Search results for: smart beam
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 855

Search results for: smart beam

825 Experimental Investigation on the Efficiency of Expanded Polystyrene Geofoam Post and Beam System in Protecting Lifelines

Authors: Masood Abdollahi, Seyed Naser Moghaddas Tafreshi

Abstract:

Expanded polystyrene (EPS) geofoam is a cellular geosynthetic material that can be used to protect lifelines (e.g. pipelines, electricity cables, etc.) below ground. Post and beam system is the most recent configuration of EPS blocks which can be implemented for this purpose. It provides a void space atop lifelines which allows settlement of the loading surface with imposing no pressure on the lifelines system. This paper investigates the efficiency of the configuration of post-beam system subjected to static loading. To evaluate the soil surface settlement, beam deformation and transferred pressure over the beam, laboratory tests using two different densities for EPS blocks are conducted. The effect of geogrid-reinforcing the cover soil on system response is also investigated. The experimental results show favorable performance of EPS post and beam configuration in protecting underground lifelines. 

Keywords: Beam deformation, EPS block, laboratory test, post-beam system, soil surface settlement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1048
824 Design of Open Framework Based Smart ESS Profile for PV-ESS and UPS-ESS

Authors: Young-Su Ryu, Won-Gi Jeon, Byoung-Chul Song, Jae-Hong Park, Ki-Won Kwon

Abstract:

In this paper, an open framework based smart energy storage system (ESS) profile for photovoltaic (PV)-ESS and uninterruptible power supply (UPS)-ESS is proposed and designed. An open framework based smart ESS is designed and developed for unifying the different interfaces among manufacturers. The smart ESS operates under the profile which provides the specifications of peripheral devices such as different interfaces and to the open framework. The profile requires well systemicity and expandability for addible peripheral devices. Especially, the smart ESS should provide the expansion with existing systems such as UPS and the linkage with new renewable energy technology such as PV. This paper proposes and designs an open framework based smart ESS profile for PV-ESS and UPS-ESS. The designed profile provides the existing smart ESS and also the expandability of additional peripheral devices on smart ESS such as PV and UPS.

Keywords: ESS, open framework, profile, PV, UPS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1074
823 Probing Anomalous WW γ and WWZ Couplings with Polarized Electron Beam at the LHeC and FCC-Ep Collider

Authors: I. Turk Cakir, A. Senol, A. T. Tasci, O. Cakir

Abstract:

We study the anomalous WWγ and WWZ couplings by calculating total cross sections of two processes at the LHeC with electron beam energy Ee=140 GeV and the proton beam energy Ep=7 TeV, and at the FCC-ep collider with the polarized electron beam energy Ee=80 GeV and the proton beam energy Ep=50 TeV. At the LHeC with electron beam polarization, we obtain the results for the difference of upper and lower bounds as (0.975, 0.118) and (0.285, 0.009) for the anomalous (Δκγ, λγ) and (Δκz, λz) couplings, respectively. As for FCC-ep collider, these bounds are obtained as (1.101, 0.065) and (0.320, 0.002) at an integrated luminosity of Lint=100 fb^-1.

Keywords: Anomalous Couplings, Future Circular Collider, Large Hadron electron Collider, W-boson and Z-boson.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3404
822 Thermal Cracking Respone of Reinforced Concrete Beam to Gradient Temperature

Authors: L. Dahmani, M.Kouane

Abstract:

In this paper are illustrated the principal aspects connected with the numerical evaluation of thermal stress induced by high gradient temperature in the concrete beam. The reinforced concrete beam has many advantages over steel beam, such as high resistance to high temperature, high resistance to thermal shock, Better resistance to fatigue and buckling, strong resistance against, fire, explosion, etc. The main drawback of the reinforced concrete beam is its poor resistance to tensile stresses. In order to investigate the thermal induced tensile stresses, a numerical model of a transient thermal analysis is presented for the evaluation of thermo-mechanical response of concrete beam to the high temperature, taking into account the temperature dependence of the thermo physical properties of the concrete like thermal conductivity and specific heat.

