Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1171

Search results for: random vibration fatigue

1021 Effect of Composite Material on Damping Capacity Improvement of Cutting Tool in Machining Operation Using Taguchi Approach

Authors: S. Ghorbani, N. I. Polushin

Abstract:

Chatter vibrations, occurring during cutting process, cause vibration between the cutting tool and workpiece, which deteriorates surface roughness and reduces tool life. The purpose of this study is to investigate the influence of cutting parameters and tool construction on surface roughness and vibration in turning of aluminum alloy AA2024. A new design of cutting tool is proposed, which is filled up with epoxy granite in order to improve damping capacity of the tool. Experiments were performed at the lathe using carbide cutting insert coated with TiC and two different cutting tools made of AISI 5140 steel. Taguchi L9 orthogonal array was applied to design of experiment and to optimize cutting conditions. By the help of signal-to-noise ratio and analysis of variance the optimal cutting condition and the effect of the cutting parameters on surface roughness and vibration were determined. Effectiveness of Taguchi method was verified by confirmation test. It was revealed that new cutting tool with epoxy granite has reduced vibration and surface roughness due to high damping properties of epoxy granite in toolholder.

Keywords: ANOVA, damping capacity, surface roughness, Taguchi method, vibration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2498
1020 Developing a New Vibration Analysis Calculative Method for Esfahan Subway Train and Railways Design, Manufacturing, and Construction

Authors: Omid A. Zargar

Abstract:

The simulated mass and spring method evaluation for subway or railways construction and installation systems have a wide application in rail industries. This kind of design should be optimizing all related parameters to reduce the amount of vibration in cities, homelands, historical zones and other critical locations. Finite element method could help us a lot to analysis such applications with an excellent accuracy but always developing some simple, fast and user friendly evaluation method required in subway industrial applications. In addition, process parameter optimization extremely required in railway industries to achieve some optimal design of railways with maximum safety, reliability and performance. Furthermore, it is important to reduce vibrations and further related maintenance costs as well as possible. In this paper a simple but useful simulated mass and spring evaluation system developed for Esfahan subway construction. Besides, some of related recent patent and innovations in rail world industries like Suspension mass tuned vibration reducer, short sleeper vibration attenuation fastener and Airtight track vibration-noise reducing fastener discussed in details.

Keywords: Subway construction engineering, natural frequency, operation frequency, vibration analysis, polyurethane layer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2101
1019 A survey Method and new design Lecture Chair for Complied Ergonomics Guideline at Classroom Building 2 Suranaree University of Technology, Thailand

Authors: Sumalee B., Sirinapa L., Jenjira T., Jr., Setasak S.

Abstract:

The paper describes ergonomics problems trend of student at B5101 classroom building 2, Suranaree University of Technology. The objective to survey ergonomics problems and effect from use chairs for sitting in class room. The result from survey method 100 student they use lecture chair for sitting in classroom more than 2 hours/ day by RULA[1]. and Body discomfort survey[2]. The result from Body discomfort survey contribute fatigue problems at neck, lower back, upper back and right shoulder 2.93, 2.91, 2.33, 1.75 respectively and result from RULA contribute fatigue problems at neck, body and right upper arm 4.00, 3.75 and 3.00 respectively are consistent. After that the researcher provide improvement plan for design new chair support student fatigue reduction by prepare data of sample anthropometry and design ergonomics chair prototype 3 unit. Then sample 100 student trial to use new chair and evaluate again by RULA, Body discomfort and satisfaction. The result from trial new chair after improvement by RULA present fatigue reduction average of head and neck from 4.00 to 2.25 , body and trunk from 3.75 to 2.00 and arm force from 1.00 to 0.25 respectively. The result from trial new chair after improvement by Body discomfort present fatigue reduction average of lower back from 2.91 to 0.87, neck from 2.93 to 1.24, upper back 2.33 to 0.84 and right upper arm from 1.75 to 0.74. That statistical of RULA and Body discomfort survey present fatigue reduction after improvement significance with a confidence level of 95% (p-value 0.05). When analyzing the relationship of fatigue as part of the body by Chi – square test during RULA and Body discomfort that before and after improvements were consistent with the significant level of confidence 95% (p-value 0.05) . Moreover the students satisfaction result from trial with a new chair for 30 minutes [3]. 72 percent very satisfied of the folding of the secondary writing simple 66% the width of the writing plate, 64% the suitability of the writing plate, 62% of soft seat cushion and 61% easy to seat the chair.

