Search results for: Thrust coefficient to solidity (Ct /σ) ratio
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2765

Search results for: Thrust coefficient to solidity (Ct /σ) ratio

2765 Optimal Trailing Edge Flap Positions of Helicopter Rotor for Various Thrust Coefficients to Solidity (Ct/σ) Ratios

Authors: Saijal K. K., K. Prabhakaran Nair

Abstract:

This study aims to determine change in optimal locations of dual trailing-edge flaps for various thrust coefficient to solidity (Ct /σ) ratios of helicopter to achieve minimum hub vibration levels, with low penalty in terms of required trailing-edge flap control power. Polynomial response functions are used to approximate hub vibration and flap power objective functions. Single objective and multiobjective optimization is carried with the objective of minimizing hub vibration and flap power. The optimization result shows that the inboard flap location at low Ct /σ ratio move farther from the baseline value and at high Ct /σ ratio move towards the root of the blade for minimizing hub vibration.

Keywords: Helicopter rotor, Trailing-edge flap, Thrust coefficient to solidity (Ct /σ) ratio, Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4578
2764 Hydrodynamic Characteristics of Weis–Fogh Type Ship-s Propulsion Mechanism Having Elastic Wing

Authors: K. D. Ro, J. T. Park, J. H. Kim

Abstract:

This experiment was conducted in attempt of improving hydrodynamic efficiency of the propulsion mechanism by installing a spring to the wing so that the opening angle of the wing in one stroke can be changed automatically, compared to the existing method of fixed maximum opening angle in Weis-Fogh type ship propulsion mechanism. Average thrust coefficient was almost fixed with all velocity ratio with the prototype, but with the spring type, thrust coefficient increased sharply as velocity ratio increased. Average propulsive efficiency was larger with bigger opening angle in the prototype, but in the spring type, the one with smaller spring coefficient had larger value. In the range over 1.0 in velocity ratio where big thrust can be generated, spring type had more than twice of propulsive efficiency increase compared to the prototype.

Keywords: Hydraulic Machine, Propulsion Mechanism, FluidForce, Elastic Wing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1299
2763 The Comparative Analysis of Two Typical Fluidic Thrust Vectoring Exhaust Nozzles on Aerodynamic Characteristics

Authors: Xin H. Zou, Qiang Wang

Abstract:

The comparisons of two typical fluidic thrust vectoring exhaust nozzles including two-dimensional(2-D) nozzle and axisymmetric nozzle on aerodynamic characteristics was presented by numerical simulation. The results show: the thrust vector angles increased with the increasing secondary flow but decreased with the nozzle pressure ratio (NPR) increasing. With the same secondary flow and NPR, the thrust vector angles of 2-D nozzle were higher than the axisymmetric nozzle-s. So with the lower NPR and more secondary weight flow, the much higher thrust vector angle was caused by 2-D fluidic nozzle. And with the higher NPR and less secondary weight flow, there was not much difference in angular dimension between two nozzles.

Keywords: Aerodynamic characteristics, fluidic nozzle, vector angle, thrust coefficient comparison.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1997
2762 Evaluation of the Effect of Rotor Solidity on the Performance of a H-Darrieus Turbine Adopting a Blade Element-Momentum Algorithm

Authors: G. Bedon, M. Raciti Castelli, E. Benini

Abstract:

The present study aims to evaluating the effect of rotor solidity - in terms of chord length for a given rotor diameter - on the performances of a small vertical axis Darrieus wind turbine. The proposed work focuses on both power production and rotor power coefficient, considering also the structural constraints deriving from the centrifugal forces due to rotor angular velocity. Also the smoothness of the resulting power curves have been investigated, in order to evaluate the controllability of the corresponding rotor architectures.