Keywords: Cracking, Gradient Temperature, Reinforced Concrete beam, Thermo-mechanical analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3641
821 Reducing the Need for Multi-Input Multi-Output in Multi-Beam Base Transceiver Station Antennas Using Orthogonally-Polarized Feeds with an Arbitrary Number of Ports

Authors: Mohamed Sanad, Noha Hassan

Abstract:

A multi-beam BTS (Base Transceiver Station) antenna has been developed using dual parabolic cylindrical reflectors. The ±45° polarization feeds are used in spatial diversity MIMO (Multi-Input Multi-Output). They can be replaced by single-port orthogonally polarized feeds. Then, with two sets of beams generated above each other, the ± 45° polarization ports of any conventional transceiver can be connected to two of these beam sets. Thus, with two-port transceivers, the system will be equivalent to 4x4 MIMO, instead of 2x2. Radio Frequency (RF) power combiners/splitters can also be used to combine the multiple beams into a single beam or any arbitrary number of beams/ports. The gain of the combined-beam will be more than 20-24 dBi instead of 17-18 dBi of conventional wide-beam antennas. Furthermore, the gain of the combined beam will be high over the whole beam angle. Moreover, the users will always be close to the peak gain value of the combined beam regardless of their location within the combined beam angle. The frequency bands of all the combined beams are adjusted such that they all have the same frequency band. Different configurations of RF power splitter/combiners can be used to provide any arbitrary number of beams/ports according to the requirements of any existing base station configuration.

Keywords: 5G mobile communications, BTS antennas, MIMO, orthogonally polarized antennas, multi-beam antennas.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 623
820 Lateral and Longitudinal Vibration of a Rotating Flexible Beam Coupled with Torsional Vibration of a Flexible Shaft

Authors: Khaled Alnefaie

Abstract:

In this study, rotating flexible shaft-disk system having flexible beams is considered as a dynamic system. After neglecting nonlinear terms, torsional vibration of the shaft-disk system and lateral and longitudinal vibration of the flexible beam are still coupled through the motor speed. The system has three natural frequencies; the flexible shaft-disk system torsional natural frequency, the flexible beam lateral and longitudinal natural frequencies. Eigenvalue calculations show that while the shaft speed changes, torsional natural frequency of the shaft-disk system and the beam longitudinal natural frequency are not changing but the beam lateral natural frequency changes. Beam lateral natural frequency stays the same as the nonrotating beam lateral natural frequency ωb until the motor speed ωm is equal to ωb. After then ωb increases and remains equal to the motor speed ωm until the motor speed is equal to the shaft-disk system natural frequency ωT. Then the beam lateral natural frequency ωb becomes equal to the natural frequency ωT and stays same while the motor speed ωm is increased. Modal amplitudes and phase angles of the vibrations are also plotted against the motor speed ωm.

Keywords: Rotor dynamics, beam-shaft coupling, beam vibration, flexible shaft.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3529
819 Smart Product-Service System Innovation with User Experience: A Case Study of Chunmi

Authors: Ying Yu, Wen-Chi Kuo, Tung-Jung Sung

Abstract:

The Product-Service System (PSS) has received widespread attention due to the increasing global competition in manufacturing and service markets. Today’s smart products and services are driven by Internet of things (IoT) technologies which will promote the transformation from traditional PSS to smart PSS. Although the smart PSS has some of technological achievements in businesses, it often ignores the real demands of target users when using products and services. Therefore, designers should know and learn the User Experience (UX) of smart products, services and systems. However, both of academia and industry still lack relevant development experience of smart PSS since it is an emerging field. In doing so, this is a case study of Xiaomi’s Chunmi, the largest IoT platform in the world, and addresses the two major issues: (1) why Chunmi should develop smart PSS strategies with UX; and (2) how Chunmi could successfully implement the strategic objectives of smart PSS through the design. The case study results indicated that: (1) the smart PSS can distinguish competitors by their unique UX which is difficult to duplicate; (2) early user engagement is crucial for the success of smart PSS; and (3) interaction, expectation, and enjoyment can be treated as a three-dimensional evaluation of UX design for smart PSS innovation. In conclusion, the smart PSS can gain competitive advantages through good UX design in the market.

