Search results for: series system
9046 Investigation on Performance of Change Point Algorithm in Time Series Dynamical Regimes and Effect of Data Characteristics
Authors: Farhad Asadi, Mohammad Javad Mollakazemi
Abstract:
In this paper, Bayesian online inference in models of data series are constructed by change-points algorithm, which separated the observed time series into independent series and study the change and variation of the regime of the data with related statistical characteristics. variation of statistical characteristics of time series data often represent separated phenomena in the some dynamical system, like a change in state of brain dynamical reflected in EEG signal data measurement or a change in important regime of data in many dynamical system. In this paper, prediction algorithm for studying change point location in some time series data is simulated. It is verified that pattern of proposed distribution of data has important factor on simpler and smother fluctuation of hazard rate parameter and also for better identification of change point locations. Finally, the conditions of how the time series distribution effect on factors in this approach are explained and validated with different time series databases for some dynamical system.
Keywords: Time series, fluctuation in statistical characteristics, optimal learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18129045 Computational Intelligence Hybrid Learning Approach to Time Series Forecasting
Authors: Chunshien Li, Jhao-Wun Hu, Tai-Wei Chiang, Tsunghan Wu
Abstract:
Time series forecasting is an important and widely popular topic in the research of system modeling. This paper describes how to use the hybrid PSO-RLSE neuro-fuzzy learning approach to the problem of time series forecasting. The PSO algorithm is used to update the premise parameters of the proposed prediction system, and the RLSE is used to update the consequence parameters. Thanks to the hybrid learning (HL) approach for the neuro-fuzzy system, the prediction performance is excellent and the speed of learning convergence is much faster than other compared approaches. In the experiments, we use the well-known Mackey-Glass chaos time series. According to the experimental results, the prediction performance and accuracy in time series forecasting by the proposed approach is much better than other compared approaches, as shown in Table IV. Excellent prediction performance by the proposed approach has been observed.Keywords: forecasting, hybrid learning (HL), Neuro-FuzzySystem (NFS), particle swarm optimization (PSO), recursiveleast-squares estimator (RLSE), time series
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15609044 Series-Parallel Systems Reliability Optimization Using Genetic Algorithm and Statistical Analysis
Authors: Essa Abrahim Abdulgader Saleem, Thien-My Dao
Abstract:
The main objective of this paper is to optimize series-parallel system reliability using Genetic Algorithm (GA) and statistical analysis; considering system reliability constraints which involve the redundant numbers of selected components, total cost, and total weight. To perform this work, firstly the mathematical model which maximizes system reliability subject to maximum system cost and maximum system weight constraints is presented; secondly, a statistical analysis is used to optimize GA parameters, and thirdly GA is used to optimize series-parallel systems reliability. The objective is to determine the strategy choosing the redundancy level for each subsystem to maximize the overall system reliability subject to total cost and total weight constraints. Finally, the series-parallel system case study reliability optimization results are showed, and comparisons with the other previous results are presented to demonstrate the performance of our GA.