Keywords: Vertical axis wind turbine, Darrieus, solidity, Blade Element-Momentum

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5891
2761 An Investigation on Designing and Enhancing the Performance of H-Darrieus Wind Turbine of 10 kW at the Medium Range of Wind Speed in Vietnam

Authors: Ich Long Ngo, Dinh Tai Dang, Ngoc Tu Nguyen, Minh Duc Nguyen

Abstract:

This paper describes an investigation on designing and enhancing the performance of H-Darrieus Wind Turbine (HDWT) of 10 kW at the medium wind speed. The aerodynamic characteristics of this turbine were investigated by both theoretical and numerical approaches. The optimal design procedure was first proposed to enhance the power coefficient under various effects, such as airfoil type, number of blades, solidity, aspect ratio, and tip speed ratio. As a result, the overall design of the 10 kW HDWT was well achieved, and the power characteristic of this turbine was found by numerical approach. Additionally, the maximum power coefficient predicted is up to 0.41 at the tip speed ratio of 3.7 and wind speed of 8 m/s. Particularly, a generalized correlation of power coefficient with tip speed ratio and wind speed is first proposed. These results obtained are very useful for enhancing the performance of the HDWTs placed in a country with high wind power potential like Vietnam.

Keywords: Computational Fluid Dynamics, double multiple stream tube, H-Darrieus wind turbine, renewable energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 52
2760 Performance Investigation of Solid-Rocket Motor with Nozzle Throat Erosion

Authors: Suwicha Chankapoe, Nattawat Winya, Narupon Pittayaprasertkul

Abstract:

In order to determine the performance and key design parameters of rocket, the erosion of nozzle throat during solid rocket motor burning have to be calculated. This study aims to predict the nozzle throat erosion in solid rocket motors according to the thrust profile of motor in operating conditions and develop a model for optimum performance of rocket. We investigate the throat radius change in the static test programs. The standard method and thrust coefficient  are used for adjusting into the ideal performance for conical nozzles. Pressure and thrust data acquired from the tests are analyzed to determine the instantaneous nozzle throat diameter variation throughout the test duration. The result shows good agreement of calculated correlation comparing with measured erosion rate data showing agreement within 1.6 mm/s. Nozzle thrust coefficient loss is found approximately 24% form nozzle throat erosion during burning.

Keywords: Erosion, nozzle throat, thrust coefficient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4971
2759 Experimental Study of Open Water Non-Series Marine Propeller Performance

Authors: M. A. Elghorab, A. Abou El-Azm Aly, A. S. Elwetedy, M. A. Kotb

Abstract:

Later marine propeller is the main component of ship propulsion system. For a non-series propeller, it is difficult to indicate the open water marine propeller performance without an experimental study to measure the marine propeller parameters. In the present study, the open water performance of a non-series marine propeller has been carried out experimentally. The geometrical aspects of a commercial non-series marine propeller have been measured for a propeller blade area ratio of 0.3985. The measured propeller performance parameters were the thrust and torque coefficients for different propeller rotational speed and different water channel flow velocity, then the open water performance for the propeller has been plotted. In addition, a direct comparison between the obtained experimental results and a theoretical study of a B-series marine propeller of the same blade area ratio has been carried out. A correction factor has been introduced to apply the operating conditions of the experimental results to that of the theoretical study for the studied marine propeller.

Keywords: Advance speed, marine propeller, open water performance, thrust coefficient, torque coefficient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3287
2758 Topping Failure Analysis of Anti-Dip Bedding Rock Slopes Subjected to Crest Loads

Authors: Chaoyi Sun, Congxin Chen, Yun Zheng, Kaizong Xia, Wei Zhang

Abstract:

Crest loads are often encountered in hydropower, highway, open-pit and other engineering rock slopes. Toppling failure is one of the most common deformation failure types of anti-dip bedding rock slopes. Analysis on such failure of anti-dip bedding rock slopes subjected to crest loads has an important influence on engineering practice. Based on the step-by-step analysis approach proposed by Goodman and Bray, a geo-mechanical model was developed, and the related analysis approach was proposed for the toppling failure of anti-dip bedding rock slopes subjected to crest loads. Using the transfer coefficient method, a formulation was derived for calculating the residual thrust of slope toe and the support force required to meet the requirements of the slope stability under crest loads, which provided a scientific reference to design and support for such slopes. Through slope examples, the influence of crest loads on the residual thrust and sliding ratio coefficient was investigated for cases of different block widths and slope cut angles. The results show that there exists a critical block width for such slope. The influence of crest loads on the residual thrust is non-negligible when the block thickness is smaller than the critical value. Moreover, the influence of crest loads on the slope stability increases with the slope cut angle and the sliding ratio coefficient of anti-dip bedding rock slopes increases with the crest loads. Finally, the theoretical solutions and numerical simulations using Universal Distinct Element Code (UDEC) were compared, in which the consistent results show the applicability of both approaches.

Keywords: Anti-dip slopes, crest loads, stability analysis, toppling failure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 838
2757 Optimization of Propulsion in Flapping Micro Air Vehicles Using Genetic Algorithm Method

Authors: Mahdi Abolfazli, Ebrahim Barati, Hamid Reza Karbasian

Abstract:

In this paper the kinematic parameters of a regular Flapping Micro Air Vehicle (FMAV) is investigated. The optimization is done using multi-objective Genetic algorithm method. It is shown that the maximum propulsive efficiency is occurred on the Strouhal number of 0.2-0.3 and foil-pitch amplitude of 15°-30°. Furthermore, increasing pitch amplitude with respect to power optimization increases the thrust slightly until pitch amplitude around 30°, and then the trust is increased notably with increasing of pitch amplitude. Additionally, the maximum mean thrust coefficient is computed of 2.67 and propulsive efficiency for this value is 42%. Based on the thrust optimization, the maximum propulsive efficiency is acquired 54% while the mean thrust coefficient is 2.18 at the same propulsive efficiency. Consequently, the maximum propulsive efficiency is obtained 77% and the appropriate Strouhal number, pitch amplitude and phase difference between heaving and pitching are calculated of 0.27, 31° and 77°, respectively.

Keywords: Flapping foil propulsion, Genetic algorithm, Micro Air Vehicle (MAV), Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2104
2756 Analysis of Distribution of Thrust, Torque and Efficiency of a Constant Chord, Constant Pitch C.R.P. Fan by H.E.S. Method

Authors: Morteza Abbaszadeh, Parvin Nikpoorparizi, Mina Shahrooz

Abstract:

For the first time since 1940 and presentation of theodorson-s theory, distribution of thrust, torque and efficiency along the blade of a counter rotating propeller axial fan was studied with a novel method in this research. A constant chord, constant pitch symmetric fan was investigated with Reynolds Stress Turbulence method in this project and H.E.S. method was utilized to obtain distribution profiles from C.F.D. tests outcome. C.F.D. test results were validated by estimation from Playlic-s analytical method. Final results proved ability of H.E.S. method to obtain distribution profiles from C.F.D test results and demonstrated interesting facts about effects of solidity and differences between distributions in front and rear section.

Keywords: C.F.D Test, Counter Rotating Propeller, H.E.S. Method, R.S.M. Method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2959
2755 Calculation and Comparison of a Turbofan Engine Performance Parameters with Various Definitions

Authors: O. Onal, O. Turan

Abstract:

In this paper, some performance parameters of a selected turbofan engine (JT9D) are analyzed. The engine is a high bypass turbofan engine which powers a wide-body aircraft and it produces 206 kN thrust force (thrust/weight ratio is 5.4). The objective parameters for the engine include calculation of power, specific fuel consumption, specific thrust, engine propulsive, thermal and overall efficiencies according to the various definitions given in the literature. Furthermore, in the case study, wasted energy from the exhaust is calculated at the maximum power setting (i.e. take off phase) for the engine.

