Search results for: stiffness source.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1760

Search results for: stiffness source.

1760 The Effects of Asymmetric Bracing on Steel Structures under Seismic Loads

Authors: Mahmoud Miri, Soleiman Maramaee

Abstract:

Because of architectural condition and structure application, sometimes mass source and stiffness source are not coincidence, and the structure is irregular. The structure is also might be asymmetric as an asymmetric bracing in plan which leads to unbalance distribution of stiffness or because of unbalance distribution of the mass. Both condition lead to eccentricity and torsion in the structure. The deficiency of ordinary code to evaluate the performance of steel structures against earthquake has been caused designing based on performance level or capacity spectrum be used. By using the mentioned methods it is possible to design a structure that its behavior against different earthquakes be predictive. In this article 5- story buildings with different percentage of asymmetric which is because of stiffness changes have been designed. The static and dynamic nonlinear analysis under three acceleration recording has been done. Finally performance level of the structure has been evaluated.

Keywords: Seismic analysis, torsion, asymmetric, irregular building, stiffness source.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2174
1759 Stiffness Modeling of 3-PRS Mechanism

Authors: Xiaohui Han, Yuhan Wang, Jing Shi

Abstract:

This paper proposed a stiffness analysis method for a 3-PRS mechanism for welding thick aluminum plate using FSW technology. In the molding process, elastic deformation of lead-screws and links are taken into account. This method is based on the virtual work principle. Through a survey of the commonly used stiffness performance indices, the minimum and maximum eigenvalues of the stiffness matrix are used to evaluate the stiffness of the 3-PRS mechanism. Furthermore, A FEA model has been constructed to verify the method. Finally, we redefined the workspace using the stiffness analysis method.

Keywords: 3-PRS, parallel mechanism, stiffness analysis, workspace.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2266
1758 Foil Bearing Stiffness Estimation with Pseudospectral Scheme

Authors: Balaji Sankar, Sadanand Kulkarni

Abstract:

Compliant foil gas lubricated bearings are used for the support of light loads in the order of few kilograms at high speeds, in the order of 50,000 RPM. The stiffness of the foil bearings depends both on the stiffness of the compliant foil and on the lubricating gas film. The stiffness of the bearings plays a crucial role in the stable operation of the supported rotor over a range of speeds. This paper describes a numerical approach to estimate the stiffness of the bearings using pseudo spectral scheme. Methodology to obtain the stiffness of the foil bearing as a function of weight of the shaft is given and the results are presented.

Keywords: Foil bearing, simulation, numerical, stiffness estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1242
1757 Asymmetric and Kind of Bracing Effects on Steel Frames Under Earthquake Loads

Authors: Mahmoud Miri, Soliman Maramaee

Abstract:

Because of architectural condition and structure application, sometimes mass source and stiffness source are not coincidence, and the structure is irregular. The structure is also might be asymmetric as an asymmetric bracing in plan which leads to unbalance distribution of stiffness or because of unbalance distribution of the mass. Both condition lead to eccentricity and torsion in the structure. The deficiency of ordinary code to evaluate the performance of steel structures against earthquake has been caused designing based on performance level or capacity spectrum be used. By using the mentioned methods it is possible to design a structure that its behavior against different earthquakes be predictive. In this article 5- story buildings with different percentage of asymmetric which is because of stiffness changes and kind of bracing (x and chevron bracing) have been designed. The static and dynamic nonlinear analysis under three acceleration recording has been done. Finally performance level of the structure has been evaluated.

Keywords: Asymmetric, irregular, seismic analysis, torsion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1638
1756 Main Bearing Stiffness Investigation

Authors: B. Bellakhdhar, A. Dogui, J.L. Ligier

Abstract:

Simplified coupled engine block-crankshaft models based on beam theory provide an efficient substitute to engine simulation in the design process. These models require accurate definition of the main bearing stiffness. In this paper, an investigation of this stiffness is presented. The clearance effect is studied using a smooth bearing model. It is manifested for low shaft displacement. The hydrodynamic assessment model shows that the oil film has no stiffness for low loads and it is infinitely rigid for important loads. The deformation stiffness is determined using a suitable finite elements model based on real CADs. As a result, a main bearing behaviour law is proposed. This behaviour law takes into account the clearance, the hydrodynamic sustention and the deformation stiffness. It ensures properly the transition from the configuration low rigidity to the configuration high rigidity.