Keywords: Design research, smart PSS, user experience, user engagement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 616
818 Beam Orientation Optimization Using Ant Colony Optimization in Intensity Modulated Radiation Therapy

Authors: Xi Pei, Ruifen Cao, Hui Liu, Chufeng Jin, Mengyun Cheng, Huaqing Zheng, Yican Wu, FDS Team

Abstract:

In intensity modulated radiation therapy (IMRT) treatment planning, beam angles are usually preselected on the basis of experience and intuition. Therefore, getting an appropriate beam configuration needs a very long time. Based on the present situation, the paper puts forward beam orientation optimization using ant colony optimization (ACO). We use ant colony optimization to select the beam configurations, after getting the beam configuration using Conjugate Gradient (CG) algorithm to optimize the intensity profiles. Combining with the information of the effect of pencil beam, we can get the global optimal solution accelerating. In order to verify the feasibility of the presented method, a simulated and clinical case was tested, compared with dose-volume histogram and isodose line between target area and organ at risk. The results showed that the effect was improved after optimizing beam configurations. The optimization approach could make treatment planning meet clinical requirements more efficiently, so it had extensive application perspective.

Keywords: intensity modulated radiation therapy, ant colonyoptimization, Conjugate Gradient algorithm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1960
817 SMRF Seismic Response: Unequal Beam Depths

Authors: Babak H. Mamamqani, Alimohammad Entezarmahdi

Abstract:

There are many researches on parameters affecting seismic behavior of steel moment frames. Great deal of these researches considers cover plate connections with or without haunch and direct beam to column connection for exterior columns. Also there are experimental results for interior connections with equal beam depth on both sides but not much research has been performed on the seismic behavior of joints with unequal beam depth. Based on previous experimental results, a series of companion analyses have been set up considering different beam height and connection detailing configuration to investigate the seismic behavior of the connections. Results of this study indicate that when the differences between beams height on both side increases, use of haunch connection system leads to significant improvement in the seismic response whereas other configurations did not provide satisfying results.

Keywords: Analytical modeling, Haunch connection, Seismic design, Unequal beam depth.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2713
816 Super Harmonic Nonlinear Lateral Vibration of an Axially Moving Beam with Rotating Prismatic Joint

Authors: M. Najafi, S. Bab, F. Rahimi Dehgolan

Abstract:

The motion of an axially moving beam with rotating prismatic joint with a tip mass on the end is analyzed to investigate the nonlinear vibration and dynamic stability of the beam. The beam is moving with a harmonic axially and rotating velocity about a constant mean velocity. A time-dependent partial differential equation and boundary conditions with the aid of the Hamilton principle are derived to describe the beam lateral deflection. After the partial differential equation is discretized by the Galerkin method, the method of multiple scales is applied to obtain analytical solutions. Frequency response curves are plotted for the super harmonic resonances of the first and the second modes. The effects of non-linear term and mean velocity are investigated on the steady state response of the axially moving beam. The results are validated with numerical simulations.

Keywords: Axially moving beam, Galerkin method, non-linear vibration, super harmonic resonances.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 942
815 On the Evaluation of Critical Lateral-Torsional Buckling Loads of Monosymmetric Beam-Columns

Authors: T. Yilmaz, N. Kirac

Abstract:

Beam-column elements are defined as structural members subjected to a combination of axial and bending forces. Lateral torsional buckling is one of the major failure modes in which beam-columns that are bent about its strong axis may buckle out of the plane by deflecting laterally and twisting. This study presents a compact closed-form equation that it can be used for calculating critical lateral torsional-buckling load of beam-columns with monosymmetric sections in the presence of a known axial load. Lateral-torsional buckling behavior of beam-columns subjected to constant axial force and various transverse load cases are investigated by using Ritz method in order to establish proposed equation. Lateral-torsional buckling loads calculated by presented formula are compared to finite element model results. ABAQUS software is utilized to generate finite element models of beam-columns. It is found out that lateral-torsional buckling load of beam-columns with monosymmetric sections can be determined by proposed equation and can be safely used in design.

Keywords: Lateral-torsional buckling, stability, beam-column, monosymmetric section.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2733
814 Smart Grids Cyber Security Issues and Challenges

Authors: Imen Aouini, Lamia Ben Azzouz

Abstract:

The energy need is growing rapidly due to the population growth and the large new usage of power. Several works put considerable efforts to make the electricity grid more intelligent to reduce essentially energy consumption and provide efficiency and reliability of power systems. The Smart Grid is a complex architecture that covers critical devices and systems vulnerable to significant attacks. Hence, security is a crucial factor for the success and the wide deployment of Smart Grids. In this paper, we present security issues of the Smart Grid architecture and we highlight open issues that will make the Smart Grid security a challenging research area in the future.

