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Abstract—In the present communication, stochastic comparison
of a series (parallel) system having heterogeneous components with
random lifetimes and series (parallel) system having homogeneous
exponential components with random lifetimes has been studied.
Further, conditions under which such a comparison is possible has
been established.
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I. INTRODUCTION

IN reliability theory and applied probability, order statistics
are used to study reliability properties of systems composed

of components. Let X1, . . . , Xn be independent non-negative
random variables representing the lifetimes of compoents with
their respective distribution functions as F1(·), . . . , Fn(·). The
kth smallest of these n, Xi’s , i = 1, . . . n be denoted by
Xk:n. A k-out of n system with n independent components
functions if and only if at least k out of these n independent
components functions. The lifetime of (n − k + 1)-out of n
system is the same as that of Xk:n,i.e., the kth order statistic.
The lifetime of parallel (or 1-out of-n) and series (or n-out
of-n) system are same as that of largest-order statistic Xn:n

and the smallest order statistic X1:n.
Sample range and general sample spacings have been used

extensively when observations are independent and identically
distributed. On the other hand, in the non-iid case, few results
are found in the literature due to the complicated nature
of the expressions involved [Refer [1], [2]]. The stochastic
comparison of the order statistics and the spacings for non-
iid exponential random variables with the corresponding iid
exponential random variables were considered by [3], [4], [5],
[6], [7], [8],[9] and [10]. In addition, for further review on this
topic, one may refer [11].

Let us recall the following definitions which are standard
in the literature [see [13], [14] and [15]]. In rest of the
paper, increasing and decreasing terms will be used for non-
decreasing and non-increasing respectively.

Definition 1: Consider the random variable X (Y )
with the probability density function f(·) (g(·)), distribu-
tion function F (·) (G(·)), survival function F̄ (·) = 1 −
F (·) (Ḡ(·) = 1 − G(·)), failure rate function rX(x) =
f(x)
F̄ (x)

(
rY (x) = g(x)

Ḡ(x)

)
and the reversed failure rate function

r̃X(x) = f(x)
F (x)

(
r̃Y (x) = g(x)

G(x)

)
. We say that X is smaller

than Y in the
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(a) likelihood ratio (lr) ordering (written as X ≤lr Y ) if
g(x)
f(x) increases in x ∈ R.

(b) hazard rate (hr) ordering (X ≤hr Y ) if Ḡ(x)
F̄ (x)

increases in
x ∈ R.

(c) reversed hazard rate (rh) ordering (X ≤rfr Y ) if G(x)
F (x)

increases in x ∈ R.
(d) usual stochastic (st) ordering (X ≤st Y ) if F (x) ≤

G(x), for all x ∈ R.
(e) convex (c) ordering (X ≤c Y ) if G−1F (x) convex in

x ∈ R, where G−1 denotes the right-continuous inverse.
(f) star (∗) ordering (X ≤∗ Y ) if G−1F (x)

x increases in
x ∈ R.

(g) dispersive (disp) ordering (X ≤disp Y ) if F−1(β) −
F−1(α) ≤ G−1(β) − G−1(α) whenever 0 < α ≤ β < 1;
where F−1 and G−1 be the right continuous inverses of
F and G respectively.

In the next section, we investigate which series and parallel
system ages faster in star ordering on the basis of stochastic
comparison. Sufficient conditions under which such a compar-
ison is possible has also been derived.

II. WHICH SERIES AND PARALLEL SYSTEM AGES FASTER
IN STAR ORDERING?

The following lemma is being used for deriving the main
results of the paper:

Lemma 1: Let Z be a random variable with probability
density function h(x), survival function H̄(x) and the failure
rate function rH(x) = h(x)/H̄(x), x ≥ 0. Then the function
ψ(x) = − 1

λx ln H̄(x) is decreasing (increasing) in x, if the
failure rate function rH(x) is decreasing (increasing) in x.

Proof: It is easy to see

ψ′(x) =
1

λx2
ln H̄(x) +

h(x)
λxH̄(x)

.