Keywords: Clearance, deformation stiffness, main bearing behaviour law, oil film stiffness

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2371
1755 Layout Design Optimization of Spars under Multiple Load Cases of the High-Aspect-Ratio Wing

Authors: Yu Li, Jingwu He, Yuexi Xiong

Abstract:

The spar layout will affect the wing’s stiffness characteristics, and irrational spar arrangement will reduce the overall bending and twisting resistance capacity of the wing. In this paper, the active structural stiffness design theory is used to match the stiffness-center axis position and load-cases under the corresponding multiple flight conditions, in order to achieve better stiffness properties of the wing. The combination of active stiffness method and principle of stiffness distribution is proved to be reasonable supplying an initial reference for wing designing. The optimized layout of spars is eventually obtained, and the high-aspect-ratio wing will have better stiffness characteristics.

Keywords: Active structural stiffness design theory, high-aspect-ratio wing, flight load cases, layout of spars.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1112
1754 Finite Element Modeling of Stockbridge Damper and Vibration Analysis: Equivalent Cable Stiffness

Authors: Nitish Kumar Vaja, Oumar Barry, Brian DeJong

Abstract:

Aeolian vibrations are the major cause for the failure of conductor cables. Using a Stockbridge damper reduces these vibrations and increases the life span of the conductor cable. Designing an efficient Stockbridge damper that suits the conductor cable requires a robust mathematical model with minimum assumptions. However it is not easy to analytically model the complex geometry of the messenger. Therefore an equivalent stiffness must be determined so that it can be used in the analytical model. This paper examines the bending stiffness of the cable and discusses the effect of this stiffness on the natural frequencies. The obtained equivalent stiffness compensates for the assumption of modeling the messenger as a rod. The results from the free vibration analysis of the analytical model with the equivalent stiffness is validated using the full scale finite element model of the Stockbridge damper.

Keywords: Equivalent stiffness, finite element model, free vibration response, Stockbridge damper.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1436
1753 Comparison of Meshing Stiffness of Altered Tooth Sum Spur Gear Tooth with Different Pressure Angles

Authors: H. K. Sachidananda, K. Raghunandana, B. Shivamurthy

Abstract:

The estimation of gear tooth stiffness is important for finding the load distribution between the gear teeth when two consecutive sets of teeth are in contact. Based on dynamic model a C-program has been developed to compute mesh stiffness. By using this program position dependent mesh stiffness of spur gear tooth for various profile shifts have been computed for a fixed center distance and altering tooth-sum gearing (100 by ± 4%). It is found that the C-program using dynamic model is one of the rapid soft computing technique which helps in design of gears. The mesh tooth stiffness along the path of contact is studied for both 20° and 25° pressure angle gears at various profile shifts. Better tooth stiffness is noticed in case of negative alteration tooth-sum gears compared to standard and positive alteration tooth-sum gears. Also, in case of negative alteration tooth-sum gearing better mesh stiffness is noticed in 20° pressure angle when compared to 25°.

Keywords: Altered tooth-sum gearing, bending fatigue, mesh stiffness, spur gear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1721
1752 Effect of Drawbar Force on the Dynamic Characteristics of a Spindle-Tool Holder System

Authors: Jui-Pui Hung, Yu-Sheng Lai, Tzuo-Liang Luo, Kung-Da Wu, Yun-Ji Zhan

Abstract:

This study presented the investigation of the influence of the tool holder interface stiffness on the dynamic characteristics of a spindle tool system. The interface stiffness was produced by drawbar force on the tool holder, which tends to affect the spindle dynamics. In order to assess the influence of interface stiffness on the vibration characteristic of spindle unit, we first created a three dimensional finite element model of a high speed spindle system integrated with tool holder. The key point for the creation of FEM model is the modeling of the rolling interface within the angular contact bearings and the tool holder interface. The former can be simulated by a introducing a series of spring elements between inner and outer rings. The contact stiffness was calculated according to Hertz contact theory and the preload applied on the bearings. The interface stiffness of the tool holder was identified through the experimental measurement and finite element modal analysis. Current results show that the dynamic stiffness was greatly influenced by the tool holder system. In addition, variations of modal damping, static stiffness and dynamic stiffness of the spindle tool system were greatly determined by the interface stiffness of the tool holder which was in turn dependent on the draw bar force applied on the tool holder. Overall, this study demonstrates that identification of the interface characteristics of spindle tool holder is of very importance for the refinement of the spindle tooling system to achieve the optimum machining performance.

Keywords: Dynamic stiffness, Drawbar force, Interface stiffness, Spindle-tool holder.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2464
1751 A Variable Stiffness Approach to Vibration Control

Authors: S. A. Alotaibi, M. A. Al-Ajmi

Abstract:

This work introduces a new concept for controlling the mechanical vibrations via variable stiffness coil spring. The concept relies on fitting a screw though the spring to change the number of active spring coils. A prototype has been built and tested with promising results toward an innovation in the field of vibration control.

Keywords: Variable stiffness, coil spring, vibration control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2098
1750 A Compact Quasi-Zero Stiffness Vibration Isolator Using Flexure-Based Spring Mechanisms Capable of Tunable Stiffness

Authors: Thanh-Phong Dao, Shyh-Chour Huang

Abstract:

This study presents a quasi-zero stiffness (QZS) vibration isolator using flexure-based spring mechanisms which afford both negative and positive stiffness elements, which enable self-adjustment. The QZS property of the isolator is achieved at the equilibrium position. A nonlinear mathematical model is then developed, based on the pre-compression of the flexure-based spring mechanisms. The dynamics are further analyzed using the Harmonic Balance method. The vibration attention efficiency is illustrated using displacement transmissibility, which is then compared with the corresponding linear isolator. The effects of parameters on performance are also investigated by numerical solutions. The flexure-based spring mechanisms are subsequently designed using the concept of compliant mechanisms, with evaluation by ANSYS software, and simulations of the QZS isolator.

Keywords: Vibration isolator, quasi-zero stiffness, flexure-based spring mechanisms, compliant mechanism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2148
1749 The Effect of Cracking on Stiffness of Shear Walls under Lateral Loads

Authors: Anas M. Fares

Abstract:

The lateral stiffness of buildings is one of the most important properties which define resistance to displacements under lateral loads. Moreover, it has a great impact on the natural period of the structures. Different stiffness’s values can ultimately affect the behavior of the structure under the seismic load and the lateral forces that will be applied to it. In this study the effect of cracking is studied on 2D shell thin cantilever shear wall by using ETABS. Multi linear elastic analysis is conducted with the ACI stiffness modifiers for each analysis step. The results showed that the cracks affect the value of the drift especially at the top of the high rise buildings and this will change the lateral stiffness and so change the fundamental period of the structures which lead to change in the applied shear force that comes from the earthquake. Finally, this study emphasizes that the finite element method can be considered as a good tool to predict the tensile stresses in the elements.

Keywords: Lateral loads, lateral displacement, reinforced concrete, shear wall, Cracks, ETABS, ACI code, stiffness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1656
1748 3D Dynamic Modeling of Transition Zones

Authors: Edina Koch, Péter Hudacsek

Abstract:

In railways transition zone is present at the boundaries of zones with different stiffness. When a train rides from an embankment onto a stiff structure, such as a bridge, tunnel or culvert, an abrupt change in the support stiffness occurs possibly inducing differential settlements. This in long term can yield to the degradation of the tracks and foundations in the transition zones. A number of techniques have been proposed or implemented to provide gradual stiffness transition at the problem zones, such as methods to ensure gradually changing pad stiffness, application of long sleepers or installation of auxiliary rails in the transition zone. Aim of the research presented in this paper is to analyze the 3D and the dynamic effects induced by the passing train over an area where significant difference in the support stiffness exists. The effects were analyzed for different arrangements associated with certain differential settlement mitigation strategies of the transition zones.

