Search results for: scattering coefficient
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1054

Search results for: scattering coefficient

994 Comparison Mechanical and Chemical Treatments on Properties of Low Yield Bagasse Pulp During Recycling

Authors: Parizad Sheikhi, Mohammad Talaeipour

Abstract:

the effects of refining and alkaline chemicals on potential of recycling bleached chemical pulp of bagasse were investigated in this study. Recycling was done until three times. Handsheet properties such as, apparent density, light scattering coefficient, tear index, burst index, breaking length, and fold number according to TAPPI standard were measured. Water retention value also was used to considering the treatments during recycling. Refining enhanced the strength of recycled pulp by increasing fiber flexibility and swelling ability, whereas by applying chemical treatment didn't observe any improvement. The morphology of recycled fiber was considered with scanning electron microscopy (SEM).

Keywords: Bagasse pulp, chemical treatment, recycling, refining, scanning electron microscopy, water retention value.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2629
993 Analysis of Advanced Modulation Format Using Gain and Loss Spectrum for Long Range Radio over Fiber System

Authors: Shaina Nagpal, Amit Gupta

Abstract:

In this work, all optical Stimulated Brillouin Scattering (SBS) generated single sideband with suppressed carrier is presented to provide better efficiency. The generation of single sideband and enhanced carrier power signal using the SBS technique is further used to strengthen the low shifted sideband and to suppress the upshifted sideband. These generated single sideband signals are able to work at high frequency ranges. Also, generated single sideband is validated over 90 km transmission using single mode fiber with acceptable bit error rate. The results for an equivalent are then compared so that the acceptable technique is chosen and also the required quality for the optimum performance of the system is reported.

Keywords: Stimulated Brillouin scattering, radio over fiber, upper side band, quality factor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 897
992 Proton Radius Calculation for Muonic Hydrogen 2S-2P Transition Experiment

Authors: Jing-Gang Xie

Abstract:

Scientists are making attempts to solve proton radius puzzle. In this paper, the calculated value matches the experiment observation within 0.1%, compared to those obtained from CODATA, and muonic hydrogen scattering experiments of 4%. The calculation is made based on the assumption that the muonic hydrogen system has (Ep – Eµ) energy state (or frequency mix state of np –nµ), which interacts resonantly with the incoming photon of energy 206.2949(32) meV. A similar calculation is also made for muonic deuterium 2S-2P transition experiment with an accuracy of 1% from the experimental observation. The paper has also explored the theoretical as well as experimentation advancements that have led towards the development of results with lesser deviations.

Keywords: 2s-2p transition, muonic hydrogen, proton radius, scattering experiment, photon, quantum, Lamb shift.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 664
991 A New Algorithm for Determining the Leading Coefficient of in the Parabolic Equation

Authors: Shiping Zhou, Minggen Cui

Abstract:

This paper investigates the inverse problem of determining the unknown time-dependent leading coefficient in the parabolic equation using the usual conditions of the direct problem and an additional condition. An algorithm is developed for solving numerically the inverse problem using the technique of space decomposition in a reproducing kernel space. The leading coefficients can be solved by a lower triangular linear system. Numerical experiments are presented to show the efficiency of the proposed methods.

Keywords: parabolic equations, coefficient inverse problem, reproducing kernel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1533
990 Symbolic Analysis of Power Spectrum of CMOS Cross Couple Oscillator

Authors: Kittipong Tripetch

Abstract:

This paper proposes for the first time symbolic formula of the power spectrum of CMOS Cross Couple Oscillator and its modified circuit. Many principles existed to derived power spectrum in microwave textbook such as impedance, admittance parameters, ABCD, H parameters, etc. It can be compared by graph of power spectrum which methodology is the best from the point of view of practical measurement setup such as condition of impedance parameter which used superposition of current to derived (its current injection at the other port of the circuit is zero, which is impossible in reality). Four graphs of impedance parameters of cross couple oscillator are proposed. After that four graphs of scattering parameters of CMOS cross coupled oscillator will be shown.

