Use of Magnetic Nanoparticles in Cancer Detection with MRI
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33093
Use of Magnetic Nanoparticles in Cancer Detection with MRI

Authors: A. Taqaddas

Abstract:

Magnetic Nanoparticles (MNPs) have great potential to overcome many of the shortcomings of the present diagnostic and therapeutic approaches used in cancer diagnosis and treatment. This Literature review discusses the use of Magnetic Nanoparticles focusing mainly on Iron oxide based MNPs in cancer imaging using MRI.

Keywords: Cancer, Imaging, Magnetic Nanoparticles, MRI.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1096551

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3149

References:


[1] WHO Factsheet N0 297, Cancer, 2011, Available at: http://www.who.int/mediacentre/factsheets/fs297/en/index.html. (Accessed 09/09/2014).
[2] D. Clifton, and R. Charles, “Chemoradiation for anal cancer: The more things change the more they stay the same,” Oncology, 24, 2010, 427- 30.
[3] D. Bharali, and S. Mousa, “Emerging nanomedicines for early cancer detection and improved treatment: Current perspectives and future promise,” Pharmacology & Therapeutics, 128, 2010, 324-335.
[4] M. Takeda, H. Tada, H. Higuchi, Y. Kobayashi, M. Kobayashi, Y. Sakurai, et al; “In vivo single molecular imaging and sentinel node navigation by nanotechnology for molecular targeting drug-delivery systems and tailor-made medicine,” Breast Cancer, 15, 2008, 145-52
[5] Nano.gov National Nanotechnology Initiative, Available at: http://www.nano.gov/. (Accessed 08/09/2014).
[6] H. Huang, S. Barua, G. Sharma, S. Dey, and K. Rege, “Inorganic Nanoparticles for cancer imaging and Therapy,” Journal of controlled Release, 155, 2011, 344-57.
[7] F. Alexis, J. Rhee, J. Richie, A. Radovic-Moreno, R. Langer, O. Farokhzad, “New frontiers in nanotechnology for cancer treatment,” Urologic Oncology: Seminars and Original Investigations, 26, 2008, 74–85
[8] L. Johnson, A. Gunasekera, M. Deuek, “Applications of Nanotechnology in Cancer,” Discovery Medicine, 9, 2010, 374-379, Available at: http://www.discoverymedicine.com/Laura-Johnson/ 2010/04/25/applications-of-nanotechnology-in-cancer/. (Accessed 08/09/2014)
[9] M. Russell, and Y. Anzai, “Ultrasmall superparamagnetic iron oxide enhanced MR imaging for lymph node metastases,” Radiography, 13, 2007, e73-e84
[10] I. Pantic, “Magnetic nanoparticles in cancer diagnosis and treatment: Novel Approaches,” Reviews on Advanced Materials Science, 26, 2010, 67-73.
[11] D. Huber, “Synthesis, properties, and applications of iron Nanoparticles,” Small, 1, 2005, 482–501. Available at: http://onlinelibrary.wiley.com/doi/10.1002/smll.200500006/pdf. (Accessed 08/09/2014).
[12] A. Figuerola, R. Corato, L. Manna, and T. Pellegrino, “From iron oxide nanoparticles towards advanced iron-based inorganic materials designed for biomedical applications,” Pharmaceutical Research, 62-2010, 126- 143
[13] C. Sun, J. Lee, and M. Zhang, “Magnetic nanoparticles in MR imaging and drug delivery,” Advanced Drug Delivery Reviews, 60, 2008, 1252– 1265.
