Search results for: structural equation modelling.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2649

Search results for: structural equation modelling.

2409 Embedding the Dimensions of Sustainability into City Information Modelling

Authors: Ali M. Al-Shaery

Abstract:

The purpose of this paper is to address the functions of sustainability dimensions in city information modelling and to present the required sustainability criteria that support establishing a sustainable planning framework for enhancing existing cities and developing future smart cities. The paper is divided into two sections. The first section is based on the examination of a wide and extensive array of cross-disciplinary literature in the last decade and a half to conceptualize the terms ‘sustainable’ and ‘smart city’, and map their associated criteria to city information modelling. The second section is based on analyzing two approaches relating to city information modelling, namely statistical and dynamic approaches, and their suitability in the development of cities’ action plans. The paper argues that the use of statistical approaches to embed sustainability dimensions in city information modelling have limited value. Despite the popularity of such approaches in addressing other dimensions like utility and service management in development and action plans of the world cities, these approaches are unable to address the dynamics across various city sectors with regards to economic, environmental and social criteria. The paper suggests an integrative dynamic and cross-disciplinary planning approach to embedding sustainability dimensions in city information modelling frameworks. Such an approach will pave the way towards optimal planning and implementation of priority actions of projects and investments. The approach can be used to achieve three main goals: (1) better development and action plans for world cities (2) serve the development of an integrative dynamic and cross-disciplinary framework that incorporates economic, environmental and social sustainability criteria and (3) address areas that require further attention in the development of future sustainable and smart cities. The paper presents an innovative approach for city information modelling and a well-argued, balanced hierarchy of sustainability criteria that can contribute to an area of research which is still in its infancy in terms of development and management.

Keywords: Information modelling, smart city, sustainable city, sustainability dimensions, sustainability criteria, city development planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1122
2408 On the Approximate Solution of a Nonlinear Singular Integral Equation

Authors: Nizami Mustafa, C. Ardil

Abstract:

In this study, the existence and uniqueness of the solution of a nonlinear singular integral equation that is defined on a region in the complex plane is proven and a method is given for finding the solution.

Keywords: Approximate solution, Fixed-point principle, Nonlinear singular integral equations, Vekua integral operator

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1873
2407 A Comparison of Recent Methods for Solving a Model 1D Convection Diffusion Equation

Authors: Ashvin Gopaul, Jayrani Cheeneebash, Kamleshsing Baurhoo

Abstract:

In this paper we study some numerical methods to solve a model one-dimensional convection–diffusion equation. The semi-discretisation of the space variable results into a system of ordinary differential equations and the solution of the latter involves the evaluation of a matrix exponent. Since the calculation of this term is computationally expensive, we study some methods based on Krylov subspace and on Restrictive Taylor series approximation respectively. We also consider the Chebyshev Pseudospectral collocation method to do the spatial discretisation and we present the numerical solution obtained by these methods.

Keywords: Chebyshev Pseudospectral collocation method, convection-diffusion equation, restrictive Taylor approximation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1634
2406 Existence and Uniqueness of Positive Solution for Nonlinear Fractional Differential Equation with Integral Boundary Conditions

Authors: Chuanyun Gu

Abstract:

By using fixed point theorems for a class of generalized concave and convex operators, the positive solution of nonlinear fractional differential equation with integral boundary conditions is studied, where n ≥ 3 is an integer, μ is a parameter and 0 ≤ μ < α. Its existence and uniqueness is proved, and an iterative scheme is constructed to approximate it. Finally, two examples are given to illustrate our results.

Keywords: Fractional differential equation, positive solution, existence and uniqueness, fixed point theorem, generalized concave and convex operator, integral boundary conditions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1067
2405 Alternating Implicit Block FDTD Method For Scalar Wave Equation

Authors: N. M. Nusi, M. Othman, M. Suleiman, F. Ismail, N. Alias

Abstract:

In this paper, an alternating implicit block method for solving two dimensional scalar wave equation is presented. The new method consist of two stages for each time step implemented in alternating directions which are very simple in computation. To increase the speed of computation, a group of adjacent points is computed simultaneously. It is shown that the presented method increase the maximum time step size and more accurate than the conventional finite difference time domain (FDTD) method and other existing method of natural ordering.

