Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30184
The Effects of Peristalsis on Dispersion of a Micropolar Fluid in the Presence of Magnetic Field

Authors: Habtu Alemayehu, G. Radhakrishnamacharya

Abstract:

The paper presents an analytical solution for dispersion of a solute in the peristaltic motion of a micropolar fluid in the presence of magnetic field and both homogeneous and heterogeneous chemical reactions. The average effective dispersion coefficient has been found using Taylor-s limiting condition under long wavelength approximation. The effects of various relevant parameters on the average coefficient of dispersion have been studied. The average effective dispersion coefficient increases with amplitude ratio, cross viscosity coefficient and heterogeneous chemical reaction rate parameter. But it decreases with magnetic field parameter and homogeneous chemical reaction rate parameter. It can be noted that the presence of peristalsis enhances dispersion of a solute.

Keywords: Peristalsis, Dispersion, Chemical reaction, Magneticfield, Micropolar fluid

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1073601

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1304

References:


[1] A. H. Shapiro, M. Y. Jaffrin and S. L. Weinberg, Peristaltic pumping with with long wavelengths at low Reynold number, J. Fluid Mech., vol.37, pp.799-825, 1969.
[2] Y. C. Fung, and C. S. Yih, Peristaltic transport, J. Appl. Mech. Trans. ASME, vol.5, pp.669-675, 1968.
[3] J. C. Misra and S. K. Pandey, Peristaltic transport in a tapered tube, Mathl. Comput. Modelling, vol.22, pp.137-151, 1995.
[4] J. C. Misra and S. K. Pandey, Peristaltic flow of a multilayered powerlaw fluid through a cylindrical tube, International Journal of Engineering Science, vol.39, pp.387-402, 2001.
[5] M. Mishra and A. R. Rao, Peristaltic transport of a power law fluid in a porous tube, J. Non-Newtonian Fluid Mech., vol.121, pp.163-174, 2004, .
[6] G. Radhakrishnamacharya, Long wavelength approximation to peristaltic motion of a power law fluid, Rheologica Acta, vol.21, pp.30-35, 1982.
[7] D.Srinivasacharya, M. Mishra and A. R. Rao, Peristaltic pumping of a micropolar fluid in a tube, Acta Mech., 161, 2003, 165-178.
[8] P. Muthu, B. V. Rathish Kumar and P. Chandra, On the influence of wall properties in the Peristaltic Motion of Micropolar fluid, ANZIAM J. vol.45, pp.245-260, 2003.
[9] G. C. Sankad, G. Radhakrishnamacharya and J. V. Ramanamurthy, Long wavelength approximation to peristaltic motion of micropolar fluid with wall effects, Adv. Appl. Math. Mech., vol.2, pp.222-237, 2010.
[10] Kh. S. Mekheimer, Peristaltic Flow of a Magneto-Micropolar Fluid: Effect of Induced Magnetic Field, Journal of Applied Mathematics, Article Id 570825, 23 pages, 2008.
[11] T. Hayat, Masood Khan, A. M. Siddiqui and S. Asghar, Non-linear peristaltic flow of a non-Newtonian fluid under effect of a magnetic field in a planar channel, Communications in Nonlinear Science and Numerical Simulation, vol.12,pp.910-919, 2007.
[12] D. Srinivasacharya, and Mekonen Shiferaw, Magnetohydrodynamic flow of a micropolar fluid in a circular pipe with hall effects, ANZIAM J., vol.51, pp.277-285, 2009.
[13] J. C. Misra, S. Maiti and G. C. Shit, Peristaltic Transport of a Physiological Fluid in an Asymmetric Porous Channel in the Presence of an External Magnetic Field, Journal of Mechanics in Medicine and Biology, vol.8, pp.507-525, 2008.
[14] G. I. Taylor, Dispersion of soluble matter in solvent flowing slowly through a tube, Proc. Roy. Soc. Lond., vol.A 219, pp.186-203, 1953.
[15] G. I. Taylor, The dispersion of matter in turbulent flow through a pipe, Proc. Roy. Soc. Lond., vol.A 223, pp.446-468, 1954a.
[16] G. I. Taylor, Conditions under which dispersion of a solute in a stream of solvent can be used to measure molecular diffusion, Proc. Roy. Soc. Lond., vol.A 225, pp. 473-477, 1954b.
[17] R. Aris, On the dispersion of a solute in a fluid flowing through a tube, Proc. Roy. Soc. Lond., vol.A 235, pp.67-77, 1956.
[18] B. K. N. Dutta, N. C. Roy and A. S. Gupta, Dispersion of a solute in a non-Newtonian fluid with simultaneous chemical reaction, Mathematica- Mechanica fasc., vol.2, pp.78-82, 1974.
[19] J. B. Shukla, R. S. Parihar and B. R. P. Rao, Dispersion in non- Newtonian fluids: Effects of chemical reaction, Rheologica Acta, vol.18, pp.740-748, 1979.
[20] P. Chandra and R. P. Agarwal, Dispersion in simple microfluid flows, International Journal of Engineering Science, vol.21, pp.431-442, 1983.
[21] Philip, D. and Chandra, P., Effects of heterogeneous and homogeneous reactions on the dispersion of a solute in simple microfluid, Indian J. Pure Appl. Math., vol.24, pp.551-561, 1993.
[22] P. S. Gupta and A. S. Gupta, Effect of homogeneous and heterogeneous reactions on the dispersion of a solute in the laminar flow between two plates, Proc. Roy. Soc. Lond., vol.A 330, pp.59-63, 1972.
[23] V. V. Ramana Rao and D. Padma, Homogeneous and heterogeneous reaction on the dispersion of a solute in MHD Couette flow, Curr. Sci., vol.44, pp.803-804, 1975.
[24] V. V. Ramana Rao and D. Padma, Homogeneous and heterogeneous reaction on the dispersion of a solute in MHD Couette flow II, Curr. Sci., vol.46, pp.42-43, 1977.
[25] D. Padma and V. V. Ramana Rao, Effect of Homogeneous and heterogeneous reaction on the dispersion of a solute in laminar flow between two parallel porous plates, Indian Journal of Technology, vol.14, pp.410-412, 1976.