Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
Structure-Phase States of Al-Si Alloy after Electron-Beam Treatment and Multicycle Fatigue
Authors: Krestina V. Alsaraeva, Victor E. Gromov, Sergey V. Konovalov, Anna A. Atroshkina
Abstract:
Processing of Al-19.4Si alloy by high intensive electron beam has been carried out and multiple increases in fatigue life of the material have been revealed. Investigations of structure and surface modified layer destruction of Al-19.4Si alloy subjected to multicycle fatigue tests to fracture have been carried out by methods of scanning electron microscopy. The factors responsible for the increase of fatigue life of Al-19.4Si alloy have been revealed and analyzed.Keywords: Al-19.4Si alloy, high intensive electron beam, multicycle fatigue, structure.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1107844
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2028References:
[1] G S. Kocanda, Fatigue failure of metals, Alphen aan den Rijn: Sijthoff & Noordhoff International Publishers, 1978.
[2] J. A. Fellows, “Fractography and Atlas of Fractographs”, in Metals Handbook, vol. 9, Amer. Soc. Metals, 1974.
[3] G. B. Stroganov, V. A. Rothenberg and G. B. Gershman, “Aluminumsilicon alloy”, Moscow: Metallurgy, 1977.
[4] Y. F. Ivanov, N. N. Koval, S. V. Gorbunov, S. V. Vorobyov, S. V. Konovalov and V. E. Gromov, “Multicyclic fatigue of stainless steel treated by a high-intensity electron beam: surface layer structure”, Rus. Phys. J., vol. 54, pp. 575-583, Oct. 2011.
[5] V. A. Grishunin, V. E. Gromov, Yu. F. Ivanov, A. D. Teresov and S. V. Konovalov, “Evolution of the phase composition and defect substructure of rail steel subjected to high-intensity electron-beam treatment”, J. of Surf. Investigation. X-ray, Synchrotron and Neutron Techniques, vol. 7, pp. 990-995, Sept. 2013.
[6] V. V. Sizov, V. E. Gromov, Y. F. Ivanov, S. V. Vorob'ev and S. V. Konovalov, “Fatigue failure of stainless steel after electron-beam treatment”, Steel in Translation, vol. 42, pp. 486-488, June 2012.
[7] Yu. F. Ivanov, D. A. Bessonov, S. V. Vorob’ev, V. E. Gromov, K. V. Ivanov, Yu. A. Kolubaeva and V. Ya. Tsellermaer, “On the fatigue strength of grade 20Cr13 hardened steel modified by an electron beam”, J. of Surf. Investigation. X-ray, Synchrotron and Neutron Techniques, vol. 7, pp. 90-93, Jan. 2013.
[8] D. I. Proskurovsky, V. P. Rotshtein, G. E. Ozur, Yu. F. Ivanov and A. B. Markov, “Physical foundations for surface treatment of materials with low energy, high current electron beams”, Surf. and Coat. Technol., vol. 125, pp. 49-56, March 2000.
[9] Yu. F. Ivanov, T. Yu. Kobzareva, S. V. Raikov, V. E. Gromov, N. A. Soskova and E. A. Budovskikh, “Modification of the surface of the VT6 alloy by plasma of electric explosion of a conducting material and by electron beam”, Russian J. of Non-Ferr. Met., vol. 55, pp. 51-56, Jan. 2014.
[10] S. Z. Hao, Y. Qin, X. X. Mei, B. Gao, J. X. Zuo, Q. F. Guan, C. Dong and Q. Y. Zhang, “Fundamentals and applications of material modification by intense pulsed beams”, Surf. and Coat. Technol., vol. 201, pp. 8588–8595, August 2007.
[11] J. J. Hu, G. B. Zhang, H. B. Xu and Y. F. Chen, Microstructure characteristics and properties of 40Cr steel treated by high current pulsed electron beam”, Mater. Sci. and Technol., vol. 27, pp. 300-303, April 2012.
[12] L. J. Tan, Z. K. Yao, T. Wang and H. Z. Guo, “Effect of post-weld heat treatment on microstructure and properties of electron beam welded joint of Ti2AlNb/TC11”, Mater. Sc. and Technol., vol. 27, pp. 1315-1320, August 2011.
[13] M. Elmadagli, T. Perry and A. T. Alpas, “A parametric study of the relationship between microstructure and wear resistance of Al–Si alloys”, Wear, vol. 262, pp. 79–92, Jan. 2007.
[14] M. Zeren and E. Karakulak, “Influence of Ti addition on the microstructure and hardness properties of near-eutectic Al–Si alloys”, J. of Alloys and Compounds, vol. 450, pp. 255–259, February 2008.
[15] C. X. Guang and E. Siegtried, “Einflus des wasserstof-fanfporositat Al- Si and Al-Mg legirungen”, Giesserei, vol. 78, pp. 679-684, 1990.
[16] R. C. Hernandez and J. H. Sokolowski, “Thermal analysis and microscopical characterization of Al–Si hypereutectic alloys”, J. of Alloys and Compounds, vol. 419, pp. 180–190, August 2006.
