
 
Abstract—This work aims to evaluate the free and forced vibration 

of a beam with two end joints subjected to a concentrated moving mass 
and a load using the Euler-Bernoulli method. The natural frequency is 
calculated for different locations of the concentrated mass and load on 
the beam. The analytical results are verified by the experimental data. 
The variations of natural frequency as a function of the location of the 
mass, the effect of the forced frequency on the vibrational amplitude, 
and the displacement amplitude versus time are investigated. It is 
discovered that as the concentrated mass moves toward the center of 
the beam, the natural frequency of the beam and the relative error 
between experimental and analytical data decreases. There is a close 
resemblance between analytical data and experimental observations. 

 
Keywords—Euler-Bernoulli beam, natural frequency, forced 

vibration, experimental setup. 

I.INTRODUCTION 

HE vibration analysis of beams carrying concentrated 
masses at arbitrary locations has been the subject of 

extensive research for many years. To find a solution for a beam 
carrying a mass two models have been used: Euler-Bernoulli 
beam theory and Timoshenko beam theory [1]. To analyze the 
transverse vibrations of beams, Euler-Bernoulli is an effective 
and simple method to predict the natural frequencies of the 
beams carrying concentrated masses at arbitrary positions.  

The vibrations of uniform and non-uniform Euler Bernoulli 
beam with a concentrated mass under distributed load have 
been addressed by many researchers in which different 
boundary conditions have been considered. Chun [2] analyzed 
the free vibrations of a Euler-Bernoulli beam, in which one end 
is connected to torsional spring with a constant spring 
coefficient, and the other end is free. Laura et al. [3] 
investigated a Euler–Bernoulli beam subjected to a point mass 
and disregarded the effect of shear deformation. Goel [4] 
inspected beam vibrations with a concentrated mass at the 
desired location with rotation-resistant support using the Euler-
Bernoulli model and the Laplace transform. He focused on the 
effects of concentrated mass to beam mass ratio, stiffness of 
springs at two joints and location of concentrated mass on 
natural frequencies. Parnell and Cobble [5] studied the 
vibrations of a Euler-Bernoulli beam of one fixed end and with 
a mass at the other end by the Laplace transform. Their analysis 
was based on a beam with a fixed cross-sectional area, but 
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different load distribution, boundary conditions, and initial 
conditions. An analysis on the problem of the free vibration of 
a uniform beam with one end attached to a torsion spring and 
its other end restricted by a linear spring motion using 
trigonometric expressions and hyperbolic functions was carried 
out by Maurizi et al. [6]. To [7] studied the vibration of a 
cantilever beam with a concentrated mass and base excitation. 
He also explored the impact of the distance between the tip 
mass center of gravity and to the point where it is connected to 
the end of the beam. Laura and Gutierrez [8] explored the 
vibrations of a beam with an elastic end and the variable cross-
sectional area, on which a concentrated mass is placed, they 
used the Rayleigh-Schmidt method to solve it. Liu and Huang 
[9] examined the free vibrations of a Euler-Bernoulli beam with 
two concentrated masses, one in the middle of the beam and the 
other at the free end, under boundary conditions of one end 
involved with an elastic base. Abramovich and Hamburger [1] 
calculated the natural frequencies of a cantilever beam carrying 
a tip mass at its free end with having translational and rotational 
springs. 