Keywords: Smart grids, smart meters, home area network, neighbor area network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3874
813 Selective Transverse Modes in a Diode End- Pumped Nd:Yag Pulsed Laser

Authors: M. Mohamadi, M. Mostamand, M. Moosavi, M. Soltanolkotabi

Abstract:

The output beam quality of multi transverse modes of laser, are relatively poor. In order to obtain better beam quality, one may use an aperture inside the laser resonator. In this case, various transverse modes can be selected. We have selected various transverse modes both by simulation and doing experiment. By inserting a circular aperture inside the diode end-pumped Nd:YAG pulsed laser resonator, we have obtained 00 TEM , 01 TEM , 20 TEM and have studied which parameters, can change the mode shape. Then, we have determined the beam quality factor of TEM00 gaussian mode.

Keywords: Beam shape, Transverse mode , Beam quality factor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1652
812 Laser Forming of Titanium and Its Alloys – An Overview

Authors: Esther T. Akinlabi, Mukul Shukla, Stephen A. Akinlabi

Abstract:

Laser beam forming is a novel technique developed for the joining of metallic components. In this study, an overview of the laser beam forming process, areas of application, the basic mechanisms of the laser beam forming process, some recent research studies and the need to focus more research effort on improving the laser-material interaction of laser beam forming of titanium and its alloys are presented.

Keywords: Aerospace, Deformation, Laser forming, Mechanisms, Titanium, Titanium alloy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3128
811 Key Performance Indicators and the Model for Achieving Digital Inclusion for Smart Cities

Authors: Khalid Obaed Mahmod, Mesut Cevik

Abstract:

The term smart city has appeared recently and was accompanied by many definitions and concepts, but as a simplified and clear definition, it can be said that the smart city is a geographical location that has gained efficiency and flexibility in providing public services to citizens through its use of technological and communication technologies, and this is what distinguishes it from other cities. Smart cities connect the various components of the city through the main and sub networks in addition to a set of applications, and thus are able to collect data that is the basis for providing technological solutions to manage resources and provide services. The basis of the work of the smart city is the use of artificial intelligence (AI) and the technology of the Internet of Things (IoT). The work presents the concept of smart cities, the pillars, standards and evaluation indicators on which smart cities depend, and the reasons that prompted the world to move towards its establishment. It also provides a simplified hypothetical way to measure the ideal smart city model by defining some indicators and key pillars, simulating them with logic circuits and testing them to determine if the city can be considered an ideal smart city or not.

Keywords: Evaluation indicators, logic gates, performance factors, pillars, smart city.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 247
810 Mechanical Buckling of Functionally Graded Engesser-Timoshenko Beams Located on a Continuous Elastic Foundation

Authors: M. Karami Khorramabadi, A. R. Nezamabadi

Abstract:

This paper studies mechanical buckling of functionally graded beams subjected to axial compressive load that is simply supported at both ends lies on a continuous elastic foundation. The displacement field of beam is assumed based on Engesser-Timoshenko beam theory. Applying the Hamilton's principle, the equilibrium equation is established. The influences of dimensionless geometrical parameter, functionally graded index and foundation coefficient on the critical buckling load of beam are presented. To investigate the accuracy of the present analysis, a compression study is carried out with a known data.

Keywords: Mechanical Buckling, Functionally graded beam- Engesser-Timoshenko beam theory

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1619
809 Forced Vibration of a Fiber Metal Laminated Beam Containing a Delamination

Authors: Sh. Mirhosseini, Y. Haghighatfar, M. Sedighi

Abstract:

Forced vibration problem of a delaminated beam made of fiber metal laminates is studied in this paper. Firstly, a delamination is considered to divide the beam into four sections. The classic beam theory is assumed to dominate each section. The layers on two sides of the delamination are constrained to have the same deflection. This hypothesis approves the conditions of compatibility as well. Consequently, dynamic response of the beam is obtained by the means of differential transform method (DTM). In order to verify the correctness of the results, a model is constructed using commercial software ABAQUS 6.14. A linear spring with constant stiffness takes the effect of contact between delaminated layers into account. The attained semi-analytical outcomes are in great agreement with finite element analysis.