Keywords: Culvert, dynamic load, HS small model, railway transition zone.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1047
1747 The Development of Chulalongkorn University's SAE Student Formula's Space Frame

Authors: Chartree Sithananun, Teekayu Limchamroon, Tanawat Limwathanagura, Thanyarat Singhanart

Abstract:

The objective of this paper is to present the development of the frame of Chulalongkorn University team in TSAE Auto Challenge Student Formula and Student Formula SAE Competition of Japan. Chulalongkorn University's SAE team, has established since year 2003, joined many competitions since year 2006 and became the leading team in Thailand. Through these 5 years, space frame was the most selected and developed year by year through six frame designs. In this paper, the discussions on the conceptual design of these frames are introduced, focusing on the mass and torsional stiffness improvement. The torsional stiffness test was performed on the real used frames and the results are compared. It can be seen that the 2010-2011 frame is firstly designed based on the analysis and experiment that considered the required mass and torsional stiffness. From the torsional stiffness results, it can be concluded that the frames were developed including the decreasing of mass and the increasing torsional stiffness by applying many techniques.

Keywords: SAE Student Formula, Space Frame, Torsional Stiffness

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2082
1746 Arterial Stiffness Detection Depending on Neural Network Classification of the Multi- Input Parameters

Authors: Firas Salih, Luban Hameed, Afaf Kamil, Armin Bolz

Abstract:

Diagnostic and detection of the arterial stiffness is very important; which gives indication of the associated increased risk of cardiovascular diseases. To make a cheap and easy method for general screening technique to avoid the future cardiovascular complexes , due to the rising of the arterial stiffness ; a proposed algorithm depending on photoplethysmogram to be used. The photoplethysmograph signals would be processed in MATLAB. The signal will be filtered, baseline wandering removed, peaks and valleys detected and normalization of the signals should be achieved .The area under the catacrotic phase of the photoplethysmogram pulse curve is calculated using trapezoidal algorithm ; then will used in cooperation with other parameters such as age, height, blood pressure in neural network for arterial stiffness detection. The Neural network were implemented with sensitivity of 80%, accuracy 85% and specificity of 90% were got from the patients data. It is concluded that neural network can detect the arterial STIFFNESS depending on risk factor parameters.

Keywords: Arterial stiffness, area under the catacrotic phase of the photoplethysmograph pulse, neural network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1652
1745 Backcalculation of HMA Stiffness Based On Finite Element Model

Authors: Md Rashadul Islam, Umme Amina Mannan, Rafiqul A. Tarefder

Abstract:

Stiffness of Hot Mix Asphalt (HMA) in flexible pavement is largely dependent of temperature, mode of testing and age of pavement. Accurate measurement of HMA stiffness is thus quite challenging. This study determines HMA stiffness based on Finite Element Model (FEM) and validates the results using field data. As a first step, stiffnesses of different layers of a pavement section on Interstate 40 (I-40) in New Mexico were determined by Falling Weight Deflectometer (FWD) test. Pavement temperature was not measured at that time due to lack of temperature probe. Secondly, a FE model is developed in ABAQUS. Stiffness of the base, subbase and subgrade were taken from the FWD test output obtained from the first step. As HMA stiffness largely varies with temperature it was assigned trial and error approach. Thirdly, horizontal strain and vertical stress at the bottom of the HMA and temperature at different depths of the pavement were measured with installed sensors on the whole day on December 25th, 2012. Fourthly, outputs of FEM were correlated with measured stress-strain responses. After a number of trials a relationship was developed between the trial stiffness of HMA and measured mid-depth HMA temperature. At last, the obtained relationship between stiffness and temperature is verified by further FWD test when pavement temperature was recorded. A promising agreement between them is observed. Therefore, conclusion can be drawn that linear elastic FEM can accurately predict the stiffness and the structural response of flexible pavement.