Keywords: Ergonomics, Work station design, ErgonomicsChair, Student, Fatigue

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3267
1018 Static and Dynamical Analysis on Clutch Discs on Different Material and Geometries

Authors: Jairo Aparecido Martins, Estaner Claro Romão

Abstract:

This paper presents the static and cyclic stresses in combination with fatigue analysis resultant of loads applied on the friction discs usually utilized on industrial clutches. The material chosen to simulate the friction discs under load is aluminum. The numerical simulation was done by software COMSOLTM Multiphysics. The results obtained for static loads showed enough stiffness for both geometries and the material utilized. On the other hand, in the fatigue standpoint, failure is clearly verified, what demonstrates the importance of both approaches, mainly dynamical analysis. The results and the conclusion are based on the stresses on disc, counted stress cycles, and fatigue usage factor.

Keywords: Aluminum, industrial clutch, static and dynamic loading, numerical simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 566
1017 Stabilization of Rotational Motion of Spacecrafts Using Quantized Two Torque Inputs Based on Random Dither

Authors: Yusuke Kuramitsu, Tomoaki Hashimoto, Hirokazu Tahara

Abstract:

The control problem of underactuated spacecrafts has attracted a considerable amount of interest. The control method for a spacecraft equipped with less than three control torques is useful when one of the three control torques had failed. On the other hand, the quantized control of systems is one of the important research topics in recent years. The random dither quantization method that transforms a given continuous signal to a discrete signal by adding artificial random noise to the continuous signal before quantization has also attracted a considerable amount of interest. The objective of this study is to develop the control method based on random dither quantization method for stabilizing the rotational motion of a rigid spacecraft with two control inputs. In this paper, the effectiveness of random dither quantization control method for the stabilization of rotational motion of spacecrafts with two torque inputs is verified by numerical simulations.

Keywords: Spacecraft control, quantized control, nonlinear control, random dither method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 439
1016 Modeling and FOS Feedback Based Control of SISO Intelligent Structures with Embedded Shear Sensors and Actuators

Authors: T. C. Manjunath, B. Bandyopadhyay

Abstract:

Active vibration control is an important problem in structures. The objective of active vibration control is to reduce the vibrations of a system by automatic modification of the system-s structural response. In this paper, the modeling and design of a fast output sampling feedback controller for a smart flexible beam system embedded with shear sensors and actuators for SISO system using Timoshenko beam theory is proposed. FEM theory, Timoshenko beam theory and the state space techniques are used to model the aluminum cantilever beam. For the SISO case, the beam is divided into 5 finite elements and the control actuator is placed at finite element position 1, whereas the sensor is varied from position 2 to 5, i.e., from the nearby fixed end to the free end. Controllers are designed using FOS method and the performance of the designed FOS controller is evaluated for vibration control for 4 SISO models of the same plant. The effect of placing the sensor at different locations on the beam is observed and the performance of the controller is evaluated for vibration control. Some of the limitations of the Euler-Bernoulli theory such as the neglection of shear and axial displacement are being considered here, thus giving rise to an accurate beam model. Embedded shear sensors and actuators have been considered in this paper instead of the surface mounted sensors and actuators for vibration suppression because of lot of advantages. In controlling the vibration modes, the first three dominant modes of vibration of the system are considered.