Keywords: Genetic algorithm, optimization, reliability, statistical analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11569043 Statistical Reliability Based Modeling of Series and Parallel Operating Systems using Extreme Value Theory
Authors: Mohamad Mahdavi, Mojtaba Mahdavi
Abstract:
This paper tries to represent a new method for computing the reliability of a system which is arranged in series or parallel model. In this method we estimate life distribution function of whole structure using the asymptotic Extreme Value (EV) distribution of Type I, or Gumbel theory. We use EV distribution in minimal mode, for estimate the life distribution function of series structure and maximal mode for parallel system. All parameters also are estimated by Moments method. Reliability function and failure (hazard) rate and p-th percentile point of each function are determined. Other important indexes such as Mean Time to Failure (MTTF), Mean Time to repair (MTTR), for non-repairable and renewal systems in both of series and parallel structure will be computed.Keywords: Reliability, extreme value, parallel, series, lifedistribution
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20909042 Power Series Solution to Sliding Velocity in Three-Dimensional Multibody Systems with Impact and Friction
Authors: Hesham A. Elkaranshawy, Amr M. Abdelrazek, Hosam M. Ezzat
Abstract:
The system of ordinary nonlinear differential equations describing sliding velocity during impact with friction for a three-dimensional rigid-multibody system is developed. No analytical solutions have been obtained before for this highly nonlinear system. Hence, a power series solution is proposed. Since the validity of this solution is limited to its convergence zone, a suitable time step is chosen and at the end of it a new series solution is constructed. For a case study, the trajectory of the sliding velocity using the proposed method is built using 6 time steps, which coincides with a Runge- Kutta solution using 38 time steps.Keywords: Impact with friction, nonlinear ordinary differential equations, power series solutions, rough collision.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19179041 The Relations between the Fractal Properties of the River Networks and the River Flow Time Series
Authors: M. H. Fattahi, H. Jahangiri
Abstract:
All the geophysical phenomena including river networks and flow time series are fractal events inherently and fractal patterns can be investigated through their behaviors. A non-linear system like a river basin can well be analyzed by a non-linear measure such as the fractal analysis. A bilateral study is held on the fractal properties of the river network and the river flow time series. A moving window technique is utilized to scan the fractal properties of them. Results depict both events follow the same strategy regarding to the fractal properties. Both the river network and the time series fractal dimension tend to saturate in a distinct value.Keywords: river flow time series, fractal, river networks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16899040 Detecting the Nonlinearity in Time Series from Continuous Dynamic Systems Based on Delay Vector Variance Method
Authors: Shumin Hou, Yourong Li, Sanxing Zhao
Abstract:
Much time series data is generally from continuous dynamic system. Firstly, this paper studies the detection of the nonlinearity of time series from continuous dynamics systems by applying the Phase-randomized surrogate algorithm. Then, the Delay Vector Variance (DVV) method is introduced into nonlinearity test. The results show that under the different sampling conditions, the opposite detection of nonlinearity is obtained via using traditional test statistics methods, which include the third-order autocovariance and the asymmetry due to time reversal. Whereas the DVV method can perform well on determining nonlinear of Lorenz signal. It indicates that the proposed method can describe the continuous dynamics signal effectively.
Keywords: Nonlinearity, Time series, continuous dynamics system, DVV method
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16269039 Reliability Analysis of k-out-of-n : G System Using Triangular Intuitionistic Fuzzy Numbers
Authors: Tanuj Kumar, Rakesh Kumar Bajaj
Abstract:
In the present paper, we analyze the vague reliability of k-out-of-n : G system (particularly, series and parallel system) with independent and non-identically distributed components, where the reliability of the components are unknown. The reliability of each component has been estimated using statistical confidence interval approach. Then we converted these statistical confidence interval into triangular intuitionistic fuzzy numbers. Based on these triangular intuitionistic fuzzy numbers, the reliability of the k-out-of-n : G system has been calculated. Further, in order to implement the proposed methodology and to analyze the results of k-out-of-n : G system, a numerical example has been provided.
Keywords: Vague set, vague reliability, triangular intuitionistic fuzzy number, k-out-of-n : G system, series and parallel system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29829038 Incorporation of SVS CBVLC Supplementary Controller for Damping SSR in Power System
Authors: Narendra Kumar, Sanjiv Kumar
Abstract:
Static VAR System (SVS) is a kind of FACTS device which is used in power system primarily for the purpose of voltage and reactive power control. In this paper presents a systematic approach for designing SVS supplementary controller, which is used to improve the damping of power system oscillation. The combined bus voltage and line current (CBVLC) supplementary controller has been developed and incorporated in the SVS control system located at the middle of the series compensated long transmission line. Damping of torsional stresses due to subsynchronous resonance resulting from series capacitive compensation using CBVLC is investigated in this paper. Simulation results are carried out with MATLAB/Simulink on the IEEE first benchmark model (FBM). The simulation results show that the oscillations are satisfactorily damped out by the SVS supplementary controller. Time domain simulation is performed on power system and the results demonstrate the effectiveness of the proposed controller.