[14] M. Tang, P. Russell, A Khatri, “Magnetic nanoparticles: Prospects in Cancer Imaging and Therapy,” Discovery Medicine, 7, 2009, 68-74. Available at: http://www.discoverymedicine.com/Monica-Tang/2009/ 07/29/magnetic-nanoparticles-prospects-in-cancer-imaging-andtherapy/. (Accessed 08/09/2014).
[15] K. Kairemo, E. Paola, K. Bergström, and E. Pauwels, “Nanoparticles in Cancer,” Current Radiopharmaceuticals, 1, 2008, 30-36
[16] H. Maeda, “The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting,” Advances in Enzyme Regulation, 41,2001, 89-207
[17] R. Weissleder, A. Bogdanov, and M. Papisov, “Drug targeting in magnetic resonance imaging,” Magnetic Resonance Quarterly, 8, 1992, 55–63.
[18] L. Tauxe, “Essentials of Paleomagnetism: Web Edition, Scripps Institution of Oceanography,” 2009, Available at: http://magician.ucsd.edu/essentials/WebBookse18.html#x23-280003.3. (Accessed 07/09/2014)
[19] A. Teja, and P. Koh, “Synthesis, properties and applications of magnetic iron oxide Nanoparticles,” Progress in Crystal Growth and Characterization of Materials, 55, 2009, 22-45
[20] MRI Tutor, Available at: http://www.mritutor.org/mritutor/superpar.htm. (Accessed 07/09/2014)
[21] A. Lu, E. Salabas, and F. Schuth, “Magnetic nanoparticles: synthesis, protection, functionalization, and application,” Angewandte Chemie. International Edition, 46, 2007, 1222–1244
[22] S. Maenosono, T. Suzuki, and S. Saita, “Superparamagnetic FePt nanoparticles as excellent MRI contrast agents,” Journal of Magnetism and Magnetic Materials, 320, 2008, L79–L83.
[23] W. Seo, J. Lee, X. Sun, Y. Suzuki, D. Mann, and Z. Liu, et al., (2006) “FeCo/graphitic-shell nanocrystals as advanced magnetic-resonanceimaging and near-infrared agents,” Nature Materials, 5, 2006, 971–976
[24] A. Gupta, and M. Gupta, “Synthesis and surface engineering of Iron Oxide Nanoparticles for biomedical applications,” Biomaterials, 26, 2005, 3995-4021
[25] B. Chertok, A. David, V. Yang, 2011 ‘Brain tumor targeting of magnetic nanoparticles for potential drug delivery: Effect of administration route and magnetic field topography, Journal of Controlled Release, 155, 2011, 393-9.
[26] M. Yallapu, S. Othman, E. Curtis, B. Gupta, M. Jaggi, and S. Chauhan, “Multi-functional magnetic nanoparticles for magnetic resonance imaging and cancer therapy,” Biomaterials, 32, 2011, 1890-1905.
[27] S. Benderbous, C. Corot, P. Jacobs, B. Bonnemain, “Superparamagnetic agents: physicochemical characteristics and preclinical imaging evaluation,” Academic Radiology, 3, Suppl 2, 1996, S292-4
[28] Y. Zhang, N. Kohler, and M. Zhang, (2002) ‘Surface modification of superparamagnetic magnetite Nanoparticles and their intracellualr uptake,” Biomaterials, 23, 2002, 1553-61.
[29] O. Veiseh, J. Gunn, M. Zhang, “Design and Fabrication of magnetic nanoparticles for targeted drug delivery and imaging,” Advanced Drug Delivery Reviews, 62, 2010, 284-304
[30] H. Choi, W. Liu, P. Misra, P. Tanaka, J. Zimmer, B. Ipe, M. Bawendi, and J. Frangioni, “Renal clearance of quantum dots,” Nature Biotechnology, 25, 2007, 1165–1170
[31] S. Moghimi, A. Hunter, and J. Murray, “Long-circulating and targetspecific nanoparticles: Theory to practice,” Pharmacological Reviews, 53, 2001, 283–318
