Assessing the Antimicrobial Activity of Chitosan Nanoparticles by Fluorescence-Labeling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32919
Assessing the Antimicrobial Activity of Chitosan Nanoparticles by Fluorescence-Labeling

Authors: Laidson P. Gomes, Cristina T. Andrade, Eduardo M. Del Aguila, Cameron Alexander, Vânia M. F. Paschoalin


Chitosan is a natural polysaccharide prepared by the N-deacetylation of chitin. In this study, the physicochemical and antibacterial properties of chitosan nanoparticles, produced by ultrasound irradiation, were evaluated. The physicochemical properties of the nanoparticles were determined by dynamic light scattering and zeta potential analysis. Chitosan nanoparticles inhibited the growth of E. coli. The minimum inhibitory concentration (MIC) values were lower than 0.5 mg/mL, and the minimum bactericidal concentration (MBC) values were similar or higher than MIC values. Confocal laser scanning micrographs (CLSM) were used to observe the interaction between E. coli suspensions mixed with FITC-labeled chitosan polymers and nanoparticles.

Keywords: Chitosan nanoparticles, dynamic light scattering, zeta potential, confocal microscopy, antibacterial activity.

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1040


[1] Thatai S, Khurana P, Boken J, Prasad S, Kumar D., "Nanoparticles and core–shell nanocomposite based new generation water remediation materials and analytical techniques: A review", Microchem. J., vol. 116, pp. 62-76, 2014.
[2] Sinha VR, Singla AK, Wadhawan S, Kaushik R, Kumria R, Bansal K, et al., "Chitosan microspheres as a potential carrier for drugs", Int. J. Pharm., vol. 274, pp. 1-33, 2004.
[3] Gomes LP, Souza HK, Campiña JM, Andrade CT, Paschoalin VMF, Silva A, et al., "Tweaking the Mechanical and Structural Properties of Colloidal Chitosans by Sonication", Food Hydrocoll., vol. 56, pp. 29-40, 2016.
[4] Nel A, Xia T, Mädler L, Li N., "Toxic Potential of Materials at the Nanolevel", Science, vol. 311, pp. 5, 2006.
[5] Magrez A, Kasas S, Salicio V, Pasquier N, Seo JW, Celio M, et al., "Cellular Toxicity of Carbon-Based Nanomaterials", Nano Letters, vol. 6(6), pp. 1121-1125, 2006.
[6] Xia W, Liu P, Zhang J, Chen J., "Biological activities of chitosan and chitooligosaccharides", Food Hydrocoll.,. vol. 25(2), pp. 170-179, 2011.
[7] Hernández-Lauzardo AN, Bautista-Baños S, Velázquez-del Valle MG, Méndez-Montealvo MG, Sánchez-Rivera MM, Bello-Pérez LA, "Antifungal effects of chitosan with different molecular weights on in vitro development of Rhizopus stolonifer (Ehrenb.:Fr.) Vuill". Carbohydr Polym., vol. 73(4), pp. 541-547, 2008.
[8] Liu XD, Nishi N, Tokura S, Sakairi N., "Chitosan coated cotton fiber: preparation and physical properties", Carbohydr Polym., vol 44(3),pp. 233-238, 2001.
[9] Zhang L, Pornpattananangkul D, Hu C-MJ, Huang C-M., "Development of nanoparticles for antimicrobial drug delivery", Curr. Med. Chem, vol 17(6), pp. 585-594, 2010.
[10] Shukla SK, Mishra AK, Arotiba OA, Mamba BB., "Chitosan-based nanomaterials: A state-of-the-art review", Int. J. Biol. Macromol., vol. 59, pp. 46-58, 2013.
[11] Madureira, A. R., Pereira, A., Castro, P. M., & Pintado, M.,. "Production of antimicrobial chitosan nanoparticles against food pathogens", J Food Eng, vol.167, pp. 210-216, 2015.
[12] Shaner NC, Campbell RE, Steinbach PA, Giepmans BN, Palmer AE, Tsien RY., "Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein", Nat. Biotechnol., vol 22(12), pp. 1567-1572, 2004.
[13] Arora, A. and G. Padua, "Review:nanocomposites in food packaging", J. Food Sci., vol.75(1), pp. R43-R49, 2010.
[14] Yang C, Li B, Ge M, Zhou K, Wang Y, Luo J, et al., "Inhibitory effect and mode of action of chitosan solution against rice bacterial brown stripe pathogen Acidovorax avenae subsp. avenae RS-1", Carbohydr. Res., vol. 391, pp. 48-54, 2014.
[15] Patel, M. P., R. R. Patel, and J. K. Patel, "Chitosan mediated targeted drug delivery system: a review", J. Pharm. Pharm. Sci., vol. 13(4), pp. 536-557, 2010.
[16] Cölfen, H., G. Berth, and H. Dautzenberg, "Hydrodynamic studies on chitosans in aqueous solution", Carbohydr. Polym., 45(4), pp. 373-383, 2001.
[17] Radhakrishnan Y, Gopal G, Lakshmanan CC, Nandakumar KS., "Chitosan Nanoparticles for Generating Novel Systems for Better Applications: A Review", J. Mol. Genet. Med., vol. S4: 005, 2015.
[18] Souza HKS, Campiña JM, Sousa AMM, Silva F, Gonçalves MP., "Ultrasound-assisted preparation of size-controlled chitosan nanoparticles: Characterization and fabrication of transparent biofilms", Food Hydrocoll., vol. 31(2), pp. 227-236, 2013.
[19] Chang Z, Wang Z, Lu M, Li M, Li L, Zhang Y, et al., "Magnetic Janus nanorods for efficient capture, separation and elimination of bacteria", RSC Advances, vol. 7(6), pp. 3550-3553, 2017.
[20] Hamouda, T. and J. Baker, "Antimicrobial mechanism of action of surfactant lipid preparations in enteric Gram‐negative bacilli", J.Appl. Microbiol., vol. 89(3), pp. 397-403, 2000.
[21] Stoimenov PK, Klinger RL, Marchin GL, Klabunde KJ., "Metal oxide nanoparticles as bactericidal agents", Langmuir, vol. 18(17),pp. 6679-6686, 2002.