Keywords: Smart structure, Timoshenko beam theory, Fast output sampling feedback control, Finite Element Method, State space model, SISO, Vibration control, LMI

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1535
1015 Free Vibration and Buckling of Rectangular Plates under Nonuniform In-Plane Edge Shear Loads

Authors: T. H. Young, Y. J. Tsai

Abstract:

A method for determining the stress distribution of a rectangular plate subjected to two pairs of arbitrarily distributed in-plane edge shear loads is proposed, and the free vibration and buckling of such a rectangular plate are investigated in this work.  The method utilizes two stress functions to synthesize the stress-resultant field of the plate with each of the stress functions satisfying the biharmonic compatibility equation. The sum of stress-resultant fields due to these two stress functions satisfies the boundary conditions at the edges of the plate, from which these two stress functions are determined. Then, the free vibration and buckling of the rectangular plate are investigated by the Galerkin method. Numerical results obtained by this work are compared with those appeared in the literature, and good agreements are observed.

Keywords: Stress analysis, free vibration, plate buckling, nonuniform in-plane edge shear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 377
1014 Modeling of Random Variable with Digital Probability Hyper Digraph: Data-Oriented Approach

Authors: A. Habibizad Navin, M. Naghian Fesharaki, M. Mirnia, M. Kargar

Abstract:

In this paper we introduce Digital Probability Hyper Digraph for modeling random variable as the hierarchical data-oriented model.

Keywords: Data-Oriented Models, Data Structure, DigitalProbability Hyper Digraph, Random Variable, Statistic andProbability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1032
1013 Multivariable Control of Smart Timoshenko Beam Structures Using POF Technique

Authors: T.C. Manjunath, B. Bandyopadhyay

Abstract:

Active Vibration Control (AVC) is an important problem in structures. One of the ways to tackle this problem is to make the structure smart, adaptive and self-controlling. The objective of active vibration control is to reduce the vibration of a system by automatic modification of the system-s structural response. This paper features the modeling and design of a Periodic Output Feedback (POF) control technique for the active vibration control of a flexible Timoshenko cantilever beam for a multivariable case with 2 inputs and 2 outputs by retaining the first 2 dominant vibratory modes using the smart structure concept. The entire structure is modeled in state space form using the concept of piezoelectric theory, Timoshenko beam theory, Finite Element Method (FEM) and the state space techniques. Simulations are performed in MATLAB. The effect of placing the sensor / actuator at 2 finite element locations along the length of the beam is observed. The open loop responses, closed loop responses and the tip displacements with and without the controller are obtained and the performance of the smart system is evaluated for active vibration control.

Keywords: Smart structure, Timoshenko theory, Euler-Bernoulli theory, Periodic output feedback control, Finite Element Method, State space model, Vibration control, Multivariable system, Linear Matrix Inequality

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2019
1012 Bearing Condition Monitoring with Acoustic Emission Techniques

Authors: Faisal AlShammari, Abdulmajid Addali

Abstract:

Monitoring the conditions of rotating machinery, such as bearings, is important in order to improve the stability of work. Acoustic Emission (AE) and vibration analysis are some of the most accomplished techniques used for this purpose. Acoustic emission has the ability to detect the initial phase of component degradation. Moreover, it has been observed that vibration analysis is not as successful at low rotational speeds (below 100 rpm). This because the energy generated within this speed region is not detectable using conventional vibration. From this perspective, this paper has presented a brief review of using acoustic emission techniques for monitoring bearing conditions.

