The study is done by simulation using the Simulink Power System Block set that allows a complete representation of the power section (inverter and IM) and the control system.

Keywords: IM, FOC, DTC, Simulink

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2493
6427 Development of PSS/E Dynamic Model for Controlling Battery Output to Improve Frequency Stability in Power Systems

Authors: Dae-Hee Son, Soon-Ryul Nam

Abstract:

The power system frequency falls when disturbance such as rapid increase of system load or loss of a generating unit occurs in power systems. Especially, increase in the number of renewable generating units has a bad influence on the power system because of loss of generating unit depending on the circumstance. Conventional technologies use frequency droop control battery output for the frequency regulation and balance between supply and demand. If power is supplied using the fast output characteristic of the battery, power system stability can be further more improved. To improve the power system stability, we propose battery output control using ROCOF (Rate of Change of Frequency) in this paper. The bigger the power difference between the supply and the demand, the bigger the ROCOF drops. Battery output is controlled proportionally to the magnitude of the ROCOF, allowing for faster response to power imbalances. To simulate the control method of battery output system, we develop the user defined model using PSS/E and confirm that power system stability is improved by comparing with frequency droop control.

Keywords: PSS/E user defined model, power deviation, frequency droop control, ROCOF, rate of change of frequency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2126
6426 Performences of Type-2 Fuzzy Logic Control and Neuro-Fuzzy Control Based on DPC for Grid Connected DFIG with Fixed Switching Frequency

Authors: Fayssal Amrane, Azeddine Chaiba

Abstract:

In this paper, type-2 fuzzy logic control (T2FLC) and neuro-fuzzy control (NFC) for a doubly fed induction generator (DFIG) based on direct power control (DPC) with a fixed switching frequency is proposed for wind generation application. First, a mathematical model of the doubly-fed induction generator implemented in d-q reference frame is achieved. Then, a DPC algorithm approach for controlling active and reactive power of DFIG via fixed switching frequency is incorporated using PID. The performance of T2FLC and NFC, which is based on the DPC algorithm, are investigated and compared to those obtained from the PID controller. Finally, simulation results demonstrate that the NFC is more robust, superior dynamic performance for wind power generation system applications.

Keywords: Doubly fed induction generetor, direct power control, space vector modulation, type-2 fuzzy logic control, neuro-fuzzy control, maximum power point tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1620
6425 A Low Cost and High Quality Duty-Cycle Modulation Scheme and Applications

Authors: B. Lonla Moffo, J. Mbihi, L. Nneme Nneme

Abstract:

In this paper, a low cost duty-cycle modulation scheme is studied in depth and compared to the standard pulse width modulation technique. Using a mix of analytical reasoning and electronics simulation tools, it is shown that under the same operating conditions, most characteristics of the proposed duty-cycle modulation scheme are better than those provided by a standard pulse width modulation technique. The simulation results obtained when testing both modulation control policies on prototyping systems, indicate that the proposed duty-cycle modulation approach, appears to be a high quality control policy in a wide variety of application areas, including A/D and D/A conversion, signal transmission and switching control in power electronics.

Keywords: Duty-cycle Modulation, Operational amplifiers, Pulse width modulation, Power electronics, Signal processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2702
6424 Coherent PON for NG-PON2: 40Gbps Downstream Transmission with 40dB Power Margin using Commercial DFB Lasers and no Optical Amplification

Authors: Roberto Gaudino, Antonino Nespola, Dario Zeolla, Stefano Straullu, Vittorio Curri, Gabriella Bosco, Roberto Cigliutti, Stefano Capriata, Paolo Solina.

Abstract:

We demonstrate a 40Gbps downstream PON transmission based on PM-QPSK modulation using commercial DFB lasers without optical amplifier in the ODN, obtaining 40dB power budget. We discuss this solution within NG-PON2 architectures.

Keywords: DFB lasers, Optical Coherent Receiver, Passive Optical Networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2493
6423 Hysteresis Control of Power Conditioning Unit for Fuel Cell Distributed Generation System

Authors: Kanhu Charan Bhuyan, Subhransu Padhee, Rajesh Kumar Patjoshi, Kamalakanta Mahapatra

Abstract:

Fuel cell is an emerging technology in the field of renewable energy sources which has the capacity to replace conventional energy generation sources. Fuel cell utilizes hydrogen energy to produce electricity. The electricity generated by the fuel cell can’t be directly used for a specific application as it needs proper power conditioning. Moreover, the output power fluctuates with different operating conditions. To get a stable output power at an economic rate, power conditioning circuit is essential for fuel cell. This paper implements a two-staged power conditioning unit for fuel cell based distributed generation using hysteresis current control technique.