Keywords: Bus voltage and line current (BVLC), series compensation, sub synchronous resonance (SSR), supplementary controller, eigenvalue investigation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18489037 Content Analysis and Attitude of Thai Students towards Thai Series “Hormones: Season 2”
Authors: Siriporn Meenanan
Abstract:
The objective of this study is to investigate the attitude of Thai students towards the Thai series "Hormones the Series Season 2". This study was conducted in the quantitative research, and the questionnaires were used to collect data from 400 people of the sample group. Descriptive statistics were used in data analysis. The findings reveal that most participants have positive comments regarding the series. They strongly agreed that the series reflects on the way of life and problems of teenagers in Thailand. Hence, the participants believe that if adults have a chance to watch the series, they will have the better understanding of the teenagers. In addition, the participants also agreed that the contents of the play are appropriate and satisfiable as the contents of “Hormones the Series Season 2” will raise awareness among the teens and use it as a guide to prevent problems that might happen during their teenage life.
Keywords: Content analysis, attitude, Thai series, Hormones the series.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9609036 Differentiation of Heart Rate Time Series from Electroencephalogram and Noise
Authors: V. I. Thajudin Ahamed, P. Dhanasekaran, Paul Joseph K.
Abstract:
Analysis of heart rate variability (HRV) has become a popular non-invasive tool for assessing the activities of autonomic nervous system. Most of the methods were hired from techniques used for time series analysis. Currently used methods are time domain, frequency domain, geometrical and fractal methods. A new technique, which searches for pattern repeatability in a time series, is proposed for quantifying heart rate (HR) time series. These set of indices, which are termed as pattern repeatability measure and pattern repeatability ratio are able to distinguish HR data clearly from noise and electroencephalogram (EEG). The results of analysis using these measures give an insight into the fundamental difference between the composition of HR time series with respect to EEG and noise.Keywords: Approximate entropy, heart rate variability, noise, pattern repeatability, and sample entropy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17349035 Artificial Neural Network Model for a Low Cost Failure Sensor: Performance Assessment in Pipeline Distribution
Authors: Asar Khan, Peter D. Widdop, Andrew J. Day, Aliaster S. Wood, Steve, R. Mounce, John Machell
Abstract:
This paper describes an automated event detection and location system for water distribution pipelines which is based upon low-cost sensor technology and signature analysis by an Artificial Neural Network (ANN). The development of a low cost failure sensor which measures the opacity or cloudiness of the local water flow has been designed, developed and validated, and an ANN based system is then described which uses time series data produced by sensors to construct an empirical model for time series prediction and classification of events. These two components have been installed, tested and verified in an experimental site in a UK water distribution system. Verification of the system has been achieved from a series of simulated burst trials which have provided real data sets. It is concluded that the system has potential in water distribution network management.Keywords: Detection, leakage, neural networks, sensors, water distribution networks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17469034 Model-free Prediction based on Tracking Theory and Newton Form of Polynomial
Authors: Guoyuan Qi , Yskandar Hamam, Barend Jacobus van Wyk, Shengzhi Du
Abstract:
The majority of existing predictors for time series are model-dependent and therefore require some prior knowledge for the identification of complex systems, usually involving system identification, extensive training, or online adaptation in the case of time-varying systems. Additionally, since a time series is usually generated by complex processes such as the stock market or other chaotic systems, identification, modeling or the online updating of parameters can be problematic. In this paper a model-free predictor (MFP) for a time series produced by an unknown nonlinear system or process is derived using tracking theory. An identical derivation of the MFP using the property of the Newton form of the interpolating polynomial is also presented. The MFP is able to accurately predict future values of a time series, is stable, has few tuning parameters and is desirable for engineering applications due to its simplicity, fast prediction speed and extremely low computational load. The performance of the proposed MFP is demonstrated using the prediction of the Dow Jones Industrial Average stock index.Keywords: Forecast, model-free predictor, prediction, time series
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17849033 Coordination between SC and SVC for Voltage Stability Improvement
Authors: Ali Reza Rajabi, Shahab Rashnoei, Mojtaba Hakimzadeh, Amir Habibi
Abstract:
At any point of time, a power system operating condition should be stable, meeting various operational criteria and it should also be secure in the event of any credible contingency. Present day power systems are being operated closer to their stability limits due to economic and environmental constraints. Maintaining a stable and secure operation of a power system is therefore a very important and challenging issue. Voltage instability has been given much attention by power system researchers and planners in recent years, and is being regarded as one of the major sources of power system insecurity. Voltage instability phenomena are the ones in which the receiving end voltage decreases well below its normal value and does not come back even after setting restoring mechanisms such as VAR compensators, or continues to oscillate for lack of damping against the disturbances. Reactive power limit of power system is one of the major causes of voltage instability. This paper investigates the effects of coordinated series capacitors (SC) with static VAR compensators (SVC) on steady-state voltage stability of a power system. Also, the influence of the presence of series capacitor on static VAR compensator controller parameters and ratings required to stabilize load voltages at certain values are highlighted.