Keywords: Delamination, forced vibration, finite element modelling, natural frequency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 780
808 Vibration Analysis of Functionally Graded Engesser- Timoshenko Beams Subjected to Axial Load Located on a Continuous Elastic Foundation

Authors: M. Karami Khorramabadi, A. R. Nezamabadi

Abstract:

This paper studies free vibration of functionally graded beams Subjected to Axial Load that is simply supported at both ends lies on a continuous elastic foundation. The displacement field of beam is assumed based on Engesser-Timoshenko beam theory. The Young's modulus of beam is assumed to be graded continuously across the beam thickness. Applying the Hamilton's principle, the governing equation is established. Resulting equation is solved using the Euler's Equation. The effects of the constituent volume fractions and foundation coefficient on the vibration frequency are presented. To investigate the accuracy of the present analysis, a compression study is carried out with a known data.

Keywords: Functionally Graded Beam, Free Vibration, Elastic Foundation, Engesser-Timoshenko Beam Theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1880
807 Experimental Study of Specific Cross Beam Types Appropriate for Modular Bridges

Authors: Seung-Kyung Kye, Young-Hyo Son, Jin-Woong Choi, Dooyong Cho, Sun-Kyu Park

Abstract:

Recently in the field of bridges that are newly built or repaired, fast construction is required more than ever. For these reasons, precast prefabricated bridge that enables rapid construction is actively discussed and studied today. In South Korea, it is called modular bridge. Cross beam is an integral component of modular bridge. It functions for load distribution, reduction of bending moment, resistance of horizontal strength on lateral upper structure. In this study, the structural characteristics of domestic and foreign cross beam types were compared. Based on this, alternative cross beam connection types suitable for modular bridge were selected. And bulb-T girder specimens were fabricated with each type of connection. The behavior of each specimen was analyzed under static loading, and cross beam connection type which is expected to be best suited to modular bridge proposed.

Keywords: Bulb-T girder, Cross beam, Modular bridge.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3028
806 Interval Type-2 Fuzzy Vibration Control of an ERF Embedded Smart Structure

Authors: Chih-Jer Lin, Chun-Ying Lee, Ying Liu, Chiang-Ho Cheng

Abstract:

The main objective of this article is to present the semi-active vibration control using an electro-rheological fluid embedded sandwich structure for a cantilever beam. ER fluid is a smart material, which cause the suspended particles polarize and connect each other to form chain. The stiffness and damping coefficients of the ER fluid can be changed in 10 micro seconds; therefore, ERF is suitable to become the material embedded in the tunable vibration absorber to become a smart absorber. For the ERF smart material embedded structure, the fuzzy control law depends on the experimental expert database and the proposed self-tuning strategy. The electric field is controlled by a CRIO embedded system to implement the real application. This study investigates the different performances using the Type-1 fuzzy and interval Type-2 fuzzy controllers. The Interval type-2 fuzzy control is used to improve the modeling uncertainties for this ERF embedded shock absorber. The self-tuning vibration controllers using Type-1 and Interval Type-2 fuzzy law are implemented to the shock absorber system. Based on the resulting performance, Internal Type-2 fuzzy is better than the traditional Type-1 fuzzy control for this vibration control system.

 

Keywords: Electro-Rheological Fluid, Semi-active vibration control, shock absorber, type 2 fuzzy control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2076
805 Sub-Impact Phenomenon of Elasto-Plastic Free-Free Beam during a Strike

Authors: H. Rong, X. C. Yin, J. Yang, Y. N. Shen

Abstract:

Based on Rayleigh beam theory, the sub-impacts of a free-free beam struck horizontally by a round-nosed rigid mass is simulated by the finite difference method and the impact-separation conditions. In order to obtain the sub-impact force, a uniaxial compression elastic-plastic contact model is employed to analyze the local deformation field on contact zone. It is found that the horizontal impact is a complicated process including the elastic plastic sub-impacts in sequence. There are two sub-zones of sub-impact. In addition, it found that the elastic energy of the free-free beam is more suitable for the Poisson collision hypothesis to explain compression and recovery processes.

Keywords: beam, sub-impact, elastic-plastic deformation, finite difference method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1799
804 Experimental Investigation of Natural Frequency and Forced Vibration of Euler-Bernoulli Beam under Displacement of Concentrated Mass and Load

Authors: Aref Aasi, Sadegh Mehdi Aghaei, Balaji Panchapakesan

Abstract:

This work aims to evaluate the free and forced vibration of a beam with two end joints subjected to a concentrated moving mass and a load using the Euler-Bernoulli method. The natural frequency is calculated for different locations of the concentrated mass and load on the beam. The analytical results are verified by the experimental data. The variations of natural frequency as a function of the location of the mass, the effect of the forced frequency on the vibrational amplitude, and the displacement amplitude versus time are investigated. It is discovered that as the concentrated mass moves toward the center of the beam, the natural frequency of the beam and the relative error between experimental and analytical data decreases. There is a close resemblance between analytical data and experimental observations.