Keywords: Asphalt pavement, falling weight deflectometer test, field instrumentation, finite element model, horizontal strain, temperature probes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2415
1744 Evaluation of Soil Stiffness and Strength for Quality Control of Compacted Earthwork

Authors: A. Sawangsuriya, T. B. Edil

Abstract:

Microstructure and fabric of soils play an important role on structural properties e.g. stiffness and strength of compacted earthwork. Traditional quality control monitoring based on moisturedensity tests neither reflects the variability of soil microstructure nor provides a direct assessment of structural property, which is the ultimate objective of the earthwork quality control. Since stiffness and strength are sensitive to soil microstructure and fabric, any independent test methods that provide simple, rapid, and direct measurement of stiffness and strength are anticipated to provide an effective assessment of compacted earthen materials’ uniformity. In this study, the soil stiffness gauge (SSG) and the dynamic cone penetrometer (DCP) were respectively utilized to measure and monitor the stiffness and strength in companion with traditional moisture-density measurements of various earthen materials used in Thailand road construction projects. The practical earthwork quality control criteria are presented herein in order to assure proper earthwork quality control and uniform structural property of compacted earthworks.

Keywords: Dynamic cone penetrometer, moisture content, relative compaction, soil stiffness gauge, structural property.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2325
1743 Dependence of Shaft Stiffness on the Crack Location

Authors: H. M. Mobarak, Helen Wu, Chunhui Yang

Abstract:

In this study, an analytical model is developed to study crack breathing behavior under the effect of crack location and unbalance force. Crack breathing behavior is determined using effectual bending angle by studying the transient change in closed area of the crack. The status of the crack of a balanced shaft is symmetrical about shaft rotational angle and the duration of each crack status remains unchanged. The global stiffness of the balanced shaft is independent of crack location. Different crack breathing behavior for the unbalanced shaft has been observed. The influence of crack location on the unbalanced shaft stiffness can be divided into three regions. When the crack is located between 0.3L and 0.8335L, where L is the total length of the shaft, the unbalanced shaft is less stiff and when located outside this region it is stiffer than the balanced shaft. It was also found that unbalanced shaft stiffness has a maximum value with a crack at 0.1946L, a minimum value at 0.8053L and same value as balanced shaft at 0.3L and 0.8335L.

Keywords: Cracked shaft, crack location, shaft stiffness, unbalanced force.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 937
1742 The Frame Analysis and Testing for Student Formula

Authors: Tanawat Limwathanagura, Chartree Sithananun, Teekayu Limchamroon, Thanyarat Singhanart

Abstract:

The objective of this paper is to study the analysis and testing for determining the torsional stiffness of the student formula-s space frame. From past study, the space frame for Chulalongkorn University Student Formula team used in 2011 TSAE Auto Challenge Student Formula in Thailand was designed by considering required mass and torsional stiffness based on the numerical method and experimental method. The numerical result was compared with the experimental results to verify the torsional stiffness of the space frame. It can be seen from the large error of torsional stiffness of 2011 frame that the experimental result can not verify by the numerical analysis due to the different between the numerical model and experimental setting. In this paper, the numerical analysis and experiment of the same 2011 frame model is performed by improving the model setting. The improvement of both numerical analysis and experiment are discussed to confirm that the models from both methods are same. After the frame was analyzed and tested, the results are compared to verify the torsional stiffness of the frame. It can be concluded that the improved analysis and experiments can used to verify the torsional stiffness of the space frame.

Keywords: Space Frame, Student Formula, Torsional Stiffness, TSAE Auto Challenge

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7993
1741 Effect of Shear Wall Openings on the Fundamental Period of Shear Wall Structures

Authors: Anas M. Fares, A. Touqan

Abstract:

A common approach in resisting lateral forces is the use of reinforced concrete shear walls in buildings. These walls represent the main elements to resist the lateral forces due to their large strength and stiffness. However, such walls may contain many openings due to functional requirements, and this may largely affect the overall lateral stiffness of them. It is thus of prime importance to quantify the effect of openings on the dynamic performance of the shear walls. SAP2000 structural analysis program is used as a main source after verifying the results. This study is made by using linear elastic analysis. The results are compared to ASCE7-16 code empirical equations for estimating the fundamental period of shear wall structures. Finally, statistical regression is used to fit an equation for estimating the increase in the fundamental period of shear-walled regular structures due to windows openings in the walls.

