Search results for: transcranial magnetic stimulation.
468 A Fuzzy System to Analyze SIVD Diseases Using the Transcranial Magnetic Stimulation
Authors: A. Faro, D. Giordano, M. Pennisi, G. Scarciofalo, C. Spampinato, F. Tramontana
Abstract:
The paper proposes a methodology to process the signals coming from the Transcranial Magnetic Stimulation (TMS) in order to identify the pathology and evaluate the therapy to treat the patients affected by demency diseases. In particular, a fuzzy model is developed to identify the demency of the patients affected by Subcortical Ischemic Vascular Dementia (SIVD) and to measure the effect of a repetitive TMS on their motor performances. A tool is also presented to support the mentioned analysis.
Keywords: TMS, EMG, fuzzy logic, transcranial magnetic stimulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1404467 A Design of Array Transcranial Magnetic Stimulation Coil System
Authors: Sheng Ge, Jian-Peng Wang, Hai-Ying Tang, Xi Xiao, Wen Wu
Abstract:
This research proposed a new design of helmet-shaped array transcranial magnetic stimulation coil system. It was constructed using several sagittal directional wires and several coronal directional wires. By varying the current direction and strength on each wire, this array coil system could be constructed into the circular coil and figure-eight coil of different size. Also, this proposed coil system can flexibly not only change the stimulation location, range, type and strength, but also change the shape and the channel number of coil dynamically.Keywords: TMS, circular coils, figure-eight coil, array coil
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2737466 Temporal Analysis of Magnetic Nerve Stimulation–Towards Enhanced Systems via Virtualisation
Authors: Stefan M. Goetz, Thomas Weyh, Hans-Georg Herzog
Abstract:
The triumph of inductive neuro-stimulation since its rediscovery in the 1980s has been quite spectacular. In lots of branches ranging from clinical applications to basic research this system is absolutely indispensable. Nevertheless, the basic knowledge about the processes underlying the stimulation effect is still very rough and rarely refined in a quantitative way. This seems to be not only an inexcusable blank spot in biophysics and for stimulation prediction, but also a fundamental hindrance for technological progress. The already very sophisticated devices have reached a stage where further optimization requires better strategies than provided by simple linear membrane models of integrate-and-fire style. Addressing this problem for the first time, we suggest in the following text a way for virtual quantitative analysis of a stimulation system. Concomitantly, this ansatz seems to provide a route towards a better understanding by using nonlinear signal processing and taking the nerve as a filter that is adapted for neuronal magnetic stimulation. The model is compact and easy to adjust. The whole setup behaved very robustly during all performed tests. Exemplarily a recent innovative stimulator design known as cTMS is analyzed and dimensioned with this approach in the following. The results show hitherto unforeseen potentials.
Keywords: Theory of magnetic stimulation, inversion, optimization, high voltage oscillator, TMS, cTMS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1377465 A Fuzzy Model and Tool to Analyze SIVD Diseases Using TMS
Authors: A. Faro, D. Giordano, M. Pennisi, G. Scarciofalo, C. Spampinato, F. Tramontana
Abstract:
The paper proposes a methodology to process the signals coming from the Transcranial Magnetic Stimulation (TMS) in order to identify the pathology and evaluate the therapy to treat the patients affected by demency diseases. In particular, a fuzzy model is developed to identify the demency of the patients affected by Subcortical Ischemic Vascular Dementia and to measure the positive effect, if any, of a repetitive TMS on their motor performances. A tool is also presented to support the mentioned analysis.
