**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**30075

##### Quantum Statistical Mechanical Formulations of Three-Body Problems via Non-Local Potentials

**Authors:**
A. Maghari,
V. H. Maleki

**Abstract:**

**Keywords:**
Statistical mechanics,
Nonlocal separable potential,
three-body interaction,
Faddeev equations.

**Digital Object Identifier (DOI):**
doi.org/10.5281/zenodo.1338458

**References:**

[1] L. D. Faddeev” Scattering theory for a three-particle system”, Sov. Phys.-JETP, vol. 12, 1961, pp. 1014-1019.

[2] A. Maghari and N. Tahmasbi “Scattering properties for a solvable model with a three-dimensional separable potential of rank 2”, J. Phys. A: Math. Gen., vol. 38, 2005, pp. 4469-4481.

[3] A. Maghari and M. Dargahi “The solvable three-dimensional rank-two separable potential model: partial-wave scattering”, J. Phys. A: Math. Theoret. vol. 41, 2008, pp. 275306-17.

[4] A. Maghari and V. M. Maleki “Analytical Solution of Partial-Wave Faddeev Equations with Application to Scattering and Statistical Mechanical Properties”, Commun. Theor. Phys. vol. 64, 2015, pp. 22- 28.

[5] R. G. Newton, “Scattering theory of waves and particles”, Springer- Verlag, Berlin, 1982.

[6] R. F. Snider “Simple example illustrating the different parametrizations of the Moller operator” J. Chem. Phys. vol. 88, 1988, pp. 6438-6447.

[7] J. G. Muga and R. F. Snider “Solvable three-boson model with attractive delta -function interactions” Phys.Rev., vol. 57A, 1998, pp. 3317-3329.

[8] J. G. Muga and J. P. Palao “Solvable model for quantum wavepacket scattering in one dimension” J. Phys. A: Math. Gen. vol. 31, 1998, pp. 9519-34.

[9] N. Tahmasbi and A. Maghari “Scattering problem with nonlocal separable potential of rank-two: Application to statistical mechanics” Physica A, vol. 382, 2007, pp. 537-548.

[10] A. Maghari and M. Dargahi “Scattering via a separable potential with higher angular momenta: application to statistical mechanics”, J. Stat. Mech. 2008, P10007.

[11] Hirschfelder J. O., Curtiss C. F. and Bird R. B., 1954 Molecular Theory of Gases and Liquids (Wiley, New York).

[12] Chapman S. and Cowling T. G., 1970 The Mathematical Theory of Non- Uniform Gases 3rd ed (London: Cambridge University Press).