Keywords: FDTD, Scalar wave equation, alternating direction implicit (ADI), alternating group explicit (AGE), asymmetric approximation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1858
2404 Simulated Annealing Application for Structural Optimization

Authors: Farhad Kolahan, M. Hossein Abolbashari, Samaeddin Mohitzadeh

Abstract:

Several methods are available for weight and shape optimization of structures, among which Evolutionary Structural Optimization (ESO) is one of the most widely used methods. In ESO, however, the optimization criterion is completely case-dependent. Moreover, only the improving solutions are accepted during the search. In this paper a Simulated Annealing (SA) algorithm is used for structural optimization problem. This algorithm differs from other random search methods by accepting non-improving solutions. The implementation of SA algorithm is done through reducing the number of finite element analyses (function evaluations). Computational results show that SA can efficiently and effectively solve such optimization problems within short search time.

Keywords: Simulated annealing, Structural optimization, Compliance, C.V. product.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1901
2403 Numerical Solution for Elliptical Crack with Developing Cusps Subject to Shear Loading

Authors: Nik Mohd Asri Nik Long, Koo Lee Feng, Zainidin K. Eshkuvatov, A. A. Khaldjigitov

Abstract:

This paper study the behavior of the solution at the crack edges for an elliptical crack with developing cusps, Ω in the plane elasticity subjected to shear loading. The problem of finding the resulting shear stress can be formulated as a hypersingular integral equation over Ω and it is then transformed into a similar equation over a circular region, D, using conformal mapping. An appropriate collocation points are chosen on the region D to reduce the hypersingular integral equation into a system of linear equations with (2N+1)(N+1) unknown coefficients, which will later be used in the determination of shear stress intensity factors and maximum shear stress intensity. Numerical solution for the considered problem are compared with the existing asymptotic solution, and displayed graphically. Our results give a very good agreement to the existing asymptotic solutions.

Keywords: Elliptical crack, stress intensity factors, hyper singular integral equation, shear loading, conformal mapping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1654
2402 Heat and Mass Transfer Modelling of Industrial Sludge Drying at Different Pressures and Temperatures

Authors: L. Al Ahmad, C. Latrille, D. Hainos, D. Blanc, M. Clausse

Abstract:

A two-dimensional finite volume axisymmetric model is developed to predict the simultaneous heat and mass transfers during the drying of industrial sludge. The simulations were run using COMSOL-Multiphysics 3.5a. The input parameters of the numerical model were acquired from a preliminary experimental work. Results permit to establish correlations describing the evolution of the various parameters as a function of the drying temperature and the sludge water content. The selection and coupling of the equation are validated based on the drying kinetics acquired experimentally at a temperature range of 45-65 °C and absolute pressure range of 200-1000 mbar. The model, incorporating the heat and mass transfer mechanisms at different operating conditions, shows simulated values of temperature and water content. Simulated results are found concordant with the experimental values, only at the first and last drying stages where sludge shrinkage is insignificant. Simulated and experimental results show that sludge drying is favored at high temperatures and low pressure. As experimentally observed, the drying time is reduced by 68% for drying at 65 °C compared to 45 °C under 1 atm. At 65 °C, a 200-mbar absolute pressure vacuum leads to an additional reduction in drying time estimated by 61%. However, the drying rate is underestimated in the intermediate stage. This rate underestimation could be improved in the model by considering the shrinkage phenomena that occurs during sludge drying.

Keywords: Industrial sludge drying, heat transfer, mass transfer, mathematical modelling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 595
2401 Experimental Investigation on Residual Stresses in Welded Medium-Walled I-shaped Sections Fabricated from Q460GJ Structural Steel Plates

Authors: Qian Zhu, Shidong Nie, Bo Yang, Gang Xiong, Guoxin Dai

Abstract:

GJ steel is a new type of high-performance structural steel which has been increasingly adopted in practical engineering. Q460GJ structural steel has a nominal yield strength of 460 MPa, which does not decrease significantly with the increase of steel plate thickness like normal structural steel. Thus, Q460GJ structural steel is normally used in medium-walled welded sections. However, research works on the residual stress in GJ steel members are few though it is one of the vital factors that can affect the member and structural behavior. This article aims to investigate the residual stresses in welded I-shaped sections fabricated from Q460GJ structural steel plates by experimental tests. A total of four full scale welded medium-walled I-shaped sections were tested by sectioning method. Both circular curve correction method and straightening measurement method were adopted in this study to obtain the final magnitude and distribution of the longitudinal residual stresses. In addition, this paper also explores the interaction between flanges and webs. And based on the statistical evaluation of the experimental data, a multilayer residual stress model is proposed.