Keywords: Static VAR Compensator (SVC), Series Capacitor (SC), voltage stability, reactive power.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19679032 Application of Extreme Learning Machine Method for Time Series Analysis
Authors: Rampal Singh, S. Balasundaram
Abstract:
In this paper, we study the application of Extreme Learning Machine (ELM) algorithm for single layered feedforward neural networks to non-linear chaotic time series problems. In this algorithm the input weights and the hidden layer bias are randomly chosen. The ELM formulation leads to solving a system of linear equations in terms of the unknown weights connecting the hidden layer to the output layer. The solution of this general system of linear equations will be obtained using Moore-Penrose generalized pseudo inverse. For the study of the application of the method we consider the time series generated by the Mackey Glass delay differential equation with different time delays, Santa Fe A and UCR heart beat rate ECG time series. For the choice of sigmoid, sin and hardlim activation functions the optimal values for the memory order and the number of hidden neurons which give the best prediction performance in terms of root mean square error are determined. It is observed that the results obtained are in close agreement with the exact solution of the problems considered which clearly shows that ELM is a very promising alternative method for time series prediction.Keywords: Chaotic time series, Extreme learning machine, Generalization performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35209031 A PI Controller for Enhancing the Transient Stability of Multi Pulse Inverter Based Static Synchronous Series Compensator (SSSC) With Superconducting Magnetic Energy Storage(SMES)
Authors: S. Padma, Dr. R. Lakshmipathi, K. Ramash Kumar, P. Nandagopal
Abstract:
The power system network is becoming more complex nowadays and it is very difficult to maintain the stability of the system. Today-s enhancement of technology makes it possible to include new energy storage devices in the electric power system. In addition, with the aid of power electronic devices, it is possible to independently exchange active and reactive power flow with the utility grid. The main purpose of this paper proposes a Proportional – Integral (PI) control based 48 – pulse Inverter based Static Synchronous Series Compensator (SSSC) with and without Superconducting Magnetic Energy Storage (SMES) used for enhancing the transient stability and regulating power flow in automatic mode. Using a test power system through the dynamic simulation in Matlab/Simulink platform validates the performance of the proposed SSSC with and without SMES system.Keywords: Flexible AC transmission system (FACTS), PIControl, Superconducting Magnetic Energy Storage (SMES), Static Synchronous Series Compensator (SSSC).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23549030 Forecasting US Dollar/Euro Exchange Rate with Genetic Fuzzy Predictor
Authors: R. Mechgoug, A. Titaouine
Abstract:
Fuzzy systems have been successfully used for exchange rate forecasting. However, fuzzy system is very confusing and complex to be designed by an expert, as there is a large set of parameters (fuzzy knowledge base) that must be selected, it is not a simple task to select the appropriate fuzzy knowledge base for an exchange rate forecasting. The researchers often look the effect of fuzzy knowledge base on the performances of fuzzy system forecasting. This paper proposes a genetic fuzzy predictor to forecast the future value of daily US Dollar/Euro exchange rate time’s series. A range of methodologies based on a set of fuzzy predictor’s which allow the forecasting of the same time series, but with a different fuzzy partition. Each fuzzy predictor is built from two stages, where each stage is performed by a real genetic algorithm.