[17] M. Zeren, “The effect heat-treatment on aluminum-based piston alloys”, Materials and design, vol. 28, 2511–2517, 2007.
[18] R. Taghiabadi, H. M. Ghasemi and S. G. Shabestari, “Effect of iron-rich intermetallics on the sliding wear behavior of Al–Si alloys”, Mater. Sci. and Engineering A, vol. 490, pp. 162–167, August 2008.
[19] R. X. Li, R. D. Li, L. Z. He, C. X. Li, H. R. Gruan and Z. Q. Hu, “Agehardening behavior of cast Al–Si base alloy”, Materials Letters, vol. 58, pp. 2096–2101, June 2004.
[20] N. A. Belov, D. G. Eskin and A. A. Aksenov, Multicomponent Phase Diagrams: Applications for Commercial Aluminum Alloys, Amsterdam: Elsevier, 2005.
[21] N. A. Belov, D. G. Eskin and N. N. Avxentieva, “Constituent Phase Diagrams of the Al–Cu–Fe–Mg–Ni–Si System and their Application to the Analysis of Aliminium Piston Alloys”, Acta Materialia, vol. 53, pp. 4709–4722, Oct. 2005.
[22] A. M. A. Mohamed, A. M. Samuel, F. H. Samuel and H. W. Doty, “Influence of additives on the microstructure and tensile properties of near-eutectic Al–10.8%Si cast alloy”, Materials and Design, vol. 30, pp. 3943–3957, 2009.
[23] T. T. Wong and G. Y. Liang, “Effect of Laser Melting Treatment on the Structure and Corrosion Behavior of Aluminium and Al-Si Alloys”, J. of Materials Processing Technology, vol. 63, pp. 930-934, Jan. 1997.
[24] E. Sicard, C. Boulmer-Leborgne, C. Andreazza-Vignolle and M. Frainais, “Excimer laser surface treatment of aluminum alloy in nitrogen”, Appl. Phys. A, vol. 73, pp. 55–60, July 2001.
[25] P. H. Chong, Z. Liu, P. Skeldon and G. E. Thompson, “Large area laser surface treatment of aluminum alloys for pitting corrosion protection”, Applied Surface Science, vol. 208-209, pp. 399-404, March 2003.
[26] S. Tomida, K. Nakata, S. Shibata, I. Zenkouji and S. Saji, “Improvement in wear resistance of hyper-eutectic Al-Si cast alloy by laser surface remelting”, Surf. and Coat. Technol., vol. 169-170, pp. 468-471, June 2003.
[27] J. An, X. X. Shen, Y. Lu and Y. B. Liu, “Microstructure and tribological properties of Al–Pb alloy modified by high current pulsed electron beam”, Wear, vol. 261, pp. 208–215, July 2006.
[28] Y. Hao, B. Gao, G. F. Tu, S. W. Li, S. Z. Hao and C. Dong, “Surface modification of Al–20Si alloy by high current pulsed electron beam”, Applied Surface Science, vol. 257, pp. 3913–3919, Feb. 2011.
[29] Y. Hao, B. Gao, G. F. Tu, H. Cao, S. Z. Hao and C. Dong, “Surface modification of Al–12.6Si alloy by high current pulsed electron beam”, Applied Surface Science, vol. 258, pp. 2052– 2056, Jan. 2012.
[30] J. An, X. X. Shen, Y. Lu, Y. B. Liu, R. G. Li, C. M. Chen and M. J. Zhang, “Influence of high current pulsed electron beam treatment on the tribological properties of Al–Si–Pb alloy”, Surf. and Coat. Technol., vol. 200, pp. 5590 – 5597, May 2006.
[31] Y. Hao, B. Gao, G. F. Tu, Z. Wang and C. Z. Hao, “Influence of high current pulsed electron beam (HCPEB) treatment on wear resistance of hypereutectic Al-17.5Si and Al-20Si Alloys”, Materials Science Forum, vol. 675-677, pp. 693-696, 2011.
[32] S. V. Konovalov, A. A. Atroshkina, Yu. F. Ivanov and V. E. Gromov, “Evolution of dislocation substructures in fatigue loaded and failed stainless steel with the intermediate electropulsing treatment”, Mater. Sci. and Eng. A, vol. 527, pp. 3040-3043, May 2010.
[33] V. S. Ivanova and A. A. Shanyavskii, Quantitative Fractography. Fatigue Fracture, Chelyabinsk: Metallurgiya, 1988.
[34] V. F. Terent’ev, Fatigue of Metallic Materials, Cambridge: Cambridge Intern. Science Publ, 2004.
[35] O. V. Sosnin, V. V. Tsellermaer, Yu. F. Ivanov, V. E. Gromov and É. V. Kozlov, “Evolution of the Structure and Carbon Atom Transfer in the Zone of Fatigue Crack Growth in Ferrite-Pearlite Steel”, Rus. Phys. J., vol. 46, pp. 1047-1056, Oct.2003.
[36] L. Engel and H. Klingele, Scanning Electron Microscopy: Fracture, Munich: Carl Hanse, 1982.