Keywords: Condition monitoring, stress wave analysis, low-speed bearings, bearing defect diagnosis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3249
1011 The Fracture Resistance of Zirconia Based Dental Crowns from Cyclic Loading: A Function of Relative Wear Depth

Authors: T. Qasim, B. El Masoud, D. Ailabouni

Abstract:

This in vitro study focused on investigating the fatigue resistance of veneered zirconia molar crowns with different veneering ceramic thicknesses, simulating the relative wear depths under simulated cyclic loading. A mandibular first molar was prepared and then scanned using computer-aided design/computer-aided manufacturing (CAD/CAM) technology to fabricate 32 zirconia copings of uniform 0.5 mm thickness. The manufactured copings then veneered with 1.5 mm, 1.0 mm, 0.5 mm, and 0.0 mm representing 0%, 33%, 66%, and 100% relative wear of a normal ceramic thickness of 1.5 mm. All samples were thermally aged to 6000 thermo-cycles for 2 minutes with distilled water between 5 ˚C and 55 ˚C. The samples subjected to cyclic fatigue and fracture testing using SD Mechatronik chewing simulator. These samples are loaded up to 1.25x10⁶ cycles or until they fail. During fatigue, testing, extensive cracks were observed in samples with 0.5 mm veneering layer thickness. Veneering layer thickness 1.5-mm group and 1.0-mm group were not different in terms of resisting loads necessary to cause an initial crack or final failure. All ceramic zirconia-based crown restorations with varying occlusal veneering layer thicknesses appeared to be fatigue resistant. Fracture load measurement for all tested groups before and after fatigue loading exceeded the clinical chewing forces in the posterior region. In general, the fracture loads increased after fatigue loading and with the increase in the thickness of the occlusal layering ceramic.

Keywords: All ceramic, dental crowns, relative wear, chewing simulator, cyclic loading, thermally ageing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 543
1010 Experimental Technique for Vibration Reduction of a Motor Pumpin Medical Device

Authors: Young Kuen Cho, Dae Won Lee, Young-Jin Jung, Sung Kuk Kim, Dong-Hyun Seo, Chang-Yong Ko, Han Sung Kim

Abstract:

Many medical devices are driven by motor pumps. Some researchers reported that the vibration mainly affected medical devices using a motor pump. The purpose of this study was to examine the effect of stiffness and damping coefficient in a 3-dimensional (3D) model of a motor pump and spring. In the present paper, experimental and mathematical tests for the moments of inertia of the 3D model and the material properties were investigated by an INSTRON machine. The response surfaces could be generated by using 3D multi-body analysis and the design of experiment method. It showed that differences in contours of the response surface were clearly found for the particular area. Displacement of the center of the motor pump was decreased at K≈2000 N/M, C≈12.5 N-sec/M. However, the frequency was increased at K≈2000 N/M, C≈15 N-sec/M. In this study, this study suggested experimental technique for vibration reduction for a motor pump in medical device. The combined method suggested in this study will greatly contribute to design of medical devices concerning vibration and noise intervention.

Keywords: Motor pump, Spring, Vibration reduction, Medicaldevices, Moment of Inertia

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1643
1009 Geometrically Non-Linear Axisymmetric Free Vibrations of Thin Isotropic Annular Plates

Authors: Boutahar Lhoucine, El Bikri Khalid, Benamar Rhali

Abstract:

The effects of large vibration amplitudes on the first axisymetric mode shape of thin isotropic annular plates having both edges clamped are examined in this paper. The theoretical model based on Hamilton’s principle and spectral analysis by using a basis of Bessel’s functions is adapted اhere to the case of annular plates. The model effectively reduces the large amplitude free vibration problem to the solution of a set of non-linear algebraic equations.

The governing non-linear eigenvalue problem has been linearised in the neighborhood of each resonance and a new one-step iterative technique has been proposed as a simple alternative method of solution to determine the basic function contributions to the non-linear mode shape considered.