Keywords: Foreign exchange rate, time series forecasting, Fuzzy System, and Genetic Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19989029 Optimal Control for Coordinated Control of SVeC and PSS Damping Controllers
Authors: K. Himaja, T. S. Surendra, S. Tara Kalyani
Abstract:
In this article, Optimal Control for Coordinated Control (COC) of Series Vectorial Compensator (SVeC) and Power System Stabilizer (PSS) in order to damp Low Frequency Oscillations (LFO) is proposed. SVeC is a series Flexible Alternating Current Transmission System (FACTS) device. The Optimal Control strategy based on state feedback control for coordination of PSS and SVeC controllers under different loading conditions has not been developed. So, the Optimal State Feedback Controller (OSFC) for incorporating of PSS and SVeC controllers in COC manner has been developed in this paper. The performance of the proposed controller is checked through eigenvalue analysis and nonlinear time domain simulation results. The proposed Optimal Controller design for the COC of SVeC and PSS results will be analyzed without controller. The comparative results show that Optimal Controller for COC of SVeC and PSSs improve greatly the system damping LFO than without controller.Keywords: Coordinated control, damping controller, optimal state feedback controller, power system stabilizer, series vectorial compensator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7649028 New Recursive Representations for the Favard Constants with Application to the Summation of Series
Authors: Snezhana G. Gocheva-Ilieva, Ivan H. Feschiev
Abstract:
In this study integral form and new recursive formulas for Favard constants and some connected with them numeric and Fourier series are obtained. The method is based on preliminary integration of Fourier series which allows for establishing finite recursive representations for the summation. It is shown that the derived recursive representations are numerically more effective than known representations of the considered objects.Keywords: Effective summation of series, Favard constants, finite recursive representations, Fourier series
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13459027 Adaptive Neuro-Fuzzy Inference System for Financial Trading using Intraday Seasonality Observation Model
Authors: A. Kablan
Abstract:
The prediction of financial time series is a very complicated process. If the efficient market hypothesis holds, then the predictability of most financial time series would be a rather controversial issue, due to the fact that the current price contains already all available information in the market. This paper extends the Adaptive Neuro Fuzzy Inference System for High Frequency Trading which is an expert system that is capable of using fuzzy reasoning combined with the pattern recognition capability of neural networks to be used in financial forecasting and trading in high frequency. However, in order to eliminate unnecessary input in the training phase a new event based volatility model was proposed. Taking volatility and the scaling laws of financial time series into consideration has brought about the development of the Intraday Seasonality Observation Model. This new model allows the observation of specific events and seasonalities in data and subsequently removes any unnecessary data. This new event based volatility model provides the ANFIS system with more accurate input and has increased the overall performance of the system.Keywords: Adaptive Neuro-fuzzy Inference system, High Frequency Trading, Intraday Seasonality Observation Model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33969026 Stochastic Comparisons of Heterogeneous Samples with Homogeneous Exponential Samples
Authors: Nitin Gupta, Rakesh Kumar Bajaj
Abstract:
In the present communication, stochastic comparison of a series (parallel) system having heterogeneous components with random lifetimes and series (parallel) system having homogeneous exponential components with random lifetimes has been studied. Further, conditions under which such a comparison is possible has been established.Keywords: Exponential distribution, Order statistics, Star ordering, Stochastic ordering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15659025 Simulation of Series Compensated Transmission Lines Protected with Mov
Authors: Abdolamir Nekoubin
Abstract:
In this paper the behavior of fixed series compensated extra high voltage transmission lines during faults is simulated. Many over-voltage protection schemes for series capacitors are limited in terms of size and performance, and are easily affected by environmental conditions. While the need for more compact and environmentally robust equipment is required. use of series capacitors for compensating part of the inductive reactance of long transmission lines increases the power transmission capacity. Emphasis is given on the impact of modern capacitor protection techniques (MOV protection). The simulation study is performed using MATLAB/SIMULINK®and results are given for a three phase and a single phase to ground fault.Keywords: Series compensation, MOV - protected series capacitors, balanced and unbalanced faults
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40479024 A Study on Changing of Energy-Saving Performance of GHP Air Conditioning System with Time-Series Variation
Authors: Ying Xin, Shigeki Kametani
Abstract:
This paper deals the energy saving performance of GHP (Gas engine heat pump) air conditioning system has improved with time-series variation. There are two types of air conditioning systems, VRF (Variable refrigerant flow) and central cooling and heating system. VRF is classified as EHP (Electric driven heat pump) and GHP. EHP drives the compressor with electric motor. GHP drives the compressor with the gas engine. The electric consumption of GHP is less than one tenth of EHP does.