Keywords: Q460GJ structural steel, residual stresses, sectioning method, Welded medium-walled I-shaped sections.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1007
2400 Seismic Performance Evaluation of the Composite Structural System with Separated Gravity and Lateral Resistant Systems

Authors: Zi-Ang Li, Mu-Xuan Tao

Abstract:

During the process of the industrialization of steel structure housing, a composite structural system with separated gravity and lateral resistant systems has been applied in engineering practices, which consists of composite frame with hinged beam-column joints, steel brace and RC shear wall. As an attempt in steel structural system area, seismic performance evaluation of the separated composite structure is important for further application in steel housing. This paper focuses on the seismic performance comparison of the separated composite structural system and traditional steel frame-shear wall system under the same inter-story drift ratio (IDR) provision limit. The same architectural layout of a high-rise building is designed as two different structural systems at the same IDR level, and finite element analysis using pushover method is carried out. Static pushover analysis implies that the separated structural system exhibits different lateral deformation mode and failure mechanism with traditional steel frame-shear wall system. Different indexes are adopted and discussed in seismic performance evaluation, including IDR, safe factor (SF), shear wall damage, etc. The performance under maximum considered earthquake (MCE) demand spectrum shows that the shear wall damage of two structural systems are similar; the separated composite structural system exhibits less plastic hinges; and the SF index value of the separated composite structural system is higher than the steel frame shear wall structural system.

Keywords: Finite element analysis, seismic performance evaluation, separated composite structural system, static pushover analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 499
2399 Mathematical Modelling of Partially Filled Fluid Coupling Behaviour

Authors: A. M. Maqableh

Abstract:

Modelling techniques for a fluid coupling taken from published literature have been extended to include the effects of the filling and emptying of the coupling with oil and the variation in losses when the coupling is partially full. In the model, the fluid flow inside the coupling is considered to have two principal velocity components; one circumferentially about the coupling axis (centrifugal head) and the other representing the secondary vortex within the coupling itself (vortex head). The calculation of liquid mass flow rate circulating between the two halves of the coupling is based on: the assumption of a linear velocity variation in the circulating vortex flow; the head differential in the fluid due to the speed difference between the two shafts; and the losses in the circulating vortex flow as a result of the impingement of the flow with the blades in the coupling and friction within the passages between the blades.

Keywords: Fluid Coupling, Mathematical Modelling, partially filled.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2038
2398 Finite Element Approximation of the Heat Equation under Axisymmetry Assumption

Authors: Raphael Zanella

Abstract:

This works deals with the finite element approximation of axisymmetric problems. The weak formulation of the heat equation under axisymmetry assumption is established for continuous finite elements. The weak formulation is implemented in a C++ solver with implicit time marching. The code is verified by space and time convergence tests using a manufactured solution. An example problem is solved with an axisymmetric formulation and with a 3D formulation. Both formulations lead to the same result but the code based on the axisymmetric formulation is mush faster due to the lower number of degrees of freedom. This confirms the correctness of our approach and the interest of using an axisymmetric formulation when it is possible.

Keywords: Axisymmetric problem, continuous finite elements, heat equation, weak formulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 288
2397 Multivariable System Reduction Using Stability Equation Method and SRAM

Authors: D. Bala Bhaskar

Abstract:

An algorithm is proposed for the order reduction of large scale linear dynamic multi variable systems where the reduced order model denominator is obtained by using Stability equation method and numerator coefficients are obtained by using SRAM. The proposed algorithm produces a lower order model for an original stable high order multivariable system. The reduction procedure is easy to understand, efficient and computer oriented. To highlight the advantages of the approach, the algorithm is illustrated with the help of a numerical example and the results are compared with the other existing techniques in literature.