Keywords: Optimization, power spectrum, impedance parameter, scattering parameter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1503
989 The Heat and Mass Transfer Phenomena in Vacuum Membrane Distillation for Desalination

Authors: Bhausaheb L. Pangarkar, M. G. Sane, Saroj B. Parjane, Rajendra M. Abhang, Mahendra Guddad

Abstract:

Vacuum membrane distillation (VMD) process can be used for water purification or the desalination of salt water. The process simply consists of a flat sheet hydrophobic micro porous PTFE membrane and diaphragm vacuum pump without a condenser for the water recovery or trap. The feed was used aqueous NaCl solution. The VMD experiments were performed to evaluate the heat and mass transfer coefficient of the boundary layer in a membrane module. The only operating parameters are feed inlet temperature, and feed flow rate were investigated. The permeate flux was strongly affected by the feed inlet temperature, feed flow rate, and boundary layer heat transfer coefficient. Since lowering the temperature polarization coefficient is essential enhance the process performance considerable and maximizing the heat transfer coefficient for maximizes the mass flux of distillate water. In this paper, the results of VMD experiments are used to measure the boundary layer heat transfer coefficient, and the experimental results are used to reevaluate the empirical constants in the Dittus- Boelter equation.

Keywords: Desalination, heat and mass transfer coefficient, temperature polarization, membrane distillation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2520
988 Simultaneous Determination of Reference Free-Stream Temperature and Convective Heat Transfer Coefficient

Authors: Giho Jeong, Sooin Jeong, Kuisoon Kim

Abstract:

It is very important to determine reference temperature when convective temperature because it should be used to calculate the temperature potential. This paper deals with the development of a new method that can determine heat transfer coefficient and reference free stream temperature simultaneously, based on transient heat transfer experiments with using two narrow band thermo-tropic liquid crystals (TLC's). The method is validated through error analysis in terms of the random uncertainties in the measured temperatures. It is shown how the uncertainties in heat transfer coefficient and free stream temperature can be reduced. The general method described in this paper is applicable to many heat transfer models with unknown free stream temperature.

Keywords: Heat transfer coefficient, Thermo-tropic LiquidCrystal (TLC), Free stream temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1573
987 Assessing the Antimicrobial Activity of Chitosan Nanoparticles by Fluorescence-Labeling

Authors: Laidson P. Gomes, Cristina T. Andrade, Eduardo M. Del Aguila, Cameron Alexander, Vânia M. F. Paschoalin

Abstract:

Chitosan is a natural polysaccharide prepared by the N-deacetylation of chitin. In this study, the physicochemical and antibacterial properties of chitosan nanoparticles, produced by ultrasound irradiation, were evaluated. The physicochemical properties of the nanoparticles were determined by dynamic light scattering and zeta potential analysis. Chitosan nanoparticles inhibited the growth of E. coli. The minimum inhibitory concentration (MIC) values were lower than 0.5 mg/mL, and the minimum bactericidal concentration (MBC) values were similar or higher than MIC values. Confocal laser scanning micrographs (CLSM) were used to observe the interaction between E. coli suspensions mixed with FITC-labeled chitosan polymers and nanoparticles.

Keywords: Chitosan nanoparticles, dynamic light scattering, zeta potential, confocal microscopy, antibacterial activity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1008
986 Radiative Reactions Analysis at the Range of Astrophysical Energies

Authors: A. Amar

Abstract:

Analysis of the elastic scattering of protons on 10B nuclei has been done in the framework of the optical model and single folding model at the beam energies up to 17 MeV. We could enhance the optical potential parameters using Esis88 Code, as well as SPI GENOA Code. Linear relationship between volume real potential (V0) and proton energy (Ep) has been obtained. Also, surface imaginary potential WD is proportional to the proton energy (Ep) in the range 0.400 and 17 MeV. The radiative reaction 10B(p,γ)11C has been analyzed using potential model. A comparison between 10B(p,γ)11C and 6Li(p,γ)7Be has been made. Good agreement has been found between theoretical and experimental results in the whole range of energy. The radiative resonance reaction 7Li(p,γ)8Be has been studied.