Keywords: Fuel cell, power conditioning unit, hysteresis control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2383
6422 A Power-Gating Scheme to Reduce Leakage Power for P-type Adiabatic Logic Circuits

Authors: Hong Li, Linfeng Li, Jianping Hu

Abstract:

With rapid technology scaling, the proportion of the static power consumption catches up with dynamic power consumption gradually. To decrease leakage consumption is becoming more and more important in low-power design. This paper presents a power-gating scheme for P-DTGAL (p-type dual transmission gate adiabatic logic) circuits to reduce leakage power dissipations under deep submicron process. The energy dissipations of P-DTGAL circuits with power-gating scheme are investigated in different processes, frequencies and active ratios. BSIM4 model is adopted to reflect the characteristics of the leakage currents. HSPICE simulations show that the leakage loss is greatly reduced by using the P-DTGAL with power-gating techniques.

Keywords: Leakage reduction, low power, deep submicronCMOS circuits, P-type adiabatic circuits.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1893
6421 A Novel Application of Network Equivalencing Method in Time Domain to Precise Calculation of Dead Time in Power Transmission Title

Authors: J. Moshtagh, L. Eslami

Abstract:

Various studies have showed that about 90% of single line to ground faults occurred on High voltage transmission lines have transient nature. This type of faults is cleared by temporary outage (by the single phase auto-reclosure). The interval between opening and reclosing of the faulted phase circuit breakers is named “Dead Time” that is varying about several hundred milliseconds. For adjustment of traditional single phase auto-reclosures that usually are not intelligent, it is necessary to calculate the dead time in the off-line condition precisely. If the dead time used in adjustment of single phase auto-reclosure is less than the real dead time, the reclosing of circuit breakers threats the power systems seriously. So in this paper a novel approach for precise calculation of dead time in power transmission lines based on the network equivalencing in time domain is presented. This approach has extremely higher precision in comparison with the traditional method based on Thevenin equivalent circuit. For comparison between the proposed approach in this paper and the traditional method, a comprehensive simulation by EMTP-ATP is performed on an extensive power network.

Keywords: Dead Time, Network Equivalencing, High Voltage Transmission Lines, Single Phase Auto-Reclosure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1536
6420 Optimal Sizing of SSSC Controllers to Minimize Transmission Loss and a Novel Model of SSSC to Study Transient Response

Authors: A. M. El-Zonkoly

Abstract:

In this paper, based on steady-state models of Flexible AC Transmission System (FACTS) devices, the sizing of static synchronous series compensator (SSSC) controllers in transmission network is formed as an optimization problem. The objective of this problem is to reduce the transmission losses in the network. The optimization problem is solved using particle swarm optimization (PSO) technique. The Newton-Raphson load flow algorithm is modified to consider the insertion of the SSSC devices in the network. A numerical example, illustrating the effectiveness of the proposed algorithm, is introduced. In addition, a novel model of a 3- phase voltage source converter (VSC) that is suitable for series connected FACTS a controller is introduced. The model is verified by simulation using Power System Blockset (PSB) and Simulink software.

Keywords: FACTS, Modeling, PSO, SSSC, Transmission lossreduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2231
6419 Significant Role Analysis of Transmission Control Protocols in 4G Cellular Systems

Authors: Ghassan A. Abed, Bayan M. Sabbar

Abstract:

The society of 3rd Generation Partnership Project (3GPP) is completed developing Long Term Evolution Advanced (LTE-Advanced) systems as a standard 4G cellular system. This generation goals to produce conditions for a new radio-access technology geared to higher data rates, low latency, and better spectral efficiency. LTE-Advanced is an evolutionary step in the continuing development of LTE where the description in this article is based on LTE release 10. This paper provides a model of the traffic links of 4G system represented by LTE-Advanced system with the effect of the Transmission Control Protocols (TCP) and Stream Control Transmission Protocol (SCTP) in term of throughput and packet loss. Furthermore, the article presents the investigation and the analysis the behavior of SCTP and TCP variants over the 4G cellular systems. The traffic model and the scenario of the simulation developed using the network simulator NS-2 using different TCP source variants.

Keywords: LTE-Advanced, LTE, SCTP, TCP, 4G, NS-2.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1900
6418 Simulation of Series Compensated Transmission Lines Protected with Mov

Authors: Abdolamir Nekoubin

Abstract:

In this paper the behavior of fixed series compensated extra high voltage transmission lines during faults is simulated. Many over-voltage protection schemes for series capacitors are limited in terms of size and performance, and are easily affected by environmental conditions. While the need for more compact and environmentally robust equipment is required. use of series capacitors for compensating part of the inductive reactance of long transmission lines increases the power transmission capacity. Emphasis is given on the impact of modern capacitor protection techniques (MOV protection). The simulation study is performed using MATLAB/SIMULINK®and results are given for a three phase and a single phase to ground fault.

Keywords: Series compensation, MOV - protected series capacitors, balanced and unbalanced faults

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4001