Keywords: Multi variable systems, order reduction, stability equation method, SRAM, time domain characteristics, ISE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 674
2396 Day Type Identification for Algerian Electricity Load using Kohonen Maps

Authors: Mohamed Tarek Khadir, Damien Fay, Ahmed Boughrira

Abstract:

Short term electricity demand forecasts are required by power utilities for efficient operation of the power grid. In a competitive market environment, suppliers and large consumers also require short term forecasts in order to estimate their energy requirements in advance. Electricity demand is influenced (among other things) by the day of the week, the time of year and special periods and/or days such as Ramadhan, all of which must be identified prior to modelling. This identification, known as day-type identification, must be included in the modelling stage either by segmenting the data and modelling each day-type separately or by including the day-type as an input. Day-type identification is the main focus of this paper. A Kohonen map is employed to identify the separate day-types in Algerian data.

Keywords: Day type identification, electricity Load, Kohonenmaps, load forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1732
2395 Solitary Wave Solutions for Burgers-Fisher type Equations with Variable Coefficients

Authors: Amit Goyal, Alka, Rama Gupta, C. Nagaraja Kumar

Abstract:

We have solved the Burgers-Fisher (BF) type equations, with time-dependent coefficients of convection and reaction terms, by using the auxiliary equation method. A class of solitary wave solutions are obtained, and some of which are derived for the first time. We have studied the effect of variable coefficients on physical parameters (amplitude and velocity) of solitary wave solutions. In some cases, the BF equations could be solved for arbitrary timedependent coefficient of convection term.

Keywords: Solitary wave solution, Variable coefficient Burgers- Fisher equation, Auxiliary equation method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1576
2394 Solving One-dimensional Hyperbolic Telegraph Equation Using Cubic B-spline Quasi-interpolation

Authors: Marzieh Dosti, Alireza Nazemi

Abstract:

In this paper, the telegraph equation is solved numerically by cubic B-spline quasi-interpolation .We obtain the numerical scheme, by using the derivative of the quasi-interpolation to approximate the spatial derivative of the dependent variable and a low order forward difference to approximate the temporal derivative of the dependent variable. The advantage of the resulting scheme is that the algorithm is very simple so it is very easy to implement. The results of numerical experiments are presented, and are compared with analytical solutions by calculating errors L2 and L∞ norms to confirm the good accuracy of the presented scheme.

Keywords: Cubic B-spline, quasi-interpolation, collocation method, second-order hyperbolic telegraph equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2742
2393 Comparative Analysis of DTC Based Switched Reluctance Motor Drive Using Torque Equation and FEA Models

Authors: P. Srinivas, P. V. N. Prasad

Abstract:

Since torque ripple is the main cause of noise and vibrations, the performance of Switched Reluctance Motor (SRM) can be improved by minimizing its torque ripple using a novel control technique called Direct Torque Control (DTC). In DTC technique, torque is controlled directly through control of magnitude of the flux and change in speed of the stator flux vector. The flux and torque are maintained within set hysteresis bands.

The DTC of SRM is analyzed by two methods. In one method, the actual torque is computed by conducting Finite Element Analysis (FEA) on the design specifications of the motor. In the other method, the torque is computed by Simplified Torque Equation. The variation of peak current, average current, torque ripple and speed settling time with Simplified Torque Equation model is compared with FEA based model.

Keywords: Direct Toque Control, Simplified Torque Equation, Finite Element Analysis, Torque Ripple.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3460
2392 Schrödinger Equation with Position-Dependent Mass: Staggered Mass Distributions

Authors: J. J. Peña, J. Morales, J. García-Ravelo, L. Arcos-Díaz

Abstract:

The Point canonical transformation method is applied for solving the Schrödinger equation with position-dependent mass. This class of problem has been solved for continuous mass distributions. In this work, a staggered mass distribution for the case of a free particle in an infinite square well potential has been proposed. The continuity conditions as well as normalization for the wave function are also considered. The proposal can be used for dealing with other kind of staggered mass distributions in the Schrödinger equation with different quantum potentials.