Keywords: Elastic scattering of protons on 10B nuclei, optical potential parameters, potential model, radiative reaction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 809
985 Coefficient of Parentage for Crop Hybridization

Authors: Manpreet Singh, Parvinder Singh Sandhu, Basant Raj Singh

Abstract:

Hybridization refers to the crossing breeding of two plants. Coefficient of Parentage (COP) is used by the plant breeders to determine the genetic diversity across various varieties so as to incorporate the useful characters of the two varieties to develop a new crop variety with particular useful characters. Genetic Diversity is the prerequisite for any cultivar development program. Genetic Diversity depends upon the pedigree information of the varieties based on particular levels. Pedigree refers to the parents of a particular variety at various levels. This paper discusses the searching and analyses of different possible pairs of varieties selected on the basis of morphological characters, Climatic conditions and Nutrients so as to obtain the most optimal pair that can produce the required crossbreed variety. An algorithm was developed to determine the coefficient of parentage (COP) between the selected wheat varieties. Dummy values were used wherever actual data was not available.

Keywords: Coefficient of Parentage, Morphological characters, Pedigree, Genetic Diversity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1904
984 Effect of Channel Estimation on Capacity of MIMO System Employing Circular or Linear Receiving Array Antennas

Authors: Xia Liu, Marek E. Bialkowski

Abstract:

This paper reports on investigations into capacity of a Multiple Input Multiple Output (MIMO) wireless communication system employing a uniform linear array (ULA) at the transmitter and either a uniform linear array (ULA) or a uniform circular array (UCA) antenna at the receiver. The transmitter is assumed to be surrounded by scattering objects while the receiver is postulated to be free from scattering objects. The Laplacian distribution of angle of arrival (AOA) of a signal reaching the receiver is postulated. Calculations of the MIMO system capacity are performed for two cases without and with the channel estimation errors. For estimating the MIMO channel, the scaled least square (SLS) and minimum mean square error (MMSE) methods are considered.

Keywords: MIMO, channel capacity, channel estimation, ULA, UCA, spatial correlation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1321
983 The Prediction of Sound Absorbing Coefficient for Multi-Layer Non-Woven

Authors: Un-Hwan Park, Jun-Hyeok Heo, In-Sung Lee, Tae-Hyeon Oh, Dae-Gyu Park

Abstract:

Automotive interior material consisting of several material layers has the sound-absorbing function. It is difficult to predict sound absorbing coefficient because of several material layers. So, many experimental tunings are required to achieve the target of sound absorption. Therefore, while the car interior materials are developed, so much time and money is spent. In this study, we present a method to predict the sound absorbing performance of the material with multi-layer using physical properties of each material. The properties are predicted by Foam-X software using the sound absorption coefficient data measured by impedance tube. Then, we will compare and analyze the predicted sound absorption coefficient with the data measured by scaled reverberation chamber and impedance tubes for a prototype. If the method is used instead of experimental tuning in the development of car interior material, the time and money can be saved, and then, the development effort can be reduced because it can be optimized by simulation.

Keywords: Multi-layer nonwoven, sound absorption coefficient, scaled reverberation chamber, impedance tubes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 796
982 The Effects of Peristalsis on Dispersion of a Micropolar Fluid in the Presence of Magnetic Field

Authors: Habtu Alemayehu, G. Radhakrishnamacharya

Abstract:

The paper presents an analytical solution for dispersion of a solute in the peristaltic motion of a micropolar fluid in the presence of magnetic field and both homogeneous and heterogeneous chemical reactions. The average effective dispersion coefficient has been found using Taylor-s limiting condition under long wavelength approximation. The effects of various relevant parameters on the average coefficient of dispersion have been studied. The average effective dispersion coefficient increases with amplitude ratio, cross viscosity coefficient and heterogeneous chemical reaction rate parameter. But it decreases with magnetic field parameter and homogeneous chemical reaction rate parameter. It can be noted that the presence of peristalsis enhances dispersion of a solute.