Keywords: Turbofan, power, efficiency, trust.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3914
2754 Thrust Enhancement on a Two Dimensional Elliptic Airfoil in a Forward Flight

Authors: S. M. Dash, K. B. Lua, T. T. Lim

Abstract:

This paper presents results of numerical and experimental studies on a two-dimensional (2D) flapping elliptic airfoil in a forward flight condition at Reynolds number of 5000. The study is motivated from an earlier investigation which shows that the deterioration in thrust performance of a sinusoidal heaving and pitching 2D (NACA0012) airfoil at high flapping frequency can be recovered by changing the effective angle of attack profile to square wave, sawtooth, or cosine wave shape. To better understand why such modifications lead to superior thrust performance, we take a closer look at the transient aerodynamic force behavior of an airfoil when the effective angle of attack profile changes gradually from a generic smooth trapezoidal profile to a sinusoid shape by modifying the base length of the trapezoid. The choice of using a smooth trapezoidal profile is to avoid the infinite acceleration condition encountered in the square wave profile. Our results show that the enhancement in the time-averaged thrust performance at high flapping frequency can be attributed to the delay and reduction in the drag producing valley region in the transient thrust force coefficient when the effective angle of attack profile changes from sinusoidal to trapezoidal.  

Keywords: Two-dimensional Flapping Airfoil, Thrust Performance, Effective Angle of Attack, CFD and Experiments.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1764
2753 Numerical Simulation of Turbulent Flow around Two Cam Shaped Cylinders in Tandem Arrangement

Authors: Arash Mir Abdolah Lavasani, Meghdad Ebrahimi Sabet

Abstract:

In this paper, the 2-D unsteady viscous flow around two cam shaped cylinders in tandem arrangement is numerically simulated in order to study the characteristics of the flow in turbulent regimes. The investigation covers the effects of high subcritical and supercritical Reynolds numbers and L/D ratio on total drag coefficient. The equivalent diameter of cylinders is 27.6 mm The space between center to center of two cam shaped cylinders is define as longitudinal pitch ratio and it varies in range of 1.5< L/D<6. Reynolds number base on equivalent circular cylinder varies in range of 27×103< Re <166×103 Results show that drag coefficient of both cylinders depends on pitch ratio. However, drag coefficient of downstream cylinder is more dependent on the pitch ratio.

Keywords: Cam shaped, tandem, numerical, drag coefficient, turbulent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2122
2752 Flow around Two Cam Shaped Cylinders in Tandem Arrangement

Authors: Arash Mir Abdolah Lavasani, Hamidreza Bayat

Abstract:

In this paper flow around two cam shaped cylinders had been studied numerically. The equivalent diameter of cylinders is 27.6 mm. The space between center to center of two cam shaped cylinders is define as longitudinal pitch ratio and it varies in range of 2 varies in range of 50 both cylinders depends on pitch ratio. However drag coefficient of downstream cylinder is more dependent on the pitch ratio.

Keywords: Cam shaped, tandem cylinders, numerical, drag coefficient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1579
2751 Direct Measurement of Electromagnetic Thrust of Electrodeless Helicon Plasma Thruster Using Magnetic Nozzle

Authors: Takahiro Nakamura, Kenji Takahashi, Hiroyuki Nishida, Shunjiro Shinohara, Takeshi Matsuoka, Ikkoh Funaki, Takao Tanikawa, Tohru Hada

Abstract:

In order to realize long-lived electric propulsion systems, we have been investigating an electrodeless plasma thruster. In our concept, a helicon plasma is accelerated by the magnetic nozzle for the thrusts production. In addition, the electromagnetic thrust can be enhanced by the additional radio-frequency rotating electric field (REF) power in the magnetic nozzle. In this study, a direct measurement of the electromagnetic thrust and a probe measurement have been conducted using a laboratory model of the thruster under the condition without the REF power input. Fromthrust measurement, it is shown that the thruster produces a sub-milli-newton order electromagnetic thrust force without the additional REF power. The thrust force and the density jump are observed due to the discharge mode transition from the inductive coupled plasma to the helicon wave excited plasma. The thermal thrust is theoretically estimated, and the total thrust force, which is a sum of the electromagnetic and the thermal thrust force and specific impulse are calculated to be up to 650 μN (plasma production power of 400 W, Ar gas mass flow rate of 1.0 mg/s) and 210 s (plasma production power of 400 W, Ar gas mass flow rate of 0.2 mg/s), respectively.