[32] T. Banerjee, S. Mitra, A. Singh, R. Sharma, and A. Maitra, “Preparation, characterization and biodistribution of ultrafine chitosan Nanoparticles,” International Journal of Pharmaceutics, 243, 2002, 93–105
[33] S. Moghimi, “ Exploiting Bone-marrow microvascular structure for drug delivery and future therapies,” Advanced Drug Delivery Reviews, 17, 1995, 61–73
[34] I. Brigger, J. Morizet, G. Aubert, H. Chacun, M.-J. Terrier-Lacombe, P. Couvreur and G. Vassal, “Poly(ethylene glycol)-coated hexadecylcyanoacrylate nanospheres display a combined effect for brain tumour targeting,” The Journal of Pharmacology and Experimental Therapeutics, 303 2002, 928–936.
[35] E. Neuwelt, P. Varallyay, A. Bago, L. Muldoon, G. Nesbit, and R. Nixon, “Imaging of iron oxide nanoparticles by MR and light microscopy in patients with malignant brain tumours,” Neuropathology and Applied, Neurobiology., 30, 2004, 456–471
[36] D. Begley, “Delivery of therapeutic agents to the central nervous system: the problems and the possibilities,” Pharmacology and Therapeutics, 104, 2004, 29–45.
[37] Y. Koo, G. Reddy, M. Bhojani, R. Schneider, M. Philbert, A. Rehemtulla et al., “Brain cancer diagnosis and therapy with Nanoplatforms,” Advanced drug delivery Reviews, 58, 2006, 1556-1577.
[38] R. Lucarelli, M. Ogawa, N. Kosaka, B. Turkbey, H. Kobayashi, P. Choyke, “New Approaches to Lymphatic Imaging,” Lymphatic Research and Biology, 7, 2009, 205–214
[39] L. Wu, Y. Cao, C. Liao, J. Huang, F. Gao, “Diagnostic performance of USPIO-enhanced MRI for Lymph node metastases in different body regions: A meta-analysis,” European Journal of Radiology, 80, 2011, 582-9.
[40] M. Harisinghani, J. Barentsz, P. Hahn, W. Deserno, M.D., S. Tabatabaei, C. van de Kaa, J. Rosette, and R. Weissleder, “Noninvasive Detection of Clinically Occult Lymph-Node Metastases in Prostate Cancer,” The New England Journal of Medicine, 348, 2003, 2491-2499
[41] L. Curvo-Semedo, M. Diniz, J. Migueis, M. Juliao, P. Martins and A. Pinto, et al., “USPIO-enhanced magnetic resonance imaging for nodal staging in patients with head and neck cancer,” Journal of Magnetic Resonance Imaging, 24, 2006, 123–131
[42] Y. Anzai, C. Piccoli, E. Outwater, W. Stanford, D. Bluemke and P. Nurenberg, et al. “Evaluation of neck and body metastases to nodes with ferumoxtran 10-enhanced MR imaging: phase III safety and efficacy study,” Radiology, 228,2003, 777–788
[43] T. Harada, N. Tanigawa, M. Matsuki, T. Nohara, and I. Narabayashi, “Evaluation of Lymph node metastases of breast cancer using ultrasmall superparamagnetic iron oxide enhanced magnetic resonance imaging,” European Journal of Radiology, 63, 2007, 401-407
[44] M. Deserno, M. Harisinghani, M. Taupitz, G. Jager, J. Witjes , P. Mulders, et al., “Urinary bladder cancer: preoperative nodal staging with ferumoxtran-10-enhanced MR imaging,” Radiology, 233, 2004, 449– 456.
[45] A. Rockall, S. Sohaib, M. Harisinghani, S. Babar, N. Singh, and A. Jeyarajah, et al., “Diagnostic performance of nanoparticle-enhanced magnetic resonance imaging in the diagnosis of Lymph node metastases in patients with endometrial and cervical cancer,” Journal of Clinical Oncology, 23, 2005, 2813–2821