Numerical results are given for the first non-linear mode shape for a wide range of vibration amplitudes. For each value of the vibration amplitude considered, the corresponding contributions of the basic functions defining the non-linear transverse displacement function and the associated non-linear frequency, the membrane and bending stress distributions are given. By comparison with the iterative method of solution, it was found that the present procedure is efficient for a wide range of vibration amplitudes, up to at least 1.8 times the plate thickness,

Keywords: Non-linear vibrations, Annular plates, Large vibration amplitudes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1997
1008 Statistical Characteristics of Distribution of Radiation-Induced Defects under Random Generation

Authors: Pavlo Selyshchev

Abstract:

We consider fluctuations of defects density taking into account their interaction. Stochastic field of displacement generation rate gives random defect distribution. We determinate statistical characteristics (mean and dispersion) of random field of point defect distribution as function of defect generation parameters, temperature and properties of irradiated crystal.

 

Keywords: Irradiation, Primary Defects, Interaction, Fluctuations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1490
1007 Vibration Analysis of Functionally Graded Engesser- Timoshenko Beams Subjected to Axial Load Located on a Continuous Elastic Foundation

Authors: M. Karami Khorramabadi, A. R. Nezamabadi

Abstract:

This paper studies free vibration of functionally graded beams Subjected to Axial Load that is simply supported at both ends lies on a continuous elastic foundation. The displacement field of beam is assumed based on Engesser-Timoshenko beam theory. The Young's modulus of beam is assumed to be graded continuously across the beam thickness. Applying the Hamilton's principle, the governing equation is established. Resulting equation is solved using the Euler's Equation. The effects of the constituent volume fractions and foundation coefficient on the vibration frequency are presented. To investigate the accuracy of the present analysis, a compression study is carried out with a known data.

Keywords: Functionally Graded Beam, Free Vibration, Elastic Foundation, Engesser-Timoshenko Beam Theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1627
1006 The Finite Difference Scheme for the Suspended String Equation with the Nonlinear Damping Term

Authors: Jaipong Kasemsuwan

Abstract:

A numerical solution of the initial boundary value problem of the suspended string vibrating equation with the particular nonlinear damping term based on the finite difference scheme is presented in this paper. The investigation of how the second and third power terms of the nonlinear term affect the vibration characteristic. We compare the vibration amplitude as a result of the third power nonlinear damping with the second power obtained from previous report provided that the same initial shape and initial velocities are assumed. The comparison results show that the vibration amplitude is inversely proportional to the coefficient of the damping term for the third power nonlinear damping case, while the vibration amplitude is proportional to the coefficient of the damping term in the second power nonlinear damping case.

Keywords: Finite-difference method, the nonlinear damped equation, the numerical simulation, the suspended string equation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1196
1005 Strong Limit Theorems for Dependent Random Variables

Authors: Libin Wu, Bainian Li

Abstract:

In This Article We establish moment inequality of dependent random variables,furthermore some theorems of strong law of large numbers and complete convergence for sequences of dependent random variables. In particular, independent and identically distributed Marcinkiewicz Law of large numbers are generalized to the case of m0-dependent sequences.

Keywords: Lacunary System, Generalized Gaussian, NA sequences, strong law of large numbers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1242
1004 Strong Law of Large Numbers for *- Mixing Sequence

Authors: Bainian Li, Kongsheng Zhang

Abstract:

Strong law of large numbers and complete convergence for sequences of *-mixing random variables are investigated. In particular, Teicher-s strong law of large numbers for independent random variables are generalized to the case of *-mixing random sequences and extended to independent and identically distributed Marcinkiewicz Law of large numbers for *-mixing.

Keywords: mixing squences, strong law of large numbers, martingale differences, Lacunary System

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1005
1003 Modified Fuzzy PID Control for Networked Control Systems with Random Delays

Authors: Yong-can Cao, Wei-dong Zhang

Abstract:

To deal with random delays in Networked Control System (NCS), Modified Fuzzy PID Controller is introduced in this paper to implement real-time control adaptively. Via adjusting the control signal dynamically, the system performance is improved. In this paper, the design process and the ultimate simulation results are represented. Finally, examples and corresponding comparisons prove the significance of this method.