Keywords: Electric propulsion, Helicon plasma, Lissajous acceleration, Thrust stand.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2100
2750 Thrust Vectoring Control of Supersonic Flow Through an Orifice Injector

Authors: Ibrahim Mnafeg, Azgal Abichou, Lotfi Beji

Abstract:

Traditional mechanical control systems in thrust vectoring are efficient in rocket thrust guidance but their costs and their weights are excessive. The fluidic injection in the nozzle divergent constitutes an alternative procedure to achieve the goal. In this paper, we present a 3D analytical model for fluidic injection in a supersonic nozzle integrating an orifice. The fluidic vectoring uses a sonic secondary injection in the divergent. As a result, the flow and interaction between the main and secondary jet has built in order to express the pressure fields from which the forces and thrust vectoring are deduced. Under various separation criteria, the present analytical model results are compared with the existing numerical and experimental data from the literature.

Keywords: Flow separation, Fluidic thrust vectoring, Nozzle, Secondary jet, Shock wave.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2071
2749 Conceptual Design and Characterization of Contractile Water Jet Thruster Using IPMC Actuator

Authors: Muhammad Farid Shaari, Zahurin Samad

Abstract:

This paper presents the design, development and characterization of contractile water jet thruster (CWJT) for mini underwater robot. Instead of electric motor, this CWJT utilizes the Ionic Polymer Metal Composite (IPMC) as the actuator to generate the water jet. The main focus of this paper is to analyze the conceptual design of the proposed CWJT which would determine the thrust force value, jet flow behavior and actuator’s stress. Those thrust force and jet flow studies were carried out using Matlab/Simscape simulation software. The actuator stress had been analyzed using COSMOS simulation software. The results showed that there was no significant change for jet velocity at variable cross sectional nozzle area. However, a significant change was detected for jet velocity at different nozzle cross sectional area ratio which was up to 37%. The generated thrust force has proportional relation to the nozzle cross sectional area.

Keywords: Contractile water jet thruster, IPMC actuator, Thrust force.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2158
2748 Development of a Thrust Measurement System

Authors: S. Jeon, J. Kim, H. Choi

Abstract:

KSLV-I(Korea Space Launch Vehicle-I) is designed as a launch vehicle to enter a 100 kg-class satellite to the LEO(Low Earth Orbit). Attitude angles of the upper-stage, including roll, pitch and yaw are controlled by the cold gas thruster system using nitrogen gas. The cold gas thruster is an actuator in the RCS(Reaction Control System). To design an attitude controller for the upper-stage, thrust measurement in vacuum condition is required. In this paper, the new thrust measurement system and calibration mechanism are developed and measurement errors and signal processing method are presented.

Keywords: cold gas thruster, launch vehicle, thrust measurement, calibration mechanism, signal processing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2698
2747 Computational Fluid Dynamics Analysis and Optimization of the Coanda Unmanned Aerial Vehicle Platform

Authors: Nigel Q. Kelly, Zaid Siddiqi, Jin W. Lee

Abstract:

It is known that using Coanda aerosurfaces can drastically augment the lift forces when applied to an Unmanned Aerial Vehicle (UAV) platform. However, Coanda saucer UAVs, which commonly use a dish-like, radially-extending structure, have shown no significant increases in thrust/lift force and therefore have never been commercially successful: the additional thrust/lift generated by the Coanda surface diminishes since the airstreams emerging from the rotor compartment expand radially causing serious loss of momentums and therefore a net loss of total thrust/lift. To overcome this technical weakness, we propose to examine a Coanda surface of straight, cylindrical design and optimize its geometry for highest thrust/lift utilizing computational fluid dynamics software ANSYS Fluent®. The results of this study reveal that a Coanda UAV configured with 4 sides of straight, cylindrical Coanda surface achieve an overall 45% increase in lift compared to conventional Coanda Saucer UAV configurations. This venture integrates with an ongoing research project where a Coanda prototype is being assembled. Additionally, a custom thrust-stand has been constructed for thrust/lift measurement.