Clearly,

ψ′(x) ≤ (≥)0 ⇔ − ln H̄(x)
x

≥ (≤)
h(x)
H̄(x)

(1)

For x ≥ 0, consider the function φ1(x) = − ln H̄(x) and
φ2(x) = x. Then φ′

1(x) = h(x)
H̄(x)

and φ′
2(x) = 1. Applying the

Lagrange’s mean value theorem, for 0 ≤ ξ ≤ x, we have

φ1(x)
φ2(x)

=
φ′

1(ξ)
φ′

2(ξ)
=

h(ξ)
H̄(ξ)

≥ (≤)
h(x)
H̄(x)

, (2)

where the last inequality hold since rH(x) is decreasing
(increasing) in x. Now the assertion follows using (1) and
(2).

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences

 Vol:6, No:8, 2012 

848International Scholarly and Scientific Research & Innovation 6(8) 2012 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 M
at

he
m

at
ic

al
 a

nd
 C

om
pu

ta
tio

na
l S

ci
en

ce
s 

V
ol

:6
, N

o:
8,

 2
01

2 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/8
26

0.
pd

f



Definition 2: X is said to be in decreasing failure rate
(DFR) if the failure rate function rX(x) is decreasing function
of x.
The following result gives the condition under which a series
system with independently distributed components ages faster
than independently and identically distributed exponential
components in sense of star ordering:

Theorem 1: Let X1, . . . , Xn be independent random vari-
ables with distribution functions F1(·), . . . , Fn(·), respectively.
Let Y1, . . . , Yn be a random sample of size n from an
exponential distribution with common hazard rate λ. Then

Y1:n ≤∗ X1:n,

if X1, . . . , Xn has DFR.
Proof: Let Y1:n and X1:n has distribution functions G1:n

and F1:n, respectively. For x ≥ 0,

G1:n(x) = P (Y1:n ≤ x) =
(
1 − e−nλx

)

and

F1:n(x) = P (X1:n ≤ x) =

(

1 −
n∏

i=1

F̄i(x)

)

.

In order to prove the theorem, it is sufficient to show that(
G−1

1:nF1:n(x)
)
/x is decreasing in x ≥ 0 (ref definition 1(f)).

It may be noted that, for x ≥ 0,

G−1
1:nF1:n(x) = − 1

nλ
ln

(
n∏

i=1

F̄i(x)

)

.

Also,

G−1
1:nF1:n(x)

x
= − 1

nλx
ln

(
n∏

i=1

F̄i(x)

)

= − 1
nλx

ln H̄(x),

where H̄(x) =
(∏n

i=1 F̄i(x)
)

is the survival function of
the random variable Z. It may be noted that rH(x) =∑n

i=1 rXi(x). Clearly, if X1, X2, . . . , Xn have DFR, then Z is
DFR. Hence, using Lemma 1,

(
G−1

1:nF1:n(x)
)
/x is decreasing

in x ≥ 0.
Corollary 1: Let X1, . . . , Xn be independent exponential

random variables with Xi having failure rate λi, i = 1, . . . , n.
Let Y1, . . . , Yn be a random sample of size n from an
exponential distribution with common hazard rate λ. Then,
Y1:n ≤∗ X1:n.

Proposition 1: Let X1, . . . , Xn be independent random
variables with distribution functions F1(·), . . . , Fn(·), respec-
tively. Let Y1, . . . , Yn be a random sample of size n from
an exponential distribution with common hazard rate λ. If
X1, . . . , Xn have DFR and
(a)

∑n
i=1 ri(x) ≥ nλ, then Y1:n ≤disp X1:n;

(b)
∑n

i=1 ri(x) ≤ nλ, then Y1:n ≤st X1:n.
Proof: (a) Under the hypothesis of the proposition, using

Theorem 1 we conclude that Y1:n ≤∗ X1:n. In order to prove
the result, it is sufficient to show

lim
x→0

G−1
1:nF1:n(x)

x
≥ 1

(see Theorem 4.B.3, page 215, of [14]).

Consider

lim
x→0

G−1
1:nF1:n(x)

x
= lim

x→0

[

− 1
nλx

n∏

i=1

F̄i(x)

]
∣∣0
0

form

Using L’Hospital Rule,

= lim
x→0

[
−
∏n

i=1 F̄i(x) (
∑n

i=1 ri(x))
nλ
∏n

i=1 F̄i(x)

]

= lim
x→0

1
nλ

n∑

i=1

ri(x)

≥ 1,

since
∑n

i=1 ri(x) ≥ nλ. Hence the result.
Proof: (b) Under the hypothesis of the proposition, using

Theorem 1 we conclude that Y1:n ≤∗ X1:n. [12] shows that if
Y ≤∗ X , then

Y ≤st X ⇔ lim
x→0+

G(x)
F (x)

≥ 1.