In this study, the energy consumption data of GHP installed the junior high schools was collected. An annual and monthly energy consumption per rated thermal output power of each apparatus was calculated, and then their energy efficiency was analyzed. From these data, we investigated improvement of the energy saving of the GHP air conditioning system by the change in the generation.
Keywords: Energy-saving, VRF, GHP, EHP, Air Conditioning System.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18849023 Determination of Surface Deformations with Global Navigation Satellite System Time Series
Authors: I. Tiryakioglu, M. A. Ugur, C. Ozkaymak
Abstract:
The development of Global Navigation Satellite System (GNSS) technology has led to increasingly widely and successful applications of GNSS surveys for monitoring crustal movements. Instead of the multi-period GNSS solutions, this study utilizes GNSS time series that are required to more precisely determine the vertical deformations in the study area. In recent years, the surface deformations that are parallel and semi-parallel to Bolvadin fault have occurred in Western Anatolia. These surface deformations have continued to occur in Bolvadin settlement area that is located mostly on alluvium ground. Due to these surface deformations, a number of cracks in the buildings located in the residential areas and breaks in underground water and sewage systems have been observed. In order to determine the amount of vertical surface deformations, two continuous GNSS stations have been established in the region. The stations have been operating since 2015 and 2017, respectively. In this study, GNSS observations from the mentioned two GNSS stations were processed with GAMIT/GLOBK (GNSS Analysis Massachusetts Institute of Technology/GLOBal Kalman) program package to create coordinate time series. With the time series analyses, the GNSS stations’ behaviour models (linear, periodical, etc.), the causes of these behaviours, and mathematical models were determined. The study results from the time series analysis of these two 2 GNSS stations show approximately 50-90 mm/yr vertical movement.
Keywords: Bolvadin fault, GAMIT, GNSS time series, surface deformations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8149022 Nonstationarity Modeling of Economic and Financial Time Series
Authors: C. Slim
Abstract:
Traditional techniques for analyzing time series are based on the notion of stationarity of phenomena under study, but in reality most economic and financial series do not verify this hypothesis, which implies the implementation of specific tools for the detection of such behavior. In this paper, we study nonstationary non-seasonal time series tests in a non-exhaustive manner. We formalize the problem of nonstationary processes with numerical simulations and take stock of their statistical characteristics. The theoretical aspects of some of the most common unit root tests will be discussed. We detail the specification of the tests, showing the advantages and disadvantages of each. The empirical study focuses on the application of these tests to the exchange rate (USD/TND) and the Consumer Price Index (CPI) in Tunisia, in order to compare the Power of these tests with the characteristics of the series.Keywords: Stationarity, unit root tests, economic time series.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8669021 L1-Convergence of Modified Trigonometric Sums
Authors: Sandeep Kaur Chouhan, Jatinderdeep Kaur, S. S. Bhatia
Abstract:
The existence of sine and cosine series as a Fourier series, their L1-convergence seems to be one of the difficult question in theory of convergence of trigonometric series in L1-metric norm. In the literature so far available, various authors have studied the L1-convergence of cosine and sine trigonometric series with special coefficients. In this paper, we present a modified cosine and sine sums and criterion for L1-convergence of these modified sums is obtained. Also, a necessary and sufficient condition for the L1-convergence of the cosine and sine series is deduced as corollaries.Keywords: Conjugate Dirichlet kernel, Dirichlet kernel, L1-convergence, modified sums.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12229020 Coefficients of Some Double Trigonometric Cosine and Sine Series
Authors: Jatinderdeep Kaur
Abstract:
In this paper, the results of Kano from one dimensional cosine and sine series are extended to two dimensional cosine and sine series. To extend these results, some classes of coefficient sequences such as class of semi convexity and class R are extended from one dimension to two dimensions. Further, the function f(x, y) is two dimensional Fourier Cosine and Sine series or equivalently it represents an integrable function or not, has been studied. Moreover, some results are obtained which are generalization of Moricz’s results.Keywords: Conjugate Dirichlet kernel, conjugate Fejer kernel, Fourier series, Semi-convexity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21479019 The Analogue of a Property of Pisot Numbers in Fields of Formal Power Series
Authors: Wiem Gadri
Abstract:
This study delves into the intriguing properties of Pisot and Salem numbers within the framework of formal Laurent series over finite fields, a domain where these numbers’ spectral characteristics, Λm(β) and lm(β), have yet to be fully explored. Utilizing a methodological approach that combines algebraic number theory with the analysis of power series, we extend the foundational work of Erdos, Joo, and Komornik to this setting. Our research uncovers bounds for lm(β), revealing how these depend on the degree of the minimal polynomial of β and thus offering a characterization of Pisot and Salem formal power series. The findings significantly contribute to our understanding of these numbers, highlighting their distribution and properties in the context of formal power series. This investigation not only bridges number theory with formal power series analysis but also sets the stage for further interdisciplinary research in these areas.
Keywords: Pisot numbers, Salem numbers, Formal power series, Minimal polynomial degree.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1519018 Design of Static Synchronous Series Compensator Based Damping Controller Employing Real Coded Genetic Algorithm
Authors: S.C.Swain, A.K.Balirsingh, S. Mahapatra, S. Panda
Abstract:
This paper presents a systematic approach for designing Static Synchronous Series Compensator (SSSC) based supplementary damping controllers for damping low frequency oscillations in a single-machine infinite-bus power system. The design problem of the proposed controller is formulated as an optimization problem and RCGA is employed to search for optimal controller parameters. By minimizing the time-domain based objective function, in which the deviation in the oscillatory rotor speed of the generator is involved; stability performance of the system is improved. Simulation results are presented and compared with a conventional method of tuning the damping controller parameters to show the effectiveness and robustness of the proposed design approach.Keywords: Low frequency Oscillations, Phase CompensationTechnique, Real Coded Genetic Algorithm, Single-machine InfiniteBus Power System, Static Synchronous Series Compensator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25029017 Investigation of SSR Characteristics of SSSC With GA Based Voltage Controller
Authors: R. Thirumalaivasan, M.Janaki, Nagesh Prabhu
Abstract:
In this paper, investigation of subsynchronous resonance (SSR) characteristics of a hybrid series compensated system and the design of voltage controller for three level 24-pulse Voltage Source Converter based Static Synchronous Series Compensator (SSSC) is presented. Hybrid compensation consists of series fixed capacitor and SSSC which is a active series FACTS controller. The design of voltage controller for SSSC is based on damping torque analysis, and Genetic Algorithm (GA) is adopted for tuning the controller parameters. The SSR Characteristics of SSSC with constant reactive voltage control modes has been investigated. The results show that the constant reactive voltage control of SSSC has the effect of reducing the electrical resonance frequency, which detunes the SSR.The analysis of SSR with SSSC is carried out based on frequency domain method, eigenvalue analysis and transient simulation. While the eigenvalue and damping torque analysis are based on D-Q model of SSSC, the transient simulation considers both D-Q and detailed three phase nonlinear system model using switching functions.Keywords: FACTS, SSR, SSSC, damping torque, GA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1734