Keywords: CFD, Coanda, Lift, UAV.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 525
2746 Calculation Analysis of an Axial Compressor Supersonic Stage Impeller

Authors: Y. B. Galerkin, E. Y. Popova, K. V. Soldatova

Abstract:

There is an evident trend to elevate pressure ratio of a single stage of a turbo compressors - axial compressors in particular. Whilst there was an opinion recently that a pressure ratio 1,9 was a reasonable limit, later appeared information on successful modeling tested of stages with pressure ratio up to 2,8. The authors recon that lack of information on high pressure stages makes actual a study of rational choice of design parameters before high supersonic flow problems solving. The computer program of an engineering type was developed. Below is presented a sample of its application to study possible parameters of the impeller of the stage with pressure ratio 3,0. Influence of two main design parameters on expected efficiency, periphery blade speed and flow structure is demonstrated. The results had lead to choose a variant for further analysis and improvement by CFD methods.

Keywords: Supersonic stage, impeller, efficiency, flow rate coefficient, work coefficient, loss coefficient, oblique shock, direct shock.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2604
2745 Research on the Micro Pattern forming of Spiral Grooves in a Dynamic Thrust Bearing

Authors: Sol-Kil Oh, Hye-Jin Lee, Jung-Han Song, Kyoung-Tae Kim, Nak-Kyu Lee, Jong-Ho Kim

Abstract:

This paper deals with a novel technique for the fabrication of Spiral grooves in a dynamic thrust bearing. The main scheme proposed in this paper is to fabricate the microgrooves using desktop forming system. This process has advantages compared to the conventional electro-chemical machining in the viewpoint of a higher productivity. For this reason, a new testing apparatus is designed and built for press forming microgrooves on a surface of the thrust bearing. The material used in this study is sintered Cu-Fe alloy. The effects of the forming load on the performance of micro press forming are experimentally investigated. From the experimental results, formed depths are closed to the target ones with increasing the forming load.

Keywords: Desktop forming system, Fluid dynamic bearing, Thrust bearing, Microgroove.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1413
2744 Unsteadiness Effects on Variable Thrust Nozzle Performance

Authors: A. M. Tahsini, S. T. Mousavi

Abstract:

The purpose of this paper is to elucidate the flow unsteady behavior for moving plug in convergent-divergent variable thrust nozzle. Compressible axisymmetric Navier-Stokes equations are used to study this physical phenomenon. Different velocities are set for plug to investigate the effect of plug movement on flow unsteadiness. Variation of mass flow rate and thrust are compared under two conditions: First, the plug is placed at different positions and flow is simulated to reach the steady state (quasi steady simulation) and second, the plug is moved with assigned velocity and flow simulation is coupled with plug movement (unsteady simulation). If plug speed is high enough and its movement time scale is at the same order of the flow time scale, variation of the mass flow rate and thrust level versus plug position demonstrate a vital discrepancy under the quasi steady and unsteady conditions. This phenomenon should be considered especially from response time viewpoints in thrusters design. 

Keywords: Nozzle, Numerical study, Unsteady, Variable thrust.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2197
2743 Investigation of the Aerodynamic Characters of Ducted Fan System

Authors: Wang Bo , Guo Zheng , Wang Peng , Shan Shangqiu , Hou Zhongxi

Abstract:

This paper investigates the aerodynamic characters of a model ducted fan system, analyses the basic principle of the effect of thrust promotion and torque reduction, discovers the relationship between the revolutions per minute(RPM) of the fan and the characters of thrust, as well as system torque. Firstly a model ducted fan has been designed and manufactured according to the specific structure of flow field, then CFD simulation has been carried out to analyze such aerodynamics, finally bench tests have been used to validate the simulation results and system configuration.