Keywords: Concrete, earthquake-resistant design, finite element, fundamental period, lateral stiffness, linear analysis, modal analysis, rayleigh, SAP2000, shear wall, ASCE7-16.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1457
1740 Influence of Wall Stiffness and Embedment Depth on Excavations Supported by Cantilever Walls

Authors: Muhammad Naseem Baig, Abdul Qudoos Khan, Jamal Ali

Abstract:

Ground deformations in deep excavations are affected by wall stiffness and pile embedment ratio. This paper presents the findings of a parametric study of a 64-ft deep excavation in mixed stiff soil conditions supported by cantilever pile wall. A series of finite element analysis has been carried out in Plaxis 2D by varying the pile embedment ratio and wall stiffness. It has been observed that maximum wall deflections decrease by increasing the embedment ratio up to 1.50; however, any further increase in pile length does not improve the performance of the wall. Similarly, increasing wall stiffness reduces the wall deformations and affects the deflection patterns of the wall. The finite element analysis results are compared with the field data of 25 case studies of cantilever walls. Analysis results fall within the range of normalized wall deflections of the 25 case studies. It has been concluded that deep excavations can be supported by cantilever walls provided the system stiffness is increased significantly.

Keywords: Excavations, support systems, wall stiffness, cantilever walls.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 443
1739 A Novel Cold Asphalt Concrete Mixture for Heavily Trafficked Binder Course

Authors: A. Dulaimi, H. Al Nageim, F. Ruddock, L. Seton

Abstract:

This study aims at developing a novel cold asphalt concrete binder course mixture by using Ordinary Portland Cement (OPC) as a replacement for conventional mineral filler (0%-100%) with new by-product material (LJMU-A2) used as a supplementary cementitious material. With this purpose, cold asphalt concrete binder course mixtures with cationic emulsions were studied by means of stiffness modulus whereas water sensitivity was assessed by measuring the stiffness modulus ratio before and after sample conditioning. The results indicate that a substantial enhancement in the stiffness modulus and a considerable improvement of water sensitivity resistance is achieved by adding LJMU-A2 to the cold asphalt mixtures as a supplementary cementitious material. Moreover, the addition of LJMU-A2 to those mixtures leads to a stiffness modulus after 2-day curing compared to that obtained with Portland cement, which occurs after 7-day curing.

Keywords: Binder course, cold mix asphalt, cement, stiffness modulus, water sensitivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3092
1738 Polymer Aerostatic Thrust Bearing under Circular Support for High Static Stiffness

Authors: S. W. Lo, C.-H. Yu

Abstract:

A new design of aerostatic thrust bearing is proposed for high static stiffness. The bearing body, which is mead of polymer covered with metallic membrane, is held by a circular ring. Such a support helps form a concave air gap to grasp the air pressure. The polymer body, which can be made rapidly by either injection or molding is able to provide extra damping under dynamic loading. The smooth membrane not only serves as the bearing surface but also protects the polymer body. The restrictor is a capillary inside a silicone tube. It can passively compensate the variation of load by expanding the capillary diameter for more air flux. In the present example, the stiffness soars from 15.85 N/μm of typical bearing to 349.85 N/μm at bearing elevation 9.5 μm; meanwhile the load capacity also enhances from 346.86 N to 704.18 N.