[46] O. Will, S. Purkayastha, and C. Chan, T. Athanasiou, A. Darzi, W. Gedroyc et al., “Diagnostic precision of nanoparticle-Enhanced MRI for lymph-node metastases: a meta-analysis,” The Lancet Oncology, 7, 2006, 52–60.
[47] Y. Ling, K. Wei, Y. Luo, X. Gao, and S. Zhong, “Dual docetaxel/superparamagnetic iron oxide loaded nanoparticles for both targeting magnetic resonance imaging and cancer therapy,” Biomaterials, 32, 2011, 7139-7150.
[48] T. Jain, J. Richey, M. Strand, D. Leslie-Pelecky, C. Flask, and V. Labhasetwar, (2008) ‘Magnetic Nanoparticles with dual functional properties: Drug delivery and magnetic resonance imaging, Biomaterials, 29, 2008, 4012-21.
[49] P. Reimer, N. Jahnke, M. Fiebich, W. Schima, F. Deckers, C. Marx, N. Holzknecht, S. Saini, “Hepatic lesion detection and characterization : value of Non enhanced MR imaging, Superparamagnetic Iron oxide enhanced MR imaging, and Spiral CT-ROC Analysis,” Radiology, 217, 2000, 152-8
[50] W. Zheng, K. Zhou, Z. Chen, J. Shen, C. Chen, and S. Zhang, “Characterization of focal hepatic lesions with SPIO enhanced MRI,” World journal of Gastroenterology, 8, 2002, 82-6.
[51] P. Reimer, & B. Tombach, “Hepatic MRI with SPIO: Detection and characterization of focal liver lesions,” European Radiology, 8, 1998, 1198-204.
[52] W. Enochs, G. Harsh, F. Hochberg, and R. Weissleder, “Improved delineation of human brain tumors on MR images using a longcirculating, superparamagnetic iron oxide agent,” Journal of. Magnetic. Resonance. Imaging, 9, 1999, 228-232.
[53] T. Murillo, C. Sandquist, P. Jacobs, G. Nesbit, S. Manninger, and E. Neuwelt, “Imaging brain tumors with ferumoxtran-10, a nanoparticle magnetic resonance contrast agent,” Therapy, 2, 2005, 871–882.
[54] E. Peira, P. Marzola, V. Podio, S. Aime, A. Sbarbati, and M. Gasco, “In vitro and in vivo study of solid lipid Nanoparticles loaded with superparamagnetic iron oxide,” J. Drug Target. 11(2003) 19–24
[55] M.Kircher, U. Mahmood, R. King, R. Weissleder, and L. Josephson, “A multimodal nanoparticle for preoperative magnetic resonance imaging and intraoperative optical braintumor delineation,” Cancer Research. 63, 2003, 8122–5.
[56] O. Veiseh, C. Sun, J. Gunn, N. Kohler, P. Gabikian, D. Lee, et al., “Optical and MRI multifunctional nanoprobe for targeting gliomas,” Nano Letters. 5, 2005, 1003–8.
[57] B. Moffat, G. Reddy, P. McConville, D. Hall, T. Chenevert, M. Kopelman, et al., “A novel polyacrylamide magnetic nanoparticle contrast agent for molecular imaging using MRI,” Molecular Imaging, 2, 2003, 324–332.
[58] C. Sun, O. Veiseh, J. Gunn, C. Fang, S. Hansen, D. Lee, et al., “In vivo MRI detection of gliomas by chlorotoxin-conjugated superparamagnetic nanoprobes,” Small, 4, 2008, 372–379
[59] H. Xie, Y. Zhu, W. Jiang, Q. Zhou, H. Yang H, N. Gu, et al., “Lactoferrin-conjugated superparamagnetic iron oxide nanoparticles as a specific MRI contrast agent for detection of brain glioma in vivo,” Biomaterials, 32, 2011, 495-502.
[60] H. Choi, S. Choi, R. Zhou, H. Kung, I. Chen, “Iron oxide nanoparticles as magnetic resonance contrast agents for tumour imaging via folate receptor-targeted delivery,” Academic Radiology, 11, 2004, 996-1004.