Keywords: Free particle, point canonical transformation method, position-dependent mass, staggered mass distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1521
2391 Research on the Correlation of the Fluctuating Density Gradient of the Compressible Flows

Authors: Yasuo Obikane

Abstract:

This work is to study a roll of the fluctuating density gradient in the compressible flows for the computational fluid dynamics (CFD). A new anisotropy tensor with the fluctuating density gradient is introduced, and is used for an invariant modeling technique to model the turbulent density gradient correlation equation derived from the continuity equation. The modeling equation is decomposed into three groups: group proportional to the mean velocity, and that proportional to the mean strain rate, and that proportional to the mean density. The characteristics of the correlation in a wake are extracted from the results by the two dimensional direct simulation, and shows the strong correlation with the vorticity in the wake near the body. Thus, it can be concluded that the correlation of the density gradient is a significant parameter to describe the quick generation of the turbulent property in the compressible flows.

Keywords: Turbulence Modeling , Density Gradient Correlation, Compressible

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1393
2390 Instability of Soliton Solutions to the Schamel-nonlinear Schrödinger Equation

Authors: Sarun Phibanchon, Michael A. Allen

Abstract:

A variational method is used to obtain the growth rate of a transverse long-wavelength perturbation applied to the soliton solution of a nonlinear Schr¨odinger equation with a three-half order potential. We demonstrate numerically that this unstable perturbed soliton will eventually transform into a cylindrical soliton.

Keywords: Soliton, instability, variational method, spectral method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3636
2389 Seismic Performance of Masonry Buildings in Algeria

Authors: F. Lazzali, S. Bedaoui

Abstract:

Structural performance and seismic vulnerability of masonry buildings in Algeria are investigated in this paper. Structural classification of such buildings is carried out regarding their structural elements. Seismicity of Algeria is briefly discussed. Then vulnerability of masonry buildings and their failure mechanisms in the Boumerdes earthquake (May, 2003) are examined.

Keywords: Masonry building, seismic deficiencies, vulnerability classes

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2309
2388 Wear Measuring and Wear Modelling Based On Archard, ASTM, and Neural Network Models

Authors: A. Shebani, C. Pislaru

Abstract:

The wear measuring and wear modelling are fundamental issues in the industrial field, mainly correlated to the economy and safety. Therefore, there is a need to study the wear measurements and wear estimation. Pin-on-disc test is the most common test which is used to study the wear behaviour. In this paper, the pin-on-disc (AEROTECH UNIDEX 11) is used for the investigation of the effects of normal load and hardness of material on the wear under dry and sliding conditions. In the pin-on-disc rig, two specimens were used; one, a pin is made of steel with a tip, positioned perpendicular to the disc, where the disc is made of aluminium. The pin wear and disc wear were measured by using the following instruments: The Talysurf instrument, a digital microscope, and the alicona instrument. The Talysurf profilometer was used to measure the pin/disc wear scar depth, digital microscope was used to measure the diameter and width of wear scar, and the alicona was used to measure the pin wear and disc wear. After that, the Archard model, American Society for Testing and Materials model (ASTM), and neural network model were used for pin/disc wear modelling. Simulation results were implemented by using the Matlab program. This paper focuses on how the alicona can be used for wear measurements and how the neural network can be used for wear estimation.

Keywords: Wear measuring, Wear modelling, Neural Network, Alicona.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4218
2387 Some Solitary Wave Solutions of Generalized Pochhammer-Chree Equation via Exp-function Method

Authors: Kourosh Parand, Jamal Amani Rad

Abstract:

In this paper, Exp-function method is used for some exact solitary solutions of the generalized Pochhammer-Chree equation. It has been shown that the Exp-function method, with the help of symbolic computation, provides a very effective and powerful mathematical tool for solving nonlinear partial differential equations. As a result, some exact solitary solutions are obtained. It is shown that the Exp-function method is direct, effective, succinct and can be used for many other nonlinear partial differential equations.