Keywords: Aerostatic, bearing, polymer, static stiffness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2085
1737 Impact of Out-of-Plane Stiffness of the Diaphragm on Deflection of Wood Light-Frame Shear Walls

Authors: M. M. Bagheri, G. Doudak, M. Gong

Abstract:

The in-plane rigidity of light frame diaphragms has been investigated by researchers due to the importance of this subsystem regarding lateral force distribution between the lateral force resisting system (LFRS). Where research has lacked is in evaluating the impact of out-of-plane raigidity of the diaphragm on the deflection of shear walls. This study aims at investigating the effect of the diaphragm on the behavior of wood light-frame shear walls, in particular its out-of-plane rigidity was simulated by modeling the floors as beam. The out of plane stiffness of the diaphragm was investigated for idealized (infinitely stiff or flexible) as well as “realistic”. The results showed reductions in the shear wall deflection in the magnitude of approximately 80% considering the out of plane rigidity of the diaphragm. It was also concluded that considering conservative estimates of out-of-plane stiffness might lead to a very significant reduction in deflection and that assuming the floor diaphragm to be infinitely rigid out of plan seems to be reasonable. For diaphragms supported on multiple panels, further reduction in the deflection was observed. More work, particularly at the experimental level, is needed to verify the finding obtained in the numerical investigation related to the effect of out of plane diaphragm stiffness.

Keywords: Deflection of light-frame wood shear walls, out-of-plane stiffness of the diaphragm, initial stiffness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 781
1736 The Small Strain Effects to the Shear Strength and Maximum Stiffness of Post-Cyclic Degradation of Hemic Peat Soil

Authors: Z. Adnan, M. M. Habib

Abstract:

The laboratory tests for measuring the effects of small strain to the shear strength and maximum stiffness development of post-cyclic degradation of hemic peat are reviewed in this paper. A series of laboratory testing has been conducted to fulfil the objective of this research to study the post-cyclic behaviour of peat soil and focuses on the small strain characteristics. For this purpose, a number of strain-controlled static, cyclic and post-cyclic triaxial tests were carried out in undrained condition on hemic peat soil. The shear strength and maximum stiffness of hemic peat are evaluated immediately after post-cyclic monotonic testing. There are two soil samples taken from West Johor and East Malaysia peat soil. Based on these laboratories and field testing data, it was found that the shear strength and maximum stiffness of peat soil decreased in post-cyclic monotonic loading than its initial shear strength and stiffness. In particular, degradation in shear strength and stiffness is more sensitive for peat soil due to fragile and uniform fibre structures. Shear strength of peat soil, τmax = 12.53 kPa (Beaufort peat, BFpt) and 36.61 kPa (Parit Nipah peat, PNpt) decreased than its initial 58.46 kPa and 91.67 kPa. The maximum stiffness, Gmax = 0.23 and 0.25 decreased markedly with post-cyclic, Gmax = 0.04 and 0.09. Simple correlations between the Gmax and the τmax effects due to small strain, ε = 0.1, the Gmax values for post-cyclic are relatively low compared to its initial Gmax. As a consequence, the reported values and patterns of both the West Johor and East Malaysia peat soil are generally the same.

Keywords: Post-cyclic, strain, shear strength, maximum stiffness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1086
1735 Design and Fabrication of a Programmable Stiffness-Sensitive Gripper for Object Handling

Authors: Mehdi Modabberifar, Sanaz Jabary, Mojtaba Ghodsi

Abstract:

Stiffness sensing is an important issue in medical diagnostic, robotics surgery, safe handling, and safe grasping of objects in production lines. Detecting and obtaining the characteristics in dwelling lumps embedded in a soft tissue and safe removing and handling of detected lumps is needed in surgery. Also in industry, grasping and handling an object without damaging in a place where it is not possible to access a human operator is very important. In this paper, a method for object handling is presented. It is based on the use of an intelligent gripper to detect the object stiffness and then setting a programmable force for grasping the object to move it. The main components of this system includes sensors (sensors for measuring force and displacement), electrical (electrical and electronic circuits, tactile data processing and force control system), mechanical (gripper mechanism and driving system for the gripper) and the display unit. The system uses a rotary potentiometer for measuring gripper displacement. A microcontroller using the feedback received by the load cell, mounted on the finger of the gripper, calculates the amount of stiffness, and then commands the gripper motor to apply a certain force on the object. Results of Experiments on some samples with different stiffness show that the gripper works successfully. The gripper can be used in haptic interfaces or robotic systems used for object handling.