Keywords: Peristalsis, Dispersion, Chemical reaction, Magneticfield, Micropolar fluid

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1670
981 Numerical Simulation of Turbulent Flow around Two Cam Shaped Cylinders in Tandem Arrangement

Authors: Arash Mir Abdolah Lavasani, Meghdad Ebrahimi Sabet

Abstract:

In this paper, the 2-D unsteady viscous flow around two cam shaped cylinders in tandem arrangement is numerically simulated in order to study the characteristics of the flow in turbulent regimes. The investigation covers the effects of high subcritical and supercritical Reynolds numbers and L/D ratio on total drag coefficient. The equivalent diameter of cylinders is 27.6 mm The space between center to center of two cam shaped cylinders is define as longitudinal pitch ratio and it varies in range of 1.5< L/D<6. Reynolds number base on equivalent circular cylinder varies in range of 27×103< Re <166×103 Results show that drag coefficient of both cylinders depends on pitch ratio. However, drag coefficient of downstream cylinder is more dependent on the pitch ratio.

Keywords: Cam shaped, tandem, numerical, drag coefficient, turbulent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2131
980 The Maximum Likelihood Method of Random Coefficient Dynamic Regression Model

Authors: Autcha Araveeporn

Abstract:

The Random Coefficient Dynamic Regression (RCDR) model is to developed from Random Coefficient Autoregressive (RCA) model and Autoregressive (AR) model. The RCDR model is considered by adding exogenous variables to RCA model. In this paper, the concept of the Maximum Likelihood (ML) method is used to estimate the parameter of RCDR(1,1) model. Simulation results have shown the AIC and BIC criterion to compare the performance of the the RCDR(1,1) model. The variables as the stationary and weakly stationary data are good estimates where the exogenous variables are weakly stationary. However, the model selection indicated that variables are nonstationarity data based on the stationary data of the exogenous variables.

Keywords: Autoregressive, Maximum Likelihood Method, Nonstationarity, Random Coefficient Dynamic Regression, Stationary.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1603
979 Moderation in Temperature Dependence on Counter Frictional Coefficient and Prevention of Wear of C/C Composites by Synthesizing SiC around Surface and Internal Vacancies

Authors: Noboru Wakamoto, Kiyotaka Obunai, Kazuya Okubo, Toru Fujii

Abstract:

The aim of this study is to moderate the dependence of counter frictional coefficient on temperature between counter surfaces and to reduce the wear of C/C composites at low temperature. To modify the C/C composites, Silica (SiO2) powders were added into phenolic resin for carbon precursor. The preform plate of the precursor of C/C composites was prepared by conventional filament winding method. The C/C composites plates were obtained by carbonizing preform plate at 2200 °C under an argon atmosphere. At that time, the silicon carbides (SiC) were synthesized around the surfaces and the internal vacancies of the C/C composites. The frictional coefficient on the counter surfaces and specific wear volumes of the C/C composites were measured by our developed frictional test machine like pin-on disk type. The XRD indicated that SiC was synthesized in the body of C/C composite fabricated by current method. The results of friction test showed that coefficient of friction of unmodified C/C composites have temperature dependence when the test condition was changed. In contrast, frictional coefficient of the C/C composite modified with SiO2 powders was almost constant at about 0.27 when the temperature condition was changed from Room Temperature (RT) to 300 °C. The specific wear rate decreased from 25×10-6 mm2/N to 0.1×10-6 mm2/N. The observations of the surfaces after friction tests showed that the frictional surface of the modified C/C composites was covered with a film produced by the friction. This study found that synthesizing SiC around surface and internal vacancies of C/C composites was effective to moderate the dependence on the frictional coefficient and reduce to the abrasion of C/C composites.