Keywords: TMS, SIVD, Electromiography , Fuzzy Logic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1573464 Investigation of Different Stimulation Patterns to Reduce Muscle Fatigue during Functional Electrical Stimulation
Abstract:
Functional electrical stimulation (FES) is a commonly used technique in rehabilitation and often associated with rapid muscle fatigue which becomes the limiting factor in its applications. The objective of this study is to investigate the effects on the onset of fatigue of conventional synchronous stimulation, as well as asynchronous stimulation that mimic voluntary muscle activation targeting different motor units which are activated sequentially or randomly via multiple pairs of stimulation electrodes. We investigate three different approaches with various electrode configurations, as well as different patterns of stimulation applied to the gastrocnemius muscle: Conventional Synchronous Stimulation (CSS), Asynchronous Sequential Stimulation (ASS) and Asynchronous Random Stimulation (ARS). Stimulation was applied repeatedly for 300 ms followed by 700 ms of no-stimulation with 40 Hz effective frequency for all protocols. Ten able-bodied volunteers (28±3 years old) participated in this study. As fatigue indicators, we focused on the analysis of Normalized Fatigue Index (NFI), Fatigue Time Interval (FTI) and pre-post Twitch-Tetanus Ratio (ΔTTR). The results demonstrated that ASS and ARS give higher NFI and longer FTI confirming less fatigue for asynchronous stimulation. In addition, ASS and ARS resulted in higher ΔTTR than conventional CSS. In this study, we proposed a randomly distributed stimulation method for the application of FES and investigated its suitability for reducing muscle fatigue compared to previously applied methods. The results validated that asynchronous stimulation reduces fatigue, and indicates that random stimulation may improve fatigue resistance in some conditions.
Keywords: Asynchronous stimulation, electrode configuration, functional electrical stimulation, muscle fatigue, pattern stimulation, random stimulation, sequential stimulation, synchronous stimulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1245463 Autism Spectrum Disorder: Main Problem Waiting for Solution in Kingdom of Saudi Arabia
Authors: Rana M. Zeina, Laila Al-Ayadhi, Shahid Bashir
Abstract:
Autism Spectrum Disorders (ASDs) are characterized by abnormalities in social interaction and communication, as well as repetitive and stereotyped behaviors. Although various studies have been conducted in ASDs etiology across the world, it seems that they are still unknown in Middle East. Some scientific researches have been conducted on ASDs in Middle East (ME) especially in Kingdom of Saudi Arabia (KSA). A systematic literature review was performed to identify the ASDs studies in KSA. Accordingly, PubMed, ISI web of Science and Google were searched to find KSA and ME studies in ASDs. The main focus of this review work is to outline an improved understanding of the underpinnings of ASD in order to achieve therapeutic interventions and we will discuss the main problem we waiting for solution with reference with role of Transcranial Magnetic Stimulation (TMS) to modulate cortical activity improve understanding ASD.
Keywords: Autism, Neurodevelopmental disorder
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3990462 Hydrothermal Behavior of G-S Magnetically Stabilized Beds Consisting of Magnetic and Non-Magnetic Admixtures
Authors: Z. Al-Qodah, M. Al-Busoul, A. Khraewish
Abstract:
The hydrothermal behavior of a bed consisting of magnetic and shale oil particle admixtures under the effect of a transverse magnetic field is investigated. The phase diagram, bed void fraction are studied under wide range of the operating conditions i.e., gas velocity, magnetic field intensity and fraction of the magnetic particles. It is found that the range of the stabilized regime is reduced as the magnetic fraction decreases. In addition, the bed voidage at the onset of fluidization decreases as the magnetic fraction decreases. On the other hand, Nusselt number and consequently the heat transfer coefficient is found to increase as the magnetic fraction decreases. An empirical equation is investigated to relate the effect of the gas velocity, magnetic field intensity and fraction of the magnetic particles on the heat transfer behavior in the bed.Keywords: Magnetic stabilization; Magnetic stabilized fluidizedbeds; Gas-fluidized beds.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1352461 Bio-Heat Transfer in Various Transcutaneous Stimulation Models
Authors: Trevor E. Davis, Isaac Cassar, Yi-Kai Lo, Wentai Liu
Abstract:
This study models the use of transcutaneous electrical nerve stimulation on skin with a disk electrode in order to simulate tissue damage. The current density distribution above a disk electrode is known to be a dynamic and non-uniform quantity that is intensified at the edges of the disk. The non-uniformity is subject to change through using various electrode geometries or stimulation methods. One of these methods known as edge-retarded stimulation has shown to reduce this edge enhancement. Though progress has been made in modeling the behavior of a disk electrode, little has been done to test the validity of these models in simulating the actual heat transfer from the electrode. This simulation uses finite element software to couple the injection of current from a disk electrode to heat transfer described by the Pennesbioheat transfer equation. An example application of this model is studying an experimental form of stimulation, known as edge-retarded stimulation. The edge-retarded stimulation method will reduce the current density at the edges of the electrode. It is hypothesized that reducing the current density edge enhancement effect will, in turn, reduce temperature change and tissue damage at the edges of these electrodes. This study tests this hypothesis as a demonstration of the capabilities of this model. The edge-retarded stimulation proved to be safer after this simulation. It is shown that temperature change and the fraction of tissue necrosis is much greater in the square wave stimulation. These results bring implications for changes of procedures in transcutaneous electrical nerve stimulation and transcutaneous spinal cord stimulation as well.