Keywords: Fuzzy Control, Networked Control System, PID, Random Delays

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1282
1002 Optimal Trailing Edge Flap Positions of Helicopter Rotor for Various Thrust Coefficients to Solidity (Ct/σ) Ratios

Authors: Saijal K. K., K. Prabhakaran Nair

Abstract:

This study aims to determine change in optimal locations of dual trailing-edge flaps for various thrust coefficient to solidity (Ct /σ) ratios of helicopter to achieve minimum hub vibration levels, with low penalty in terms of required trailing-edge flap control power. Polynomial response functions are used to approximate hub vibration and flap power objective functions. Single objective and multiobjective optimization is carried with the objective of minimizing hub vibration and flap power. The optimization result shows that the inboard flap location at low Ct /σ ratio move farther from the baseline value and at high Ct /σ ratio move towards the root of the blade for minimizing hub vibration.

Keywords: Helicopter rotor, Trailing-edge flap, Thrust coefficient to solidity (Ct /σ) ratio, Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4396
1001 Large Amplitude Free Vibration of a Very Sag Marine Cable

Authors: O. Punjarat, S. Chucheepsakul, T. Phanyasahachart

Abstract:

This paper focuses on a variational formulation of large amplitude free vibration behavior of a very sag marine cable. In the static equilibrium state, the marine cable has a very large sag configuration. In the motion state, the marine cable is assumed to vibrate in in-plane motion with large amplitude from the static equilibrium position. The total virtual work-energy of the marine cable at the dynamic state is formulated which involves the virtual strain energy due to axial deformation, the virtual work done by effective weight, and the inertia forces. The equations of motion for the large amplitude free vibration of marine cable are obtained by taking into account the difference between the Euler’s equation in the static state and the displaced state. Based on the Galerkin finite element procedure, the linear and nonlinear stiffness matrices, and mass matrices of the marine cable are obtained and the eigenvalue problem is solved. The natural frequency spectrum and the large amplitude free vibration behavior of marine cable are presented.

Keywords: Axial deformation, free vibration, Galerkin Finite Element Method, large amplitude, variational method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 338
1000 A Method of Drilling a Ground Using a Robotic Arm

Authors: Lotfi Beji, Laredj Benchikh

Abstract:

Underground tunnel face bolting and pipe umbrella reinforcement are one of the most challenging tasks in construction whether industrial or not, and infrastructures such as roads or pipelines. It is one of the first sectors of economic activity in the world. Through a variety of soil and rock, a cyclic Conventional Tunneling Method (CTM) remains the best one for projects with highly variable ground conditions or shapes. CTM is the only alternative for the renovation of existing tunnels and creating emergency exit. During the drilling process, a wide variety of non-desired vibrations may arise, and a method using a robot arm is proposed. The main kinds of drilling through vibration here is the bit-bouncing phenomenon (resonant axial vibration). Hence, assisting the task by a robot arm may play an important role on drilling performances and security. We propose to control the axial-vibration phenomenon along the drillstring at a practical resonant frequency, and embed a Resonant Sonic Drilling Head (RSDH) as a robot end effector for drilling. Many questionable industry drilling criteria and stability are discussed in this paper.

Keywords: Drilling, PDE control, robotic arm, resonant vibration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 853
999 Permanent Magnet Machine Can Be a Vibration Sensor for Itself

Authors: M. Barański

Abstract:

This article presents a new vibration diagnostic method designed to (PM) machines with permanent magnets. Those devices are commonly used in small wind and water systems or vehicles drives. The author’s method is very innovative and unique. Specific structural properties of PM machines are used in this method - electromotive force (EMF) generated due to vibrations. There was analysed number of publications which describe vibration diagnostic methods and tests of electrical PM machines and there was no method found to determine the technical condition of such machine basing on their own signals. In this article will be discussed: the method genesis, the similarity of machines with permanent magnet to vibration sensor and simulation and laboratory tests results. The method of determination the technical condition of electrical machine with permanent magnets basing on its own signals is the subject of patent application and it is the main thesis of author’s doctoral dissertation.