Keywords: C/C composites, frictional coefficient, SiC, wear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 792
978 Wave-Structure Interaction for Submerged Quarter-Circle Breakwaters of Different Radii - Reflection Characteristics

Authors: Arkal Vittal Hegde, L. Ravikiran

Abstract:

The paper presents the results of a series of experiments conducted on physical models of Quarter-circle breakwater (QBW) in a two dimensional monochromatic wave flume. The purpose of the experiments was to evaluate the reflection coefficient Kr of QBW models of different radii (R) for different submergence ratios (d/hc), where d is the depth of water and hc is the height of the breakwater crest from the sea bed. The radii of the breakwater models studied were 20cm, 22.5cm, 25cm, 27.5cm and submergence ratios used varied from 1.067 to 1.667. The wave climate off the Mangalore coast was used for arriving at the various model wave parameters. The incident wave heights (Hi) used in the flume varied from 3 to 18cm, and wave periods (T) ranged from 1.2 s to 2.2 s. The water depths (d) of 40cm, 45cm and 50cm were used in the experiments. The data collected was analyzed to compute variation of reflection coefficient Kr=Hr/Hi (where Hr=reflected wave height) with the wave steepness Hi/gT2 for various R/Hi (R=breakwater radius) values. It was found that the reflection coefficient increased as incident wave steepness increased. Also as wave height decreases reflection coefficient decreases and as structure radius R increased Kr decreased slightly.

Keywords: Incident wave steepness, Quarter-circle breakwater, Reflection coefficient, Submergence ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1758
977 Quantum Statistical Mechanical Formulations of Three-Body Problems via Non-Local Potentials

Authors: A. Maghari, V. H. Maleki

Abstract:

In this paper, we present a quantum statistical mechanical formulation from our recently analytical expressions for partial-wave transition matrix of a three-particle system. We report the quantum reactive cross sections for three-body scattering processes 1+(2,3)→1+(2,3) as well as recombination 1+(2,3)→1+(3,1) between one atom and a weakly-bound dimer. The analytical expressions of three-particle transition matrices and their corresponding cross-sections were obtained from the threedimensional Faddeev equations subjected to the rank-two non-local separable potentials of the generalized Yamaguchi form. The equilibrium quantum statistical mechanical properties such partition function and equation of state as well as non-equilibrium quantum statistical properties such as transport cross-sections and their corresponding transport collision integrals were formulated analytically. This leads to obtain the transport properties, such as viscosity and diffusion coefficient of a moderate dense gas.

Keywords: Statistical mechanics, Nonlocal separable potential, three-body interaction, Faddeev equations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2074
976 Flow Behavior and Performances of Centrifugal Compressor Stage Vaneless Diffusers

Authors: Y. Galerkin, O. Solovieva

Abstract:

Parameters of flow are calculated in vaneless diffusers with relative width 0,014–0,10. Inlet angles of flow and similarity criteria were varied. There is information on flow separation, boundary layer development, configuration of streamlines. Polytrophic efficiency, loss coefficient and recovery coefficient are used to compare effectiveness of diffusers. The sample of optimization of narrow diffuser with conical walls is presented. Three wide diffusers with narrowing walls are compared. The work is made in the R&D laboratory “Gas dynamics of turbo machines” of the TU SPb.

Keywords: Vaneless diffuser, relative width, flow angle, flow separation, loss coefficient, similarity criteria.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2216
975 Flow around Two Cam Shaped Cylinders in Tandem Arrangement

Authors: Arash Mir Abdolah Lavasani, Hamidreza Bayat

Abstract:

In this paper flow around two cam shaped cylinders had been studied numerically. The equivalent diameter of cylinders is 27.6 mm. The space between center to center of two cam shaped cylinders is define as longitudinal pitch ratio and it varies in range of 2 varies in range of 50 both cylinders depends on pitch ratio. However drag coefficient of downstream cylinder is more dependent on the pitch ratio.