Keywords: ducted fan, free vortex flow, stator blade, screw torque, thrust increase

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4347
2742 Flight Control of Vectored Thrust Aerial Vehicle by Neural Network Predictive Controller for Enhanced Situational Awareness

Authors: Igor Astrov, Mikhail Pikkov, Rein Paluoja

Abstract:

This paper focuses on a critical component of the situational awareness (SA), the control of autonomous vertical flight for vectored thrust aerial vehicle (VTAV). With the SA strategy, we proposed a flight control procedure to address the dynamics variation and performance requirement difference of flight trajectory for an unmanned helicopter model with vectored thrust configuration. This control strategy for chosen model of VTAV has been verified by simulation of take-off and forward maneuvers using software package Simulink and demonstrated good performance for fast stabilization of motors, consequently, fast SA with economy in energy can be asserted during search-and-rescue operations.

Keywords: Neural network predictive controller, situational awareness, vectored thrust aerial vehicle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1444
2741 An Optimization of Orbital Transfer for Spacecrafts with Finite-thrust Based on Legendre Pseudospectral Method

Authors: Yanan Yang, Zhigang Wang, Xiang Chen

Abstract:

This paper presents the use of Legendre pseudospectral method for the optimization of finite-thrust orbital transfer for spacecrafts. In order to get an accurate solution, the System-s dynamics equations were normalized through a dimensionless method. The Legendre pseudospectral method is based on interpolating functions on Legendre-Gauss-Lobatto (LGL) quadrature nodes. This is used to transform the optimal control problem into a constrained parameter optimization problem. The developed novel optimization algorithm can be used to solve similar optimization problems of spacecraft finite-thrust orbital transfer. The results of a numerical simulation verified the validity of the proposed optimization method. The simulation results reveal that pseudospectral optimization method is a promising method for real-time trajectory optimization and provides good accuracy and fast convergence.

Keywords: Finite-thrust, Orbital transfer, Legendre pseudospectral method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1737
2740 Investigation of Flow Characteristics on Upstream and Downstream of Orifice Using Computational Fluid Dynamics

Authors: War War Min Swe, Aung Myat Thu, Khin Cho Thet, Zaw Moe Htet, Thuzar Mon

Abstract:

The main parameter of the orifice hole diameter was designed according to the range of throttle diameter ratio which gave the required discharge coefficient. The discharge coefficient is determined by difference diameter ratios. The value of discharge coefficient is 0.958 occurred at throttle diameter ratio 0.5. The throttle hole diameter is 80 mm. The flow analysis is done numerically using ANSYS 17.0, computational fluid dynamics. The flow velocity was analyzed in the upstream and downstream of the orifice meter. The downstream velocity of non-standard orifice meter is 2.5% greater than that of standard orifice meter. The differential pressure is 515.379 Pa in standard orifice.

Keywords: CFD-CFX, discharge coefficients, flow characteristics, inclined.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 505
2739 Increase of Energy Efficiency by Means of Application of Active Bearings

Authors: Alexander Babin, Leonid Savin

Abstract:

In the present paper, increasing of energy efficiency of a thrust hybrid bearing with a central feeding chamber is considered. The mathematical model was developed to determine the pressure distribution and the reaction forces, based on the Reynolds equation and static characteristics’ equations. The boundary problem of pressure distribution calculation was solved using the method of finite differences. For various types of lubricants, geometry and operational characteristics, axial gaps can be determined, where the minimal friction coefficient is provided. The next part of the study considers the application of servovalves in order to maintain the desired position of the rotor. The report features the calculation results and the analysis of the influence of the operational and geometric parameters on the energy efficiency of mechatronic fluid-film bearings.