Wang and Lin [10] calculated the dynamic analysis of beams 
that have arbitrary boundary conditions by using Fourier series. 
Yeih et al. [11] used the dual multiple reciprocity method 
(MRM) to determine the natural frequencies and natural modes 
of a Bernoulli beam. Kim and Kim [12] used Fourier series to 
obtain vibration frequencies of uniform Euler-Bernoulli beams 
with finite boundary conditions. Low [13], by using the Euler-
Bernoulli beam with a concentrated mass and the Rayleigh 
approximation method, studied the transverse vibrations and 
natural frequencies of a beam. The case of transverse vibration 
of uniform Euler-Bernoulli beams under variable axial load has 
been inspected by Noguleswaran [14]. He acquired the mode 
shapes using the Frobenius method. Yaman [15] used the finite 
element method to analyze a beam with one fixed end and a 
mass on the other free end. The use of Euler-Bernoulli beam 
theory and accurate beam solving with finite concentrated 
masses on it and considering the mass inertia is a research 
conducted by Maiz et al. [16]. In work by Lai et al. [17], the 
Adomian decomposition method (ADM) was used to solve the 
free vibration of Euler-Bernoulli beams with different elastic 
support conditions. Liu et al. [18] computed the natural 
frequencies and mode shapes of a Euler-Bernoulli beam under 
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different end support conditions using the iterative method. 
Hozhabrossadati et al. [19] studied the free vibration of a beam 
with intermediate sliding connection joined by a mass-spring 
system. Chen et al. [20] employed the dynamic stiffness method 
to study the vibrations of combined beam and 2DOF spring-
mass system. Ganguli and Gouravaraju [21] investigated the 
detection of damages in a cantilever beam by using spatial 
Fourier coefficients and mode shape method. De Rosa et al. [22] 
investigated the free vibrations of a tapered beam with one 
elastic end and with a concentrated mass and a viscous damper 
at the other end. Liu and Barkey [23] analyzed the nonlinear 
vibration behavior of a cantilever beam with a breathing crack 
and simplified the beam into a 1 DOF model by the Galerkin 
method. Rezaiee-pajand et al. [24] inspected the vibration 
suppression of a double-beam system by a 2D mass-spring 
system. Korayem et al. [25] explored the vibration control of an 
atomic force microscope (AFM) Euler-Bernoulli micro-beam 
by a piezoelectric layer on top of it. They displayed that 
vibrations of the beam can be reduced by viscoelasticity. 
Ahmadi et al. [26] performed Finite element method (FEM) for 
studying the free and forced vibration of rectangular and V-
shaped AFM piezoelectric microcantilevers. Jafarzadeh et al. 
[27] analyzed the effects of concentrated masses on the 
transverse vibration of nanobeams. They imposed the 
mathematical model of the concentrated masses into the 
equations of motion by using Dirac’s delta function. 
Pouretemad et al. [28] examined the free vibration of a 
non‑uniform nano-beam that carrying arbitrary concentrated 
masses.  

However, to the best of our knowledge, no experimental 
study to this point has considered a beam with a concentrated 
mass under a concentrated load caused by an unbalanced mass 
at different locations. Due to this reason, it encouraged us to 
investigate and provide an experimental study on the free and 
forced vibration behavior with the concentrated mass. Here, we 
use the Euler-Bernoulli method to analyze the free and forced 
vibration of a beam with two-joint boundary conditions 
subjected to a concentrated moving mass and a load. By 
applying concentrated mass and load on the beam, its natural 
frequency is calculated by using an analytical method, then, the 
results are compared with the experimental results. To this end, 
for various states of concentrated load and mass at different 
distances on the beam, the governing Euler-Bernoulli beam 
equations are extracted. Accuracy is determined by comparing 
the obtained theoretical and experimental data. 

This paper is organized as follows. Section II introduces the 
theories and governing equations for the free and forced 
vibration equations. Section III describes the experimental 
setup used in this work. The results and discussion are given in 
Section IV. Finally, last section presents our conclusions. 

II.THEORETICAL SECTION 

A. Notation and Preliminaries 

The equation for transverse vibrations of a beam is as 
follows: 

 

𝐸𝐼 𝑥
,

𝜌𝐴 𝑥
,

𝑓 𝑥, 𝑡   (1) 

 
where ρ is the density of the beam (kg /m3), E is Young's 
modulus (kg /m2), I is the moment of inertia (m4), A is the cross-
sectional area (m2), w is the transverse displacement (function 
of displacement and time), x is the beam location, t is time 
(seconds), and f is the external force (function of displacement 
and time). 

In this study, the beam is simply supported, as shown in Fig. 
1. 

 

 

Fig. 1 Simple beam with concentrated mass 

B. Free Vibration  

To calculate the natural frequency of the beam, the external 
force f was assumed to be 0 in (1). In the two-jointed beam 
system, the boundary conditions of the system are in the form 
of (2). The effect of the concentrated mass should also be 
applied to the boundary conditions of the beam. 