Keywords: Cam shaped, tandem cylinders, numerical, drag coefficient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1593
974 Applications of AUSM+ Scheme on Subsonic, Supersonic and Hypersonic Flows Fields

Authors: Muhammad Yamin Younis, Muhammad Amjad Sohail, Tawfiqur Rahman, Zaka Muhammad, Saifur Rahman Bakaul

Abstract:

The performance of Advection Upstream Splitting Method AUSM schemes are evaluated against experimental flow fields at different Mach numbers and results are compared with experimental data of subsonic, supersonic and hypersonic flow fields. The turbulent model used here is SST model by Menter. The numerical predictions include lift coefficient, drag coefficient and pitching moment coefficient at different mach numbers and angle of attacks. This work describes a computational study undertaken to compute the Aerodynamic characteristics of different air vehicles configurations using a structured Navier-Stokes computational technique. The CFD code bases on the idea of upwind scheme for the convective (convective-moving) fluxes. CFD results for GLC305 airfoil and cone cylinder tail fined missile calculated on above mentioned turbulence model are compared with the available data. Wide ranges of Mach number from subsonic to hypersonic speeds are simulated and results are compared. When the computation is done by using viscous turbulence model the above mentioned coefficients have a very good agreement with the experimental values. AUSM scheme is very efficient in the regions of very high pressure gradients like shock waves and discontinuities. The AUSM versions simulate the all types of flows from lower subsonic to hypersonic flow without oscillations.

Keywords: Subsonic, supersonic, Hypersonic, AUSM+, Drag Coefficient, lift Coefficient, Pitching moment coefficient, pressure Coefficient, turbulent flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3188
973 Low Cost Technique for Measuring Luminance in Biological Systems

Authors: N. Chetty, K. Singh

Abstract:

In this work, the relationship between the melanin content in a tissue and subsequent absorption of light through that tissue was determined using a digital camera. This technique proved to be simple, cost effective, efficient and reliable. Tissue phantom samples were created using milk and soy sauce to simulate the optical properties of melanin content in human tissue. Increasing the concentration of soy sauce in the milk correlated to an increase in melanin content of an individual. Two methods were employed to measure the light transmitted through the sample. The first was direct measurement of the transmitted intensity using a conventional lux meter. The second method involved correctly calibrating an ordinary digital camera and using image analysis software to calculate the transmitted intensity through the phantom. The results from these methods were then graphically compared to the theoretical relationship between the intensity of transmitted light and the concentration of absorbers in the sample. Conclusions were then drawn about the effectiveness and efficiency of these low cost methods.

Keywords: Tissue phantoms, scattering coefficient, albedo, low-cost method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1258
972 The Effect of Angle of Attack on Pressure Drag from a Cam Shaped Tube

Authors: Arash Mir Abdolah Lavasani

Abstract:

The pressure drag from a cam shaped tube in cross flows have been investigated experimentally using pressure distribution measurement. The range of angle of attack and Reynolds number based on an equivalent circular tube are within 0≤α≤360° and 2×104< Reeq < 3.4 ×104, respectively. It is found that the pressure drag coefficient is at its highest at α=90° and 270° over the whole range of Reynolds number. Results show that the pressure drag coefficient of the cam shaped tube is lower than that of circular tube with the same surface area for more of the angles of attack. Furthermore, effects of the diameter ratio and finite length of the cam shaped tube upon the pressure drag coefficient are discussed.