In order to prove the result, it is sufficient to show
limx→0+

G1:n(x)
F1:n(x) ≥ 1.

Consider

lim
x→0+

G1:n(x)
F1:n(x)

= lim
x→0+

1 − e−nλx

1 −∏n
i=1 F̄i(x)

= lim
x→0

1 − e−nλx

1 −∏n
i=1 F̄i(x)

∣
∣0
0

form

Using L’Hospital Rule,

= lim
x→0

nλe−nλx

(∏n
i=1 F̄i(x)

)
(
∑n

i=1 ri(x))

=
nλ

limx→0

∑n
i=1 ri(x)

≥ 1,

as
∑n

i=1 ri(x) ≤ nλ. Hence the result.
The following result gives the condition under which a parallel
system with independently distributed components ages faster
than independently and identically distributed exponential
components in sense of convex ordering:

Theorem 2: Let X1, . . . , Xn be independent random vari-
ables with distribution functions F1(·), . . . , Fn(·), respectively.
Let Y1, . . . , Yn be a random sample of size n from an
exponential distribution with common hazard rate λ. Then

Yn:n ≤c Xn:n,

if
(∑n

i=1 r̃i(x))
(
∏n

i=1 F
1
n

i (x)

)

1−∏n
i=1 F

1
n

i (x)
is decreasing in x.

Proof: Let Yn:n and Xn:n has distribution functions Gn:n

and Fn:n, respectively. For x ≥ 0,

Gn:n(x) = P (Yn:n ≤ x) =
(
1 − e−λx

)n

and

Fn:n(x) = P (Xn:n ≤ x) =
n∏

i=1

Fi(x).
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In order to prove the theorem, it is sufficient to show that
G−1

n:nFn:n(x) is concave function of x ≥ 0 (ref definition 1(e)).
It may be noted that for x ≥ 0,

G−1
n:nFn:n(x) = − 1

λ
ln

⎛

⎝1 −
(

n∏

i=1

Fi(x)

) 1
n

⎞

⎠ .

Also,

gn:n(G−1
n:nFn:n(x)) = nλ

(
n∏

i=1

F
n−1

n
i (x)

)⎛

⎝1 −
(

n∏

i=1

Fi(x)

) 1
n

⎞

⎠ .

Differentiating G−1
n:nFn:n(x) with respect to x, we have

(G−1
n:nFn:n(x))′ =

fn:n(x)
gn:n(G−1

n:nFn:n(x))

=
(
∑n

i=1 r̃i(x))
(∏n

i=1 F
1
n

i (x)
)

nλ
(
1 −∏n

i=1 F
1
n

i (x)
) .

Now, if
(∑n

i=1 r̃i(x))
(
∏n

i=1 F
1
n

i (x)

)

1−∏n
i=1 F

1
n

i (x)
is decreasing in x, then

Yn:n ≤c Xn:n.
Corollary 2: Let X1, X2, . . . , Xn be independent and iden-

tically distributed random variables with distribution functions
F1(·) = F2(·) . . . = Fn(·) = F (·). Let Y1, Y2, . . . , Yn be a
random sample of size n from an exponential distribution with
common hazard rate λ. Then

Yn:n ≤c Xn:n,

if X1, . . . , Xn has DFR.

Proof: Since
(∑n

i=1 r̃i(x))
(
∏n

i=1 F
1
n

i (x)

)

1−∏n
i=1 F

1
n

i (x)
= nrX(x), there-

fore the result follows from Theorem 2.

III. CONCLUSION

Stochastic comparison of a series and parallel systems
having heterogeneous components with random lifetimes and
series and parallel systems having homogeneous exponential
components with random lifetimes has been studied. We find
the conditions under which a series system with independently
distributed components ages faster than independently and
identically distributed exponential components in sense of
star ordering. Further, we also find conditions under which
a parallel system with independently distributed components
ages faster than independently and identically distributed ex-
ponential components in sense of convex ordering.
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