Keywords: Electrical vehicle, generator, permanent magnet, traction drive, vibrations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2062
998 Spatially Random Sampling for Retail Food Risk Factors Study

Authors: Guilan Huang

Abstract:

In 2013 and 2014, the U.S. Food and Drug Administration (FDA) collected data from selected fast food restaurants and full service restaurants for tracking changes in the occurrence of foodborne illness risk factors. This paper discussed how we customized spatial random sampling method by considering financial position and availability of FDA resources, and how we enriched restaurants data with location. Location information of restaurants provides opportunity for quantitatively determining random sampling within non-government units (e.g.: 240 kilometers around each data-collector). Spatial analysis also could optimize data-collectors’ work plans and resource allocation. Spatial analytic and processing platform helped us handling the spatial random sampling challenges. Our method fits in FDA’s ability to pinpoint features of foodservice establishments, and reduced both time and expense on data collection.

Keywords: Geospatial technology, restaurant, retail food risk factors study, spatial random sampling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1026
997 Using Fractional Factorial Designs for Variable Importance in Random Forest Models

Authors: Ewa. M. Sztendur, Neil T. Diamond

Abstract:

Random Forests are a powerful classification technique, consisting of a collection of decision trees. One useful feature of Random Forests is the ability to determine the importance of each variable in predicting the outcome. This is done by permuting each variable and computing the change in prediction accuracy before and after the permutation. This variable importance calculation is similar to a one-factor-at a time experiment and therefore is inefficient. In this paper, we use a regular fractional factorial design to determine which variables to permute. Based on the results of the trials in the experiment, we calculate the individual importance of the variables, with improved precision over the standard method. The method is illustrated with a study of student attrition at Monash University.

Keywords: Random Forests, Variable Importance, Fractional Factorial Designs, Student Attrition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1669
996 New Wavelet Indices to Assess Muscle Fatigue during Dynamic Contractions

Authors: González-Izal M., Rodríguez-Carreño I, Mallor-Giménez F, Malanda A, Izquierdo M

Abstract:

The purpose of this study was to evaluate and compare new indices based on the discrete wavelet transform with another spectral parameters proposed in the literature as mean average voltage, median frequency and ratios between spectral moments applied to estimate acute exercise-induced changes in power output, i.e., to assess peripheral muscle fatigue during a dynamic fatiguing protocol. 15 trained subjects performed 5 sets consisting of 10 leg press, with 2 minutes rest between sets. Surface electromyography was recorded from vastus medialis (VM) muscle. Several surface electromyographic parameters were compared to detect peripheral muscle fatigue. These were: mean average voltage (MAV), median spectral frequency (Fmed), Dimitrov spectral index of muscle fatigue (FInsm5), as well as other five parameters obtained from the discrete wavelet transform (DWT) as ratios between different scales. The new wavelet indices achieved the best results in Pearson correlation coefficients with power output changes during acute dynamic contractions. Their regressions were significantly different from MAV and Fmed. On the other hand, they showed the highest robustness in presence of additive white gaussian noise for different signal to noise ratios (SNRs). Therefore, peripheral impairments assessed by sEMG wavelet indices may be a relevant factor involved in the loss of power output after dynamic high-loading fatiguing task.

Keywords: Median Frequency, EMG, wavelet transform, muscle fatigue

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1594
995 Robust Adaptive Vibration Control with Application to a Robot Beam

Authors: J. Fei

Abstract:

This paper presents the adaptive control scheme with sliding mode compensator for vibration control problem in the presence of disturbance. The dynamic model of the flexible cantilever beam using finite element modeling is derived. The adaptive control with sliding mode compensator using output feedback for output tracking is developed to reject the external disturbance, and to improve the tracking performance. Satisfactory simulation results verify that the effectiveness of adaptive control scheme with sliding mode compensator.