Keywords: Active bearings, energy efficiency, mathematical model, mechatronics, thrust multipad bearing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1168
2738 Numerical Studies on Thrust Vectoring Using Shock-Induced Self Impinging Secondary Jets

Authors: S. Vignesh, N. Vishnu, S. Vigneshwaran, M. Vishnu Anand, Dinesh Kumar Babu, V. R. Sanal Kumar

Abstract:

Numerical studies have been carried out using a validated two-dimensional standard k-omega turbulence model for the design optimization of a thrust vector control system using shock induced self-impinging supersonic secondary double jet. Parametric analytical studies have been carried out at different secondary injection locations to identifying the highest unsymmetrical distribution of the main gas flow due to shock waves, which produces a desirable side force more lucratively for vectoring. The results from the parametric studies of the case on hand reveal that the shock induced self-impinging supersonic secondary double jet is more efficient in certain locations at the divergent region of a CD nozzle than a case with supersonic single jet with same mass flow rate. We observed that the best axial location of the self-impinging supersonic secondary double jet nozzle with a given jet interaction angle, built-in to a CD nozzle having area ratio 1.797, is 0.991 times the primary nozzle throat diameter from the throat location. We also observed that the flexible steering is possible after invoking ON/OFF facility to the secondary nozzles for meeting the onboard mission requirements. Through our case studies we concluded that the supersonic self-impinging secondary double jet at predesigned jet interaction angle and location can provide more flexible steering options facilitating with 8.81% higher thrust vectoring efficiency than the conventional supersonic single secondary jet without compromising the payload capability of any supersonic aerospace vehicle.

Keywords: Fluidic thrust vectoring, rocket steering, self-impinging secondary supersonic jet, TVC in aerospace vehicles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2611
2737 The Effect of Blockage Factor on Savonius Hydrokinetic Turbine Performance

Authors: Thochi Seb Rengma, Mahendra Kumar Gupta, P. M. V. Subbarao

Abstract:

Hydrokinetic turbines can be used to produce power in inaccessible villages located near rivers. The hydrokinetic turbine uses the kinetic energy of the water and maybe put it directly into the natural flow of water without dams. For off-grid power production, the Savonius-type vertical axis turbine is the easiest to design and manufacture. This proposal uses three-dimensional Computational Fluid Dynamics (CFD) simulations to measure the considerable interaction and complexity of turbine blades. Savonius hydrokinetic turbine (SHKT) performance is affected by a blockage in the river, canals, and waterways. Putting a large object in a water channel causes water obstruction and raises local free stream velocity. The blockage correction factor or velocity increment measures the impact of velocity on the performance. SHKT performance is evaluated by comparing power coefficient (Cp) with tip-speed ratio (TSR) at various blockage ratios. The maximum Cp was obtained at a TSR of 1.1 with a blockage ratio of 45%, whereas TSR of 0.8 yielded the highest Cp without blockage. The greatest Cp of 0.29 was obtained with a 45% blockage ratio compared to a Cp max of 0.18 without a blockage.

Keywords: Savonius hydrokinetic turbine, blockage ratio, vertical axis turbine, power coefficient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 77
2736 Clarifications on the Damping Mechanism Related to the Hunting Motion of the Wheel Axle of a High-Speed Railway Vehicle

Authors: Barenten Suciu

Abstract:

In order to explain the damping mechanism, related to the hunting motion of the wheel axle of a high-speed railway vehicle, a generalized dynamic model is proposed. Based on such model, analytic expressions for the damping coefficient and damped natural frequency are derived, without imposing restrictions on the ratio between the lateral and vertical creep coefficients. Influence of the travelling speed, wheel conicity, dimensionless mass of the wheel axle, ratio of the creep coefficients, ratio of the track span to the yawing diameter, etc. on the damping coefficient and damped natural frequency, is clarified.

Keywords: High-speed railway vehicle, hunting motion, wheel axle, damping, creep, vibration model, analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1193