Keywords: Bioheat transfer, Electrode, Neuroprosthetics, TENS, Transcutaneous stimulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2287460 The Influence of Reaction Parameters on Magnetic Properties of Synthesized Strontium Ferrite
Authors: M. Bahgat, F. M. Awan, H. A. Hanafy
Abstract:
The conventional ceramic route was utilized to prepare a hard magnetic powder (M-type strontium ferrite, SrFe12O19). The stoichiometric mixture of iron oxide and strontium carbonate were calcined at 1000oC and then fired at various temperatures. The influence of various reaction parameters such as mixing ratio, calcination temperature, firing temperature and firing time on the magnetic behaviors of the synthesized magnetic powder were investigated. The magnetic properties including Coercivity (Hc), Magnetic saturation (Ms), and Magnetic remnance (Mr) were measured by vibrating sample magnetometer. Morphologically the produced magnetic powder has a dense hexagonal grain shape structure.Keywords: Hard magnetic materials, ceramic route, strontium ferrite, magnetic properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2181459 A Chaotic Study on Tremor Behavior of Parkinsonian Patients under Deep Brain Stimulation
Authors: M. Sadeghi, A.H. Jafari, S.M.P. Firoozabadi
Abstract:
Deep Brain Stimulation or DBS is a surgical treatment for Parkinson-s Disease with three stimulation parameters: frequency, pulse width, and voltage. The parameters should be selected appropriately to achieve effective treatment. This selection now, performs clinically. The aim of this research is to study chaotic behavior of recorded tremor of patients under DBS in order to present a computational method to recognize stimulation optimum voltage. We obtained some chaotic features of tremor signal, and discovered embedding space of it has an attractor, and its largest Lyapunov exponent is positive, which show tremor signal has chaotic behavior, also we found out, in optimal voltage, entropy and embedding space variance of tremor signal have minimum values in comparison with other voltages. These differences can help neurologists recognize optimal voltage numerically, which leads to reduce patients' role and discomfort in optimizing stimulation parameters and to do treatment with high accuracy.
Keywords: Chaos, Deep Brain Stimulation, Parkinson's Disease, Stimulation Parameters, tremor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1826458 Mathematical Modeling on Capturing of Magnetic Nanoparticles in an Implant Assisted Channel for Magnetic Drug Targeting
Authors: Shashi Sharma, V. K. Katiyar, Uaday Singh
Abstract:
In IA-MDT, the magnetic implants are placed strategically at the target site to greatly and locally increase the magnetic force on MDCPs and help to attract and retain the MDCPs at the targeted region. In the present work, we develop a mathematical model to study the capturing of magnetic nanoparticles flowing within a fluid in an implant assisted cylindrical channel under magnetic field. A coil of ferromagnetic SS-430 has been implanted inside the cylindrical channel to enhance the capturing of magnetic nanoparticles under magnetic field. The dominant magnetic and drag forces, which significantly affect the capturing of nanoparticles, are incorporated in the model. It is observed through model results that capture efficiency increases as we increase the magnetic field from 0.1 to 0.5 T, respectively. The increase in capture efficiency by increase in magnetic field is because as the magnetic field increases, the magnetization force, which is attractive in nature and responsible to attract or capture the magnetic particles, increases and results the capturing of large number of magnetic particles due to high strength of attractive magnetic force.Keywords: Capture efficiency, Implant assisted-Magnetic drug targeting (IA-MDT), Magnetic nanoparticles (MNPs).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1798457 Consideration of Magnetic Lines of Force as Magnets Produced by Percussion Waves
Authors: Angel Pérez Sánchez
Abstract:
Considering magnetic lines of force as a vector magnetic current was introduced by convention around 1830. But this leads to a dead end in traditional physics, and quantum explanations must be referred to explain the magnetic phenomenon. However, a study of magnetic lines as percussive waves leads to other paths capable of interpreting magnetism through traditional physics. The concept was explored by examining the behavior of two parallel electric current cables, which attract each other when the current goes in the same direction, and its application at a microscopic level inside magnets. Consideration of magnetic lines as magnets themselves would mean a paradigm shift in the study of magnetism and open the way to provide solutions to mysteries of magnetism until now only revealed by quantum mechanics. This groundbreaking study discovers how a magnetic field is created, as well as reason how magnetic attraction and repulsion work, understand how magnets behave when splitting them, and reveal the impossibility of a Magnetic Monopole. All of this is presented as if it were a symphony in which all the notes fit together perfectly to create a beautiful, smart, and simple work.