Keywords: finite element model, adaptive control, sliding modecontrol, vibration suppression

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1176
994 Ambient Vibration Testing of Existing Buildings in Madinah

Authors: Tarek M. Alguhane, Ayman H. Khalil, M. N. Fayed, Ayman M. Ismail

Abstract:

The elastic period has a primary role in the seismic assessment of buildings. Reliable calculations and/or estimates of the fundamental frequency of a building and its site are essential during analysis and design process. Various code formulas based on empirical data are generally used to estimate the fundamental frequency of a structure. For existing structures, in addition to code formulas and available analytical tools such as modal analyses, various methods of testing including ambient and forced vibration testing procedures may be used to determine dynamic characteristics. In this study, the dynamic properties of the 32 buildings located in the Madinah of Saudi Arabia were identified using ambient motions recorded at several, spatially-distributed locations within each building. Ambient vibration measurements of buildings have been analyzed and the fundamental longitudinal and transverse periods for all tested buildings are presented. The fundamental mode of vibration has been compared in plots with codes formulae (Saudi Building Code, EC8, and UBC1997). The results indicate that measured periods of existing buildings are shorter than that given by most empirical code formulas. Recommendations are given based on the common design and construction practice in Madinah city.

Keywords: Ambient vibration, Fundamental period, RC buildings, Infill walls.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1959
993 Designing and Analyzing Sensor and Actuator of a Nano/Micro-System for Fatigue and Fracture Characterization of Nanomaterials

Authors: Mohammad Reza Zamani Kouhpanji

Abstract:

This paper presents a MEMS/NEMS device for fatigue and fracture characterization of nanomaterials. This device can apply static loads, cyclic loads, and their combinations in nanomechanical experiments. It is based on the electromagnetic force induced between paired parallel wires carrying electrical currents. Using this concept, the actuator and sensor parts of the device were designed and analyzed while considering the practical limitations. Since the PWCC device only uses two wires for actuation part and sensing part, its fabrication process is extremely easier than the available MEMS/NEMS devices. The total gain and phase shift of the MEMS/NEMS device were calculated and investigated. Furthermore, the maximum gain and sensitivity of the MEMS/NEMS device were studied to demonstrate the capability and usability of the device for wide range of nanomaterials samples. This device can be readily integrated into SEM/TEM instruments to provide real time study of the mechanical behaviors of nanomaterials as well as their fatigue and fracture properties, softening or hardening behaviors, and initiation and propagation of nanocracks.

Keywords: Sensors and actuators, MEMS/NEMS devices, fatigue and fracture nanomechanical testing device, static and cyclic nanomechanical testing device.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 783
992 The Effects of Adding External Mass and Localised Fatigue upon Static and Dynamic Balance

Authors: K. Abuzayan, H. Alabed, S. Ali

Abstract:

The influence of physical (external added weight) and neurophysiological (fatigue) factors on static and dynamic balance in sport related activities was typified statically by the Romberg test (one foot flat, eyes open) and dynamically by jumping and hopping in both horizontal and vertical directions. Twenty healthy males were participated in this study. In Static condition, added weight increased body-s inertia and therefore decreased body sway in AP direction though not significantly. Dynamically, added weight significantly increased body sway in both ML and AP directions, indicating instability, and the use of the counter rotating segments mechanism to maintain balance was demonstrated. Fatigue on the other hand significantly increased body sway during static balance as a neurophysiological adaptation primarily to the inverted pendulum mechanism. Dynamically, fatigue significantly increased body sway in both ML and AP directions again indicating instability but with a greater use of counter rotating segments mechanism. Differential adaptations for each of the two balance mechanisms (inverted pendulum and counter rotating segments) were found between one foot flat and two feet flat dynamic conditions, as participants relied more heavily on the first in the one foot flat conditions and relied more on the second in the two feet flat conditions.

Keywords: Adding external mass, Dynamic balance, Localised fatigue, Static balance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1402