Keywords: Pressure Drag, Cam Shaped, Experimental.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2340
971 Experimental Investigation of Heat Pipe with Annular Fins under Natural Convection at Different Inclinations

Authors: Gangacharyulu Dasaroju, Sumeet Sharma, Sanjay Singh

Abstract:

Heat pipe is characterised as superconductor of heat because of its excellent heat removal ability. The operation of several engineering system results in generation of heat. This may cause several overheating problems and lead to failure of the systems. To overcome this problem and to achieve desired rate of heat dissipation, there is need to study the performance of heat pipe with annular fins under free convection at different inclinations. This study demonstrates the effect of different mass flow rate of hot fluid into evaporator section on the condenser side heat transfer coefficient with annular fins under natural convection at different inclinations. In this study annular fins are used for the experimental work having dimensions of length of fin, thickness of fin and spacing of fin as 10 mm, 1 mm and 6 mm, respectively. The main aim of present study is to discover at what inclination angles the maximum heat transfer coefficient shall be achieved. The heat transfer coefficient on the external surface of heat pipe condenser section is determined by experimental method and then predicted by empirical correlations. The results obtained from experimental and Churchill and Chu relation for laminar are in fair agreement with not more than 22% deviation. It is elucidated the maximum heat transfer coefficient of 31.2 W/(m2-K) at 25˚ tilt angle and minimal condenser heat transfer coefficient of 26.4 W/(m2-K) is seen at 45˚ tilt angle and 200 ml/min mass flow rate. Inclination angle also affects the thermal performance of heat pipe. Beyond 25o inclination, heat transport rate starts to decrease.

Keywords: Annular fins, condenser heat transfer coefficient, heat pipe, natural convection, tilt angle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 786
970 Microwave LNA Design Based On Adaptive Network Fuzzy Inference and Evolutionary Optimization

Authors: Samad Nejatian, Vahideh Rezaie, Vahid Asadpour

Abstract:

This paper presents a novel approach for the design of microwave circuits using Adaptive Network Fuzzy Inference Optimizer (ANFIO). The method takes advantage of direct synthesis of subsections of the amplifier using very fast and accurate ANFIO models based on exact simulations using ADS. A mapping from course space to fine space known as space mapping is also used. The proposed synthesis approach takes into account the noise and scattering parameters due to parasitic elements to achieve optimal results. The overall ANFIO system is capable of designing different LNAs at different noise and scattering criteria. This approach offers significantly reduced time in the design of microwave amplifiers within the validity range of the ANFIO system. The method has been proven to work efficiently for a 2.4GHz LNA example. The S21 of 10.1 dB and noise figure (NF) of 2.7 dB achieved for ANFIO while S21 of 9.05 dB and NF of 2.6 dB achieved for ANN.

Keywords: fuzzy system, low noise amplifier, microwaveamplifier, space mapping

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1750
969 Experimental Investigation of Convective Heat Transfer and Pressure Drop of Al2O3/Water Nanofluid in Laminar Flow Regime inside a Circular Tube

Authors: H. Almohammadi, Sh. Nasiri Vatan, E. Esmaeilzadeh, A. Motezaker, A. Nokhosteen

Abstract:

In the present study, Convective heat transfer coefficient and pressure drop of Al2O3/water nanofluid in laminar flow regime under constant heat flux conditions inside a circular tube were experimentally investigated. Al2O3/water nanofluid with 0.5% and 1% volume concentrations with 15 nm diameter nanoparticles were used as working fluid. The effect of different volume concentrations on convective heat transfer coefficient and friction factor was studied. The results emphasize that increasing of particle volume concentration leads to enhance convective heat transfer coefficient. Measurements show the average heat transfer coefficient enhanced about 11-20% with 0.5% volume concentration and increased about 16-27% with 1% volume concentration compared to distilled water. In addition, the convective heat transfer coefficient of nanofluid enhances with increase in heat flux. From the results, the average ratio of (fnf/fbf) was about 1.10 for 0.5% volume concentration. Therefore, there is no significant increase in friction factor for nanofluids.

Keywords: Convective heat transfer, Laminar flow regime, Nanofluids, Pressure drop

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3715
968 A New Analytic Solution for the Heat Conduction with Time-Dependent Heat Transfer Coefficient

Authors: Te Wen Tu, Sen Yung Lee

Abstract:

An alternative approach is proposed to develop the analytic solution for one dimensional heat conduction with one mixed type boundary condition and general time-dependent heat transfer coefficient. In this study, the physic meaning of the solution procedure is revealed. It is shown that the shifting function takes the physic meaning of the reciprocal of Biot function in the initial time. Numerical results show the accuracy of this study. Comparing with those given in the existing literature, the difference is less than 0.3%.