Keywords: Magnetic lines of force, magnetic field, magnetic attraction and repulsion, magnet split, magnetic monopole, magnetic lines of force as magnets, magnetic lines of force as waves.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 62456 Carbon Nanotubes with Magnetic Particles
Authors: Svitlana Kopyl, Vladimir Bystrov, Mikhail Maiorov, Manuel Valente, Igor Bdikin, Antonio C.M. Sousa
Abstract:
Magnetic carbon nanotubes composites were obtained by filling carbon nanotubes with paramagnetic iron oxide particles. Detailed investigation of magnetic behaviour of resulting composites was done at different temperatures. Measurements indicate that these functionalized nanotubes are superparamagnetic at room temperature; however, no superparamagnetism was observed at 125 K and 80 K. The blocking temperature TB was estimated at 145 K. These magnetic carbon nanotubes have the potential of being used in a wide range of applications, in particular, the production of nanofluids, which can be controlled and steered by appropriate magnetic fields.Keywords: carbon nanotubes, magnetic nanoparticles, magnetization, nanofluids
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2680455 Use of Magnetic Nanoparticles in Cancer Detection with MRI
Authors: A. Taqaddas
Abstract:
Magnetic Nanoparticles (MNPs) have great potential to overcome many of the shortcomings of the present diagnostic and therapeutic approaches used in cancer diagnosis and treatment. This Literature review discusses the use of Magnetic Nanoparticles focusing mainly on Iron oxide based MNPs in cancer imaging using MRI.
Keywords: Cancer, Imaging, Magnetic Nanoparticles, MRI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3149454 Wireless Neural Stimulator with Adjustable Electrical Quantity
Authors: Young-Seok Choi
Abstract:
The neural stimulation has been gaining much interest in neuromodulation research and clinical trials. For efficiency, there is a need for variable electrical stimulation such as current and voltage stimuli as well as wireless framework. In this regard, we develop the wireless neural stimulator capable of voltage and current stimuli. The system consists of ZigBee which is a wireless communication module and stimulus generator. The stimulus generator with 8-bits resolution enable both mono-polar and bi-polar waveform in voltage (-3.3~3.3V) and current(-330~330µA) stimulus mode which is controllable. The experimental results suggest that the proposed neural stimulator can play a role as an effective approach for neuromodulation.