Keywords: Euler-Bernoulli beam, natural frequency, forced vibration, experimental setup.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 511
803 Fractional Order Feedback Control of a Ball and Beam System

Authors: Santosh Kr. Choudhary

Abstract:

In this paper, fractional order feedback control of a ball beam model is investigated. The ball beam model is a particular example of the double Integrator system having strongly nonlinear characteristics and unstable dynamics which make the control of such system a challenging task. Most of the work in fractional order control systems are in theoretical nature and controller design and its implementation in practice is very small. In this work, a successful attempt has been made to design a fractional order PIλDμcontroller for a benchmark laboratory ball and beam model. Better performance can be achieved using a fractional order PID controller and it is demonstrated through simulations results with a comparison to the classic PID controller.

Keywords: Fractional order calculus, fractional order controller, fractional order system, ball and beam system, PIλDμ controller, modelling, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3489
802 The Study on the Conversed Remediation between Old and New Media in Case of Smart Phone and PC in South Korea

Authors: Jinhwan Yu, Jooyeon Yook

Abstract:

After Apple's first introduction its smart phone, iPhone in the end of 2009 in Korea, the number of Korean smarphone users had been rapidly increasing so that the half of Korean population became smart phone users as of February, 2012. Currently, smart phones are positioned as a major digital media with powerful influences in Korea. And, now, Koreans are leaning new information, enjoying games and communicating other people every time and everywhere. As smart phone devices' performances increased, the number of usable services became more while adequate GUI developments are required to implement various functions with smart phones. The strategy to provide similar experiences on smart phones through familiar features based on employment of existing media's functions mostly contributed to smart phones' popularization in connection with smart phone devices' iconic GUIs. The spread of Smart phone increased mobile web accesses. Therefore, the attempts to implement PC's web in the smart phone's web are continuously made. The mobile web GUI provides familiar experiences to users through designs adequately utilizing the smart phone's GUIs. As the number of users familiarized to smart phones and mobile web GUIs, opposite to reversed remediation from many parts of PCs, PCs are starting to adapt smart phone GUIs. This study defines this phenomenon as the reversed remediation, and reviews the reversed remediation cases of Smart phone GUI' characteristics of PCs. For this purpose, the established study issues are as under: · what is the reversed remediation? · what are the smart phone GUI's characteristics? · what kind of interrelationship exist s between the smart phone and PC's web site? It is meaningful in the forecast of the future GUI's change by understanding of characteristics in the paradigm changes of PC and smart phone's GUI designs. This also will be helpful to establish strategies for digital devices' development and design.

Keywords: Graphic User Interface, Remediation, Smart Phone, South Korea, Web Site

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1506
801 Mechanical Buckling of Engesser-Timoshenko Beams with a Pair of Piezoelectric Layers

Authors: A. R. Nezamabadi, M. Karami Khorramabadi

Abstract:

This paper presents the elastic buckling of homogeneous beams with a pair of piezoelectric layers surface bonded on both sides of the beams. The displacement field of beam is assumed based on the Engesser-Timoshenko beam theory. Applying the Hamilton's principle, the equilibrium equation is established. The influences of applied voltage, dimensionless geometrical parameter and piezoelectric thickness on the critical buckling load of beam are presented. To investigate the accuracy of the present analysis, a compression study is carried out with a known data.

Keywords: Mechanical Buckling, Engesser-Timoshenko beam theory - Piezoelectric layer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2194
800 Investigating the Capacity of Ultimate Torsion of Concrete Prismatic Beams with Transverse Spiral Bars

Authors: Hadi Barghlame, M. A. Lotfollahi-Yaghin

Abstract:

In this paper, the torsion capacity of ultimate point on rectangular beams with spiral reinforcements in the torsion direction and its anti-direction are investigated. Therefore, models of above-mentioned beams have been numerically analyzed under various loads using ANSYS software. It was observed that, spirallyreinforced prismatic beam and beam with spiral links, show lower torsion capacity than beam with normal links also in anti-direction. The result is that the concrete regulations are violated in this case.