 

𝑤 0, 𝑡 0, 0, 𝑡 0, 𝑤 𝐿, 𝑡 0, 𝐿, 𝑡 0 (2) 

 
First, using the characteristics and parameters of the beam 

listed in Table I, for a given mass, at different distances from 
one end of the beam, the natural frequency of the beam is 
calculated. 

 
TABLE I 

BEAM CHARACTERISTICS AND PARAMETERS 

Parameters of the beam Value 

Length L (cm) 82 

Young's modulus E (Kg/cm2) 2.109 106 

Density ρ (Kg/m3) 7832 

Cross-sectional 
area

b (cm) 
h (cm) 

2.54 
1.27

Mass of motor and belongings Mm (gr) 4450 

Beam mass m (gr) 2000 

 

An approximate solution to obtain natural frequency is the 
Dunkerley equation, which is expressed as follows: 

 

     (3) 

 
where 𝑓  is the natural frequency of the beam without the 
external load, 𝑓  is the natural frequency of the beam with the 
external load, and 𝑓 is the natural frequency of the system. For 
different distances from the left of the beam, the natural 
frequency is calculated.  

x

L

M

a

o

y h

b

Cross sectional area
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C. Forced Vibration  

The solution to (1) is assumed by using the method of 
separation of variables as follows: 

 
𝑤 𝑥, 𝑡 ∑ 𝑊 𝑥 𝜂 𝑡    (4) 

 
where 𝑊 𝑥  is the normal modes of the beam and 𝜂 𝑡  is a 
function of time. 

The system response is as follows: 
 

𝑤 𝑥, 𝑡 𝑊 𝑥 ∑ 𝐴 𝑐𝑜𝑠 𝜔 𝑡 𝐵 𝑠𝑖𝑛 𝜔 𝑡

𝑄 𝜏 𝑠𝑖𝑛 𝜔 𝑡 𝜋 𝑑𝜏  (5) 

 
where b is: 
 

𝑏 𝑊 𝑥 𝑑𝑥   (6) 
 
The effect of concentrated force is considered as: 
 

𝑓 𝑥, 𝑡 𝐹 𝑡 . 𝛿 𝑥 𝑎    (7) 
 
where 𝛿 is the Kronecker delta, which is defined as follows: 
 

𝛿 𝑥 𝑎 1  𝑥 𝑎
0   𝑥 𝑎

    (8) 

 
where the excitation force with Ω (excitation frequency or 
forced frequency) is applying to the beam, the force is: 
 

𝐹 𝑡 𝑓 Ω  sin Ω𝑡     (9) 
 
where 𝑓 Ω  is as follows: 
 

𝑓 Ω 𝑚 𝑟Ω      (10) 
 

The specifications of the unbalanced mass are shown in 
Table II. 

 
TABLE II 

SPECIFICATIONS OF THE UNBALANCED MASS 

Parameters Value 

Unbalanced mass 𝑚 (Kg) 0.0768 
Distance between unbalanced mass and center of the 

disc 
R (mm) 57.4 

III.EXPERIMENTAL SETUP 

In this test rig, a beam of rectangular cross-section with two 
hinged ends is considered. The beam carries a synchronous 
motor with an unbalanced disc which applies a harmonic force 
to the beam [29]. An adjustable concentrated mass is attached 
to the bottom of the motor. The natural frequency of the beam 
relates to the disc rotation, which can be measured using a 
motor speed controller or a stroboscope. Fig. 2 shows our 
experimental setup. 

Experiments are performed by increasing the rotational 
speed of the synchronous motor driver, as illustrated in Fig. 3.  

  

 

Fig. 2 The test rig 
 

 

Fig. 3 The driver of synchronous motor to increase rotation speed 

IV.RESULTS 

The natural frequency of the beam is calculated by 
considering the speed ratio between the motor and the main 
system that comprises the beam. Table III shows the 
experimental results at different locations of the mass. 