Keywords: Neural stimulator, current stimulation, voltage stimulation, neuromodulation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2168453 The Study of Magnetic and Transport Properties in Normal State Eu1.85+yCe0.15-yCu1-yFeyO4+α-δ
Authors: Risdiana, D. Suhendar, S. Pratiwi, W. A. Somantri, T. Saragi
Abstract:
The effect of partially substitution of magnetic impurity Fe for Cu to the magnetic and transport properties in electron-doped superconducting cuprates of Eu1.85+yCe0.15-yCu1-yFeyO4+α-δ (ECCFO) with y = 0, 0.010, 0.020, and 0.050 has been studied, in order to investigate the mechanism of magnetic and transport properties of ECCFO in normal-state. Magnetic properties are investigated by DC magnetic-susceptibility measurements that carried out at low temperatures down to 2 K using a standard SQUID magnetometer in a magnetic field of 5 Oe on field cooling. Transport properties addressed to electron mobility, are extracted from radius of electron localization calculated from temperature dependence of resistivity. For y = 0, temperature dependence of dc magnetic-susceptibility (χ) indicated the change of magnetic behavior from paramagnetic to diamagnetic below 15 K. Above 15 K, all samples show paramagnetic behavior with the values of magnetic moment in every volume unit increased with increasing y. Electron mobility decreased with increasing y.Keywords: DC magnetic-susceptibility, electron mobility, Eu1.85+yCe0.15-yCu1-yFeyO4+α-δ, normal state.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3948452 Predicting Effective Permeability of Nanodielectric Composites Bonded by Soft Magnetic Nanoparticles
Authors: A. Thabet, M. Repetto
Abstract:
Dielectric materials play an important role in broad applications, such as electrical and electromagnetic applications. This research studied the prediction of effective permeability of composite and nanocomposite dielectric materials based on theoretical analysis to specify the effects of embedded magnetic inclusions in enhancing magnetic properties of dielectrics. Effective permeability of Plastics and Glass nanodielectrics have been predicted with adding various types and percentages of magnetic nano-particles (Fe, Ni-Cu, Ni-Fe, MgZn_Ferrite, NiZn_Ferrite) for formulating new nanodielectric magnetic industrial materials. Soft nanoparticles powders that have been used in new nanodielectrics often possess the structure of a particle size in the range of micrometer- to nano-sized grains and magnetic isotropy, e.g., a random distribution of magnetic easy axes of the nanograins. It has been succeeded for enhancing characteristics of new nanodielectric magnetic industrial materials. The results have shown a significant effect of inclusions distribution on the effective permeability of nanodielectric magnetic composites, and so, explained the effect of magnetic inclusions types and their concentration on the effective permeability of nanodielectric magnetic materials.
Keywords: Nanoparticles, Nanodielectrics, Nanocomposites, Effective Permeability, Magnetic Properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2760451 Effects of Combined Stimulation on the Autonomic Nervous System: A Pilot Study
Authors: Dae Won Lee, Ji Hyung Park, Sinae Eom, Syung Hyun Cho, Jong Soo Lee, Han Sung Kim
Abstract:
The autonomic nervous system has a regulatory structure that helps people adapt to changes in their environment by adjusting or modifying some functions in response to stress, and regulating involuntary function of human organs. The purpose of this study was to investigate the effect of combined stimulation, both far-infrared heating and chiropractic, on the autonomic nervous system activities using thermal image and heart rate variability. Six healthy subjects participated in this test. We compared the before and after autonomic nervous system activities through obtaining thermal image and photoplethysmogram signal. The thermal images showed that the combined stimulation changed subject-s body temperature more highly and widely than before. The result of heart rate variability indicated that LF/HF ratio decreased. We concluded that combined stimulation activates autonomic nervous system, and expected other possibilities of this combined stimulation.Keywords: Far-infrared heating, Chiropractic, Autonomic nervous system, Heart rate variability
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2463450 Road Vehicle Recognition Using Magnetic Sensing Feature Extraction and Classification
Authors: Xiao Chen, Xiaoying Kong, Min Xu
Abstract:
This paper presents a road vehicle detection approach for the intelligent transportation system. This approach mainly uses low-cost magnetic sensor and associated data collection system to collect magnetic signals. This system can measure the magnetic field changing, and it also can detect and count vehicles. We extend Mel Frequency Cepstral Coefficients to analyze vehicle magnetic signals. Vehicle type features are extracted using representation of cepstrum, frame energy, and gap cepstrum of magnetic signals. We design a 2-dimensional map algorithm using Vector Quantization to classify vehicle magnetic features to four typical types of vehicles in Australian suburbs: sedan, VAN, truck, and bus. Experiments results show that our approach achieves a high level of accuracy for vehicle detection and classification.
Keywords: Vehicle classification, signal processing, road traffic model, magnetic sensing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1401449 Development of Automatic Guided Mobile Robot Using Magnetic Position Meter
Authors: Geun-Mo Kim, Young-Jae Ryoo
Abstract:
In this paper, an automatic guided mobile robot using a new magnetic position meter is described. In order to measure the lateral position of a mobile robot, a new magnetic position meter is developed. The magnetic position meter can detect the position of a magnetic wire on the center of road. A mobile robot in designed with a sensing system, a steering system and a driving system. The designed mobile robot is tested to verify the performance of automatic guidance.