Keywords: Gripper, haptic, stiffness, robotic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1154
1734 Determining G-γ Degradation Curve in Cohesive Soils by Dilatometer and in situ Seismic Tests

Authors: Ivandic Kreso, Spiranec Miljenko, Kavur Boris, Strelec Stjepan

Abstract:

This article discusses the possibility of using dilatometer tests (DMT) together with in situ seismic tests (MASW) in order to get the shape of G-g degradation curve in cohesive soils (clay, silty clay, silt, clayey silt and sandy silt). MASW test provides the small soil stiffness (Go from vs) at very small strains and DMT provides the stiffness of the soil at ‘work strains’ (MDMT). At different test locations, dilatometer shear stiffness of the soil has been determined by the theory of elasticity. Dilatometer shear stiffness has been compared with the theoretical G-g degradation curve in order to determine the typical range of shear deformation for different types of cohesive soil. The analysis also includes factors that influence the shape of the degradation curve (G-g) and dilatometer modulus (MDMT), such as the overconsolidation ratio (OCR), plasticity index (IP) and the vertical effective stress in the soil (svo'). Parametric study in this article defines the range of shear strain gDMT and GDMT/Go relation depending on the classification of a cohesive soil (clay, silty clay, clayey silt, silt and sandy silt), function of density (loose, medium dense and dense) and the stiffness of the soil (soft, medium hard and hard). The article illustrates the potential of using MASW and DMT to obtain G-g degradation curve in cohesive soils.

Keywords: Dilatometer testing, MASW testing, shear wave, soil stiffness, stiffness reduction, shear strain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 884
1733 Adaptive Impedance Control for Unknown Time-Varying Environment Position and Stiffness

Authors: Norsinnira Zainul Azlan, Hiroshi Yamaura

Abstract:

This study is concerned with a new adaptive impedance control strategy to compensate for unknown time-varying environment stiffness and position. The uncertainties are expressed by Function Approximation Technique (FAT), which allows the update laws to be derived easily using Lyapunov stability theory. Computer simulation results are presented to validate the effectiveness of the proposed strategy.

Keywords: Adaptive Impedance Control, Function Approximation Technique (FAT), unknown time-varying environment position and stiffness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2150
1732 Worm Gearing Design Improvement by Considering Varying Mesh Stiffness

Authors: A. H. Elkholy, A. H. Falah

Abstract:

A new approach has been developed to estimate the load share and distribution of worm gear drives, and to calculate the instantaneous tooth meshing stiffness. In the approach, the worm gear drive was modelled as a series of spur gear slices, and each slice was analyzed separately using the well-established formulae of spur gear loading and stresses. By combining the results obtained for all slices, the entire envolute worm gear set loading and stressing was obtained. The geometric modelling method presented allows tooth elastic deformation and tooth root stresses of worm gear drives under different load conditions to be investigated. Based on the slicing method introduced in this study, the instantaneous meshing stiffness and load share are obtained. In comparison with existing methods, this approach has both good analysis accuracy and less computing time.

Keywords: Gear, load/stress distribution, worm, wheel, tooth stiffness, contact line.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2220
1731 Modular Hybrid Robots for Safe Human-Robot Interaction

Authors: J. Radojicic, D. Surdilovic, G. Schreck

Abstract:

The paper considers a novel modular and intrinsically safe redundant robotic system with biologically inspired actuators (pneumatic artificial muscles and rubber bellows actuators). Similarly to the biological systems, the stiffness of the internal parallel modules, representing 2 DOF joints in the serial robotic chains, is controlled by co-activation of opposing redundant actuator groups in the null-space of the module Jacobian, without influencing the actual robot position. The decoupled position/stiffness control allows the realization of variable joint stiffness according to different force-displacement relationships. The variable joint stiffness, as well as limited pneumatic muscle/bellows force ability, ensures internal system safety that is crucial for development of human-friendly robots intended for human-robot collaboration. The initial experiments with the system prototype demonstrate the capabilities of independently, simultaneously controlling both joint (Cartesian) motion and joint stiffness. The paper also presents the possible industrial applications of snake-like robots built using the new modules.

Keywords: bellows actuator, human-robot interaction, hyper redundant robot, pneumatic muscle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2002