Keywords: Exp-function method, generalized Pochhammer- Chree equation, solitary wave solution, ODE's.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1546
2386 On-line and Off-line POD Assisted Projective Integral for Non-linear Problems: A Case Study with Burgers-Equation

Authors: Montri Maleewong, Sirod Sirisup

Abstract:

The POD-assisted projective integration method based on the equation-free framework is presented in this paper. The method is essentially based on the slow manifold governing of given system. We have applied two variants which are the “on-line" and “off-line" methods for solving the one-dimensional viscous Bergers- equation. For the on-line method, we have computed the slow manifold by extracting the POD modes and used them on-the-fly along the projective integration process without assuming knowledge of the underlying slow manifold. In contrast, the underlying slow manifold must be computed prior to the projective integration process for the off-line method. The projective step is performed by the forward Euler method. Numerical experiments show that for the case of nonperiodic system, the on-line method is more efficient than the off-line method. Besides, the online approach is more realistic when apply the POD-assisted projective integration method to solve any systems. The critical value of the projective time step which directly limits the efficiency of both methods is also shown.

Keywords: Projective integration, POD method, equation-free.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1313
2385 A New Approach to Solve Blasius Equation using Parameter Identification of Nonlinear Functions based on the Bees Algorithm (BA)

Authors: E. Assareh, M.A. Behrang, M. Ghalambaz, A.R. Noghrehabadi, A. Ghanbarzadeh

Abstract:

In this paper, a new approach is introduced to solve Blasius equation using parameter identification of a nonlinear function which is used as approximation function. Bees Algorithm (BA) is applied in order to find the adjustable parameters of approximation function regarding minimizing a fitness function including these parameters (i.e. adjustable parameters). These parameters are determined how the approximation function has to satisfy the boundary conditions. In order to demonstrate the presented method, the obtained results are compared with another numerical method. Present method can be easily extended to solve a wide range of problems.

Keywords: Bees Algorithm (BA); Approximate Solutions; Blasius Differential Equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1756
2384 Stabilization of the Bernoulli-Euler Plate Equation: Numerical Analysis

Authors: Carla E. O. de Moraes, Gladson O. Antunes, Mauro A. Rincon

Abstract:

The aim of this paper is to study the internal stabilization of the Bernoulli-Euler equation numerically. For this, we consider a square plate subjected to a feedback/damping force distributed only in a subdomain. An algorithm for obtaining an approximate solution to this problem was proposed and implemented. The numerical method used was the Finite Difference Method. Numerical simulations were performed and showed the behavior of the solution, confirming the theoretical results that have already been proved in the literature. In addition, we studied the validation of the numerical scheme proposed, followed by an analysis of the numerical error; and we conducted a study on the decay of the energy associated.

Keywords: Bernoulli-Euler Plate Equation, Numerical Simulations, Stability, Energy Decay, Finite Difference Method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1990
2383 Quasi-Static Analysis of End Plate Beam-to-Column Connections

Authors: A. Al-Rifaie, Z. W. Guan, S. W. Jones

Abstract:

This paper presents a method for modelling and analysing end plate beam-to-column connections to obtain the quasi-static behaviour using non-linear dynamic explicit integration. In addition to its importance to study the static behaviour of a structural member, quasi-static behaviour is largely needed to be compared with the dynamic behaviour of such members in order to investigate the dynamic effect by proposing dynamic increase factors (DIFs). The beam-to-column bolted connections contain various contact surfaces at which the implicit procedure may have difficulties converging, resulting in a large number of iterations. Contrary, explicit procedure could deal effectively with complex contacts without converging problems. Hence, finite element modelling using ABAQUS/explicit is used in this study to address the dynamic effect may be produced using explicit procedure. Also, the effect of loading rate and mass scaling are discussed to investigate their effect on the time of analysis. The results show that the explicit procedure is valuable to model the end plate beam-to-column connections in terms of failure mode, load-displacement relationships. Also, it is concluded that loading rate and mass scaling should be carefully selected to avoid the dynamic effect in the solution.