Keywords: Autonomous vehicle, magnetic position meter, steering, magnet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1652448 Application of Magnetic Circuit and Multiple-Coils Array in Induction Heating for Improving Localized Hyperthermia
Authors: Chi-Fang Huang, Xi-Zhang Lin, Yi-Ru Yang
Abstract:
Aiming the application of localized hyperthermia, a magnetic induction system with new approaches is proposed. The techniques in this system for improving the effectiveness of localized hyperthermia are that using magnetic circuit and the multiple-coil array instead of a giant coil for generating magnetic field. Specially, amorphous metal is adopted as the material of magnetic circuit. Detail design parameters of hardware are well described. Simulation tool is employed for this work and experiment result is reported as well.Keywords: cancer therapy, hyperthermia, Helmholtz coil, induction heating, magnetic circuit.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3271447 Magnetic Properties of NiO and MnO by LSDA+U
Authors: Chewa Thassana, Wicharn Techitdheera
Abstract:
The spin (ms) and orbital (mo) magnetic moment of the antiferromagnetic NiO and MnO have been studied in the local spin density approximation (LSDA+U) within full potential linear muffin-tin orbital (FP-LMTO method with in the coulomb interaction U varying from 0 to 10eV, exchange interaction J, from 0 to 1.0eV, and volume compression VC in range of 0 to 80%. Our calculated results shown that the spin magnetic moments and the orbital magnetic moments increase linearly with increasing U and J. While the interesting behaviour appears when volume compression is greater than 70% for NiO and 50% for MnO at which ms collapses. Further increase of volume compression to be at 80% leads to the disappearance of both magnetic moments.Keywords: spin-orbital magnetic moment, Coulomb interaction U and exchange interaction J, volume compression VC, LSDA+U.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2204446 Effect of Exchange Interaction J on Magnetic Moment of MnO
Authors: C. Thassana, W. Techitdheera
Abstract:
This calculation focus on the effect of exchange interaction J and Coulomb interaction U on spin magnetic moments (ms) of MnO by using the local spin density approximation plus the Coulomb interaction (LSDA+U) method within full potential linear muffin-tin orbital (FP-LMTO). Our calculated results indicated that the spin magnetic moments correlated to J and U. The relevant results exhibited the increasing spin magnetic moments with increasing exchange interaction and Coulomb interaction. Furthermore, equations of spin magnetic moment, which h good correspondence to the experimental data 4.58μB, are defined ms = 0.11J +4.52μB and ms = 0.03U+4.52μB. So, the relation of J and U parameter is obtained, it is obviously, J = -0.249U+1.346 eV.Keywords: exchange interaction J, the Coulomb interaction U, spin magnetic moment, LSDA+U, MnO.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1739445 Optimizing Voltage Parameter of Deep Brain Stimulation for Parkinsonian Patients by Modeling
Authors: M. Sadeghi, A.H. Jafari, S.M.P. Firoozabadi
Abstract:
Deep Brain Stimulation or DBS is the second solution for Parkinson's Disease. Its three parameters are: frequency, pulse width and voltage. They must be optimized to achieve successful treatment. Nowadays it is done clinically by neurologists and there is not certain numerical method to detect them. The aim of this research is to introduce simulation and modeling of Parkinson's Disease treatment as a computational procedure to select optimum voltage. We recorded finger tremor signals of some Parkinsonian patients under DBS treatment at constant frequency and pulse width but variable voltages; then, we adapted a new model to fit these data. The optimum voltages obtained by data fitting results were the same as neurologists- commented voltages, which means modeling can be used as an engineering method to select optimum stimulation voltages.Keywords: modeling, Deep Brain Stimulation, Parkinson'sdisease, tremor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1783444 Calculation of Masses and Magnetic Moment of the Nucleon using the MIT Bag Model
Authors: Mahvash Zandy Navgaran, Maryam Momeni Feili
Abstract:
The bag radius of the nucleon can be determined by MIT bag model based on electric and magnetic form factors of the nucleon. Also we determined the masses and magnetic moment of the nucleon with MIT bag model, using bag radius and compared with other results, suggests a suitable compatibility.