Keywords: Analytic solution, heat transfer coefficient, shifting function method, time-dependent boundary condition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2954
967 Influence of Axial Magnetic Field on the Electrical Breakdown and Secondary Electron Emission in Plane-Parallel Plasma Discharge

Authors: Sabah I. Wais, Raghad Y. Mohammed, Sedki O. Yousif

Abstract:

The influence of axial magnetic field (B=0.48 T) on the variation of ionization efficiency coefficient h and secondary electron emission coefficient g with respect to reduced electric field E/P is studied at a new range of plane-parallel electrode spacing (0< d< 20 cm) and different nitrogen working pressure between 0.5-20 Pa. The axial magnetic field is produced from an inductive copper coil of radius 5.6 cm. The experimental data of breakdown voltage is adopted to estimate the mean Paschen curves at different working features. The secondary electron emission coefficient is calculated from the mean Paschen curve and used to determine the minimum breakdown voltage. A reduction of discharge voltage of about 25% is investigated by the applied of axial magnetic field. At high interelectrode spacing, the effect of axial magnetic field becomes more significant for the obtained values of h but it was less for the values of g.

Keywords: Paschen curve, Townsend coefficient, Secondaryelectron emission, Magnetic field, Minimum breakdown voltage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2578
966 Effect of Friction Models on Stress Distribution of Sheet Materials during V-Bending Process

Authors: Maziar Ramezani, Zaidi Mohd Ripin

Abstract:

In a metal forming process, the friction between the material and the tools influences the process by modifying the stress distribution of the workpiece. This frictional behaviour is often taken into account by using a constant coefficient of friction in the finite element simulations of sheet metal forming processes. However, friction coefficient varies in time and space with many parameters. The Stribeck friction model is investigated in this study to predict springback behaviour of AA6061-T4 sheets during V-bending process. The coefficient of friction in Stribeck curve depends on sliding velocity and contact pressure. The plane-strain bending process is simulated in ABAQUS/Standard. We compared the computed punch load-stroke curves and springback related to the constant coefficient of friction with the defined friction model. The results clearly showed that the new friction model provides better agreement between experiments and results of numerical simulations. The influence of friction models on stress distribution in the workpiece is also studied numerically

Keywords: Friction model, Stress distribution, V-bending.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2697
965 Development of Mathematical Model for Overall Oxygen Transfer Coefficient of an Aerator and Comparison with CFD Modeling

Authors: Shashank.B. Thakre, L.B. Bhuyar, Samir.J. Deshmukh

Abstract:

The value of overall oxygen transfer Coefficient (KLa), which is the best measure of oxygen transfer in water through aeration, is obtained by a simple approach, which sufficiently explains the utility of the method to eliminate the discrepancies due to inaccurate assumption of saturation dissolved oxygen concentration. The rate of oxygen transfer depends on number of factors like intensity of turbulence, which in turns depends on the speed of rotation, size, and number of blades, diameter and immersion depth of the rotor, and size and shape of aeration tank, as well as on physical, chemical, and biological characteristic of water. An attempt is made in this paper to correlate the overall oxygen transfer Coefficient (KLa), as an independent parameter with other influencing parameters mentioned above. It has been estimated that the simulation equation developed predicts the values of KLa and power with an average standard error of estimation of 0.0164 and 7.66 respectively and with R2 values of 0.979 and 0.989 respectively, when compared with experimentally determined values. The comparison of this model is done with the model generated using Computational fluid dynamics (CFD) and both the models were found to be in good agreement with each other.

Keywords: CFD Model, Overall oxygen transfer coefficient, Power, Mathematical Model, Validation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1710