Keywords: RC beam, ultimate torsion, finite element, prismatic beams, spirally tie.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1862
799 Numerical Analysis of End Plate Bolted Connection with Corrugated Beam

Authors: M. A. Sadeghian, J. Yang, Q. F. Liu

Abstract:

Steel extended end plate bolted connections are recommended to be widely utilized in special moment-resisting frame subjected to monotonic loading. Improper design of steel beam to column connection can lead to the collapse and fatality of structures. Therefore comprehensive research studies of beam to column connection design should be carried out. Also the performance and effect of corrugated on the strength of beam column end plate connection up to failure under monotonic loading in horizontal direction is presented in this paper. The non-linear elastic–plastic behavior has been considered through a finite element analysis using the multi-purpose software package LUSAS. The effect of vertically and horizontally types of corrugated web was also investigated.

Keywords: Corrugated beam, monotonic loading, finite element analysis, end plate connection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2425
798 Studies on Ti/Al Sheet Joint Using Laser Beam Welding – A Review

Authors: K. Kalaiselvan, A. Elango, N. M. Nagarajan, N. Mathiyazagan

Abstract:

Laser beam welding has wide acceptability due to least welding distortion, low labour costs and convenient operation. However, laser welding for dissimilar titanium and aluminium alloys is a new area which is having wider applications in aerospace, aircraft, automotive, electronics and other industries. The present study is concerned with welding parameters namely laser power, welding speed, focusing distance and type of shielding gas and thereby evaluate welding performance of titanium and aluminium alloy thin sheets. This paper reviews the basic concepts associated with different parameters of Ti/Al sheet joint using Laser beam welding.

Keywords: Laser Beam Welding (LBW), Dissimilar joining Titanium and Aluminum sheets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2205
797 Revolution of IoT Development in Smartest City: Review of Smart City Development in Singapore and Hong Kong

Authors: Kwok Tak Kit

Abstract:

A smart city is an urban setting which effectively applies technology to enhance the benefits and provides solution to the shortcoming of urbanization for its citizens while the internet of things (loT) is to connect everything embedded with electronics, software, and sensors to the internet so as to enable them to collect and exchange data. Smart city development encompasses the development and application of IoT technology and prepares for the next generation of connectivity. The governments in the major developed cities and countries across the world already started the race to adopt the IoT technology to transform their cities into smart cities in coming few years. The development of smart city definitely can assist to tackle the problems which impede the quality of life of their citizens and the hindrance of the long-term challenges of sustainability and impacts from pollution. This paper is aims to outline the adoption of IoT in different key sectors in the Singapore and describe the revolution of IoT and its adoption in the smart city.

Keywords: Smart city, internet of things, sustainability, innovation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 555
796 Nonlinear Finite Element Modeling of Deep Beam Resting on Linear and Nonlinear Random Soil

Authors: M. Seguini, D. Nedjar

Abstract:

An accuracy nonlinear analysis of a deep beam resting on elastic perfectly plastic soil is carried out in this study. In fact, a nonlinear finite element modeling for large deflection and moderate rotation of Euler-Bernoulli beam resting on linear and nonlinear random soil is investigated. The geometric nonlinear analysis of the beam is based on the theory of von Kàrmàn, where the Newton-Raphson incremental iteration method is implemented in a Matlab code to solve the nonlinear equation of the soil-beam interaction system. However, two analyses (deterministic and probabilistic) are proposed to verify the accuracy and the efficiency of the proposed model where the theory of the local average based on the Monte Carlo approach is used to analyze the effect of the spatial variability of the soil properties on the nonlinear beam response. The effect of six main parameters are investigated: the external load, the length of a beam, the coefficient of subgrade reaction of the soil, the Young’s modulus of the beam, the coefficient of variation and the correlation length of the soil’s coefficient of subgrade reaction. A comparison between the beam resting on linear and nonlinear soil models is presented for different beam’s length and external load. Numerical results have been obtained for the combination of the geometric nonlinearity of beam and material nonlinearity of random soil. This comparison highlighted the need of including the material nonlinearity and spatial variability of the soil in the geometric nonlinear analysis, when the beam undergoes large deflections.

Keywords: Finite element method, geometric nonlinearity, material nonlinearity, soil-structure interaction, spatial variability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1872