Keywords: Quasi-static, end plate, finite element, connections.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1895
2382 Structural Analysis of a Composite Wind Turbine Blade

Authors: C. Amer, M. Sahin

Abstract:

The design of an optimised horizontal axis 5-meter-long wind turbine rotor blade in according with IEC 61400-2 standard is a research and development project in order to fulfil the requirements of high efficiency of torque from wind production and to optimise the structural components to the lightest and strongest way possible. For this purpose, a research study is presented here by focusing on the structural characteristics of a composite wind turbine blade via finite element modelling and analysis tools. In this work, first, the required data regarding the general geometrical parts are gathered. Then, the airfoil geometries are created at various sections along the span of the blade by using CATIA software to obtain the two surfaces, namely; the suction and the pressure side of the blade in which there is a hat shaped fibre reinforced plastic spar beam, so-called chassis starting at 0.5m from the root of the blade and extends up to 4 m and filled with a foam core. The root part connecting the blade to the main rotor differential metallic hub having twelve hollow threaded studs is then modelled. The materials are assigned as two different types of glass fabrics, polymeric foam core material and the steel-balsa wood combination for the root connection parts. The glass fabrics are applied using hand wet lay-up lamination with epoxy resin as METYX L600E10C-0, is the unidirectional continuous fibres and METYX XL800E10F having a tri-axial architecture with fibres in the 0,+45,-45 degree orientations in a ratio of 2:1:1. Divinycell H45 is used as the polymeric foam. The finite element modelling of the blade is performed via MSC PATRAN software with various meshes created on each structural part considering shell type for all surface geometries, and lumped mass were added to simulate extra adhesive locations. For the static analysis, the boundary conditions are assigned as fixed at the root through aforementioned bolts, where for dynamic analysis both fixed-free and free-free boundary conditions are made. By also taking the mesh independency into account, MSC NASTRAN is used as a solver for both analyses. The static analysis aims the tip deflection of the blade under its own weight and the dynamic analysis comprises normal mode dynamic analysis performed in order to obtain the natural frequencies and corresponding mode shapes focusing the first five in and out-of-plane bending and the torsional modes of the blade. The analyses results of this study are then used as a benchmark prior to modal testing, where the experiments over the produced wind turbine rotor blade has approved the analytical calculations.

Keywords: Dynamic analysis, Fiber Reinforced Composites, Horizontal axis wind turbine blade, Hand-wet layup, Modal Testing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4959
2381 High Order Accurate Runge Kutta Nodal Discontinuous Galerkin Method for Numerical Solution of Linear Convection Equation

Authors: Faheem Ahmed, Fareed Ahmed, Yongheng Guo, Yong Yang

Abstract:

This paper deals with a high-order accurate Runge Kutta Discontinuous Galerkin (RKDG) method for the numerical solution of the wave equation, which is one of the simple case of a linear hyperbolic partial differential equation. Nodal DG method is used for a finite element space discretization in 'x' by discontinuous approximations. This method combines mainly two key ideas which are based on the finite volume and finite element methods. The physics of wave propagation being accounted for by means of Riemann problems and accuracy is obtained by means of high-order polynomial approximations within the elements. High order accurate Low Storage Explicit Runge Kutta (LSERK) method is used for temporal discretization in 't' that allows the method to be nonlinearly stable regardless of its accuracy. The resulting RKDG methods are stable and high-order accurate. The L1 ,L2 and L∞ error norm analysis shows that the scheme is highly accurate and effective. Hence, the method is well suited to achieve high order accurate solution for the scalar wave equation and other hyperbolic equations.

Keywords: Nodal Discontinuous Galerkin Method, RKDG, Scalar Wave Equation, LSERK

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2435
2380 Proposal of Design Method in the Semi-Acausal System Model

Authors: Junji Kaneko, Shigeyuki Haruyama, Ken Kaminishi, Tadayuki Kyoutani, Siti Ruhana Omar, Oke Oktavianty

Abstract:

This study is used as a definition method to the value and function in manufacturing sector. In concurrence of discussion about present condition of modeling method, until now definition of 1D-CAE is ambiguity and not conceptual. Across all the physic fields, those methods are defined with the formulation of differential algebraic equation which only applied time derivation and simulation. At the same time, we propose semi-acausal modeling concept and differential algebraic equation method as a newly modeling method which the efficiency has been verified through the comparison of numerical analysis result between the semi-acausal modeling calculation and FEM theory calculation.

Keywords: System Model, Physical Models, Empirical Models, Conservation Law, Differential Algebraic Equation, Object-Oriented.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2197