Keywords: MIT bag model, masses and magnetic moment of thenucleon, bag radius of the nucleon.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1411443 Electromagnetic Field Modeling in Human Tissue
Authors: Iliana Marinova, Valentin Mateev
Abstract:
For investigations of electromagnetic field distributions in biological structures by Finite Element Method (FEM), a method for automatic 3D model building of human anatomical objects is developed. Models are made by meshed structures and specific electromagnetic material properties for each tissue type. Mesh is built according to specific FEM criteria for achieving good solution accuracy. Several FEM models of anatomical objects are built. Formulation using magnetic vector potential and scalar electric potential (A-V, A) is used for modeling of electromagnetic fields in human tissue objects. The developed models are suitable for investigations of electromagnetic field distributions in human tissues exposed in external fields during magnetic stimulation, defibrillation, impedance tomography etc.Keywords: electromagnetic field, finite element method, humantissue.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5294442 A Novel EMG Feedback Control Method in Functional Electrical Stimulation Cycling System for Stroke Patients
Authors: Chien-Chih Chen, Ya-Hsin Hsueh, Zong-Cian He
Abstract:
With getting older in the whole population, the prevalence of stroke and its residual disability is getting higher and higher recently in Taiwan. The functional electrical stimulation cycling system (FESCS) is useful for hemiplegic patients. Because that the muscle of stroke patients is under hybrid activation. The raw electromyography (EMG) represents the residual muscle force of stroke subject whereas the peak-to-peak of stimulus EMG indicates the force enhancement benefiting from ES. It seems that EMG signals could be used for a parameter of feedback control mechanism. So, we design the feedback control protocol of FESCS, it includes physiological signal recorder, FPGA biomedical module, DAC and electrical stimulation circuit. Using the intensity of real-time EMG signal obtained from patients, as a feedback control method for the output voltage of FES-cycling system.Keywords: Functional Electrical Stimulation cycling system EMG, control protocol.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2114441 Evaluation of the Laser and Partial Vibration Stimulation on Osteoporosis
Authors: Ji Hyung Park, Dong-Hyun Seo, Young-Jin Jung, Han Sung Kim
Abstract:
The aim of this study is to evaluate the effects of the laser and partial vibration stimulation on the mice tibia with morphological characteristics. Twenty female C57BL/6 mice (12 weeks old) were used for the experiment. The study was carried out on four groups of animals each consisting of five mice. Four groups of mice were ovariectomized. Animals were scanned at 0 and 2 weeks after ovariectomy by using micro computed tomography to estimate morphological characteristics of tibial trabecular bone. Morphological analysis showed that structural parameters of multi-stimuli group appear significantly better phase in BV/TV, BS/BV, Tb.Th, Tb.N, Tb.Sp, and Tb.pf than single stimulation groups. However, single stimulation groups didn’t show significant effect on tibia with Sham group. This study suggests that multi-stimuli may restrain the change as the degenerate phase on osteoporosis in the mice tibia.
Keywords: Laser, Partial Vibration, Osteoporosis, in vivo micro-CT, mice.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1963440 Controlled Assembly of Magnetic Biomolecular Nanostructures
Authors: Hui Wang, Harish Padmanabhan, David Thomson, Krassen Dimitrov
Abstract:
Two optimized strategies were successfully established to develop biomolecule-based magnetic nanoassemblies. Streptavidin-coated and amine-coated magnetic nanoparticles were chosen as model scaffolds onto which double-stranded DNA and human immunoglobulin G were specifically conjugated in succession, using biotin-streptavidin interaction or covalent cross-linkers. The success of this study opens the prospect of developing selective and sensitive nanoparticle-based structures for diagnostics or drug delivery.Keywords: Antibody, DNA, linker, magnetic nanoparticles, streptavidin
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1548439 Effect of a Magnetic Field on the Onset of Marangoni Convection in a Micropolar Fluid
Authors: Mohd Nasir Mahmud, Ruwaidiah Idris, Ishak Hashim
Abstract:
With the presence of a uniform vertical magnetic field and suspended particles, thermocapillary instability in a horizontal liquid layer is investigated. The resulting eigenvalue is solved by the Galerkin technique for various basic temperature gradients. It is found that the presence of magnetic field always has a stability effect of increasing the critical Marangoni number.
Keywords: Marangoni convection, Magnetic field, Micropolar fluid, Non-uniform thermal gradient, Thermocapillary.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1636