 
TABLE III 

THE NATURAL FREQUENCY OF THE BEAM FOR DIFFERENT DISTANCES 

Distances of the 
concentrated mass 
(Mm) from the left 

end (mm) 

The first natural 
frequency of the beam 

𝜔  by analytical 

solution 𝑟𝑎𝑑 𝑠  

The first natural 
frequency of the beam 
𝜔  by experimental 

solution 𝑟𝑎𝑑 𝑠
a1= 150 107.36 101.34 

a2= 230 99.43 94.58 

a3= 300 96.14 92.89 

a4= 380 91.78 89.52 

a5= 410 88.95 87.83 

 

As can be seen from Table III, the natural frequency of the 
beam and the relative error value between the results of 
analytical and experiment solutions reduce by moving the 
concentrated mass toward the middle of the beam. The first 
natural frequencies of the system extracted from analytical and 
experiment results as a function of the locations of the mass are 
presented in Fig. 4. The relative error for different locations is 
also calculated using (11) and plotted in Fig. 4. 

 

Relative error (%) =   

 
100% 

(11) 
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Fig. 4 The results of the first natural frequency due to analytical and 
experimental solution 

 

As one can see from Fig. 4, the relative error percentage 
decreases as the mass approaches the center of the beam.  

In Fig. 5, the vibrational amplitude at x = 410 mm (center of 
the beam) as a function of the frequency of the excitation force 
is obtained for different distances.  

 

 

Fig. 5 The vibrational amplitude in the middle of the beam in terms 
of the frequency excitation 

 

One can conclude from Fig. 5 and Table III that the minimum 
natural frequency of the beam is obtained when the 
concentrated mass is located in the middle of the beam.  

The range of transverse vibration of the beam is calculated at 
different locations and for different excitation frequencies. For 
Ω = 100 rad/s and x = 410 mm, in Fig. 6, as the excitation 
frequency, approaches the natural frequency, the range of 
displacement increases. Here, the amplitude at a = 230 mm is 
greater than that of at a = 300 mm and a = 380 mm. 

It can be seen from Fig. 6 that, the maximum vibrational 
amplitude occurs at the center of the beam and as the mass and 
load moves toward the edges of the beam, the vibrational 

amplitude decreases. 
 

 

Fig. 6 The range of displacement of the beam with a known x and Ω 

V.DISCUSSION 

In various engineering systems, designing a beam with 
carrying masses is a very common model [30]. In order to 
prevent the system from failure, it is important to know the 
natural frequencies of the beam-mass systems, improve the 
design, and to obtain a proper design. In addition, encountering 
resonance could cause failure in the machine, so it is vital to 
study forced vibration. 

It can be deduced that when the concentrated mass is placed 
in the middle of the beam, the natural frequency is minimum in 
comparison with other locations of the mass [31]. Besides, 
when the forced frequency due to the mass and load is in the 
proximity of the natural frequency of the beam, resonance 
phenomena would happen and the vibrational amplitude will be 
maximum [32], [33]. The aim of this study was to provide 
experimental verification of the analytical hypotheses which are 
defined before and give sight for further studies and the 
acquired results prove the accuracy of the experiment and 
compatibility with analytical results. 

VI.CONCLUSION 

Several works have been done and published on the vibration 
analysis of beams carrying concentrated masses, but a few of 
them considered the experimental study. So, it motivated the 
author to prepare a test setup and an experimental investigation 
was done to study the natural frequency and forced vibration of 
the beam with carrying concentrated masses.  

The Euler-Bernoulli method was employed to analyze the 
free and forced vibration of a two end joints beam with a 
concentrated moving mass and a load. The experimental results 
were verified analytically. It was found that as the frequency of 
excitation increases, the resonance phenomena occur at the 
desired working locations. Moreover, as the concentrated mass 
moves toward the center of the beam, the natural frequency of 
the beam decreases, and the minimum the natural frequency 
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achieved when the mass is located in the middle of the beam. 
The resonance happened when the forced frequency is equal to 
the natural frequency. It was found that there is a good 
correlation between predictive and experimental results. This 
paper took into consideration the effect of the concentrated 
masses on the vibration behavior of the beam. Furthermore, it 
provides an experimental reference for future studies. The 
author is planning to consider other beams with different 
geometries and boundary conditions for future work. 
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