Search results for: particle swarm optimal control.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5553

Search results for: particle swarm optimal control.

5493 Swarm Intelligence based Optimal Linear Phase FIR High Pass Filter Design using Particle Swarm Optimization with Constriction Factor and Inertia Weight Approach

Authors: Sangeeta Mandal, Rajib Kar, Durbadal Mandal, Sakti Prasad Ghoshal

Abstract:

In this paper, an optimal design of linear phase digital high pass finite impulse response (FIR) filter using Particle Swarm Optimization with Constriction Factor and Inertia Weight Approach (PSO-CFIWA) has been presented. In the design process, the filter length, pass band and stop band frequencies, feasible pass band and stop band ripple sizes are specified. FIR filter design is a multi-modal optimization problem. The conventional gradient based optimization techniques are not efficient for digital filter design. Given the filter specifications to be realized, the PSO-CFIWA algorithm generates a set of optimal filter coefficients and tries to meet the ideal frequency response characteristic. In this paper, for the given problem, the designs of the optimal FIR high pass filters of different orders have been performed. The simulation results have been compared to those obtained by the well accepted algorithms such as Parks and McClellan algorithm (PM), genetic algorithm (GA). The results justify that the proposed optimal filter design approach using PSOCFIWA outperforms PM and GA, not only in the accuracy of the designed filter but also in the convergence speed and solution quality.

Keywords: FIR Filter; PSO-CFIWA; PSO; Parks and McClellanAlgorithm, Evolutionary Optimization Technique; MagnitudeResponse; Convergence; High Pass Filter

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1510
5492 A Particle Swarm Optimization Approach for the Earliness-Tardiness No-Wait Flowshop Scheduling Problem

Authors: Sedighe Arabameri, Nasser Salmasi

Abstract:

In this researcha particle swarm optimization (PSO) algorithm is proposedfor no-wait flowshopsequence dependent setuptime scheduling problem with weighted earliness-tardiness penalties as the criterion (|, |Σ   " ).The smallestposition value (SPV) rule is applied to convert the continuous value of position vector of particles in PSO to job permutations.A timing algorithm is generated to find the optimal schedule and calculate the objective function value of a given sequence in PSO algorithm. Twodifferent neighborhood structures are applied to improve the solution quality of PSO algorithm.The first one is based on variable neighborhood search (VNS) and the second one is a simple one with invariable structure. In order to compare the performance of two neighborhood structures, random test problems are generated and solved by both neighborhood approaches.Computational results show that the VNS algorithmhas better performance than the other one especially for the large sized problems.

Keywords: minimization of summation of weighed earliness and tardiness, no-wait flowshop scheduling, particle swarm optimization, sequence dependent setup times

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1583
5491 Optimal Allocation of DG Units for Power Loss Reduction and Voltage Profile Improvement of Distribution Networks using PSO Algorithm

Authors: K. Varesi

Abstract:

This paper proposes a Particle Swarm Optimization (PSO) based technique for the optimal allocation of Distributed Generation (DG) units in the power systems. In this paper our aim is to decide optimal number, type, size and location of DG units for voltage profile improvement and power loss reduction in distribution network. Two types of DGs are considered and the distribution load flow is used to calculate exact loss. Load flow algorithm is combined appropriately with PSO till access to acceptable results of this operation. The suggested method is programmed under MATLAB software. Test results indicate that PSO method can obtain better results than the simple heuristic search method on the 30-bus and 33- bus radial distribution systems. It can obtain maximum loss reduction for each of two types of optimally placed multi-DGs. Moreover, voltage profile improvement is achieved.

Keywords: Distributed Generation (DG), Optimal Allocation, Particle Swarm Optimization (PSO), Power Loss Minimization, Voltage Profile Improvement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3122
5490 Interactive Compromise Approach with Particle Swarm Optimization for Environmental/Economic Power Dispatch

Authors: Ming-Tang Tsai, Chih-Wei Yen

Abstract:

In this paper, an Interactive Compromise Approach with Particle Swarm Optimization(ICA-PSO) is presented to solve the Economic Emission Dispatch(EED) problem. The cost function and emission function are modeled as the nonsmooth functions, respectively. The bi-objective including both the minimization of cost and emission is formulated in this paper. ICA-PSO is proposed to solve EED problem for finding a better compromise solution. The solution methodology can offer a global or near-global solution for decision-making requirements. The effectiveness and efficiency of ICA-PSO are demonstrated by a sample test system. Test results can be shown that the proposed method provide a practical and flexible framework for power dispatch.

Keywords: Interactive Compromise Approach, Emission Control, Economic Dispatch, Particle Swarm Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1402
5489 Robust Power System Stabilizer Design Using Particle Swarm Optimization Technique

Authors: Sidhartha Panda, N. P. Padhy

Abstract:

Power system stabilizers (PSS) are now routinely used in the industry to damp out power system oscillations. In this paper, particle swarm optimization (PSO) technique is applied to design a robust power system stabilizer (PSS). The design problem of the proposed controller is formulated as an optimization problem and PSO is employed to search for optimal controller parameters. By minimizing the time-domain based objective function, in which the deviation in the oscillatory rotor speed of the generator is involved; stability performance of the system is improved. The non-linear simulation results are presented under wide range of operating conditions; disturbances at different locations as well as for various fault clearing sequences to show the effectiveness and robustness of the proposed controller and their ability to provide efficient damping of low frequency oscillations. Further, all the simulations results are compared with a conventionally designed power system stabilizer to show the superiority of the proposed design approach.

Keywords: Particle swarm optimization, power system stabilizer, low frequency oscillations, power system stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2316
5488 Improved Multi-Objective Particle Swarm Optimization Applied to Design Problem

Authors: Kapse Swapnil, K. Shankar

Abstract:

Aiming at optimizing the weight and deflection of cantilever beam subjected to maximum stress and maximum deflection, Multi-objective Particle Swarm Optimization (MOPSO) with Utopia Point based local search is implemented. Utopia point is used to govern the search towards the Pareto Optimal set. The elite candidates obtained during the iterations are stored in an archive according to non-dominated sorting and also the archive is truncated based on least crowding distance. Local search is also performed on elite candidates and the most diverse particle is selected as the global best. This method is implemented on standard test functions and it is observed that the improved algorithm gives better convergence and diversity as compared to NSGA-II in fewer iterations. Implementation on practical structural problem shows that in 5 to 6 iterations, the improved algorithm converges with better diversity as evident by the improvement of cantilever beam on an average of 0.78% and 9.28% in the weight and deflection respectively compared to NSGA-II.

Keywords: Utopia point, multi-objective particle swarm optimization, local search, cantilever beam.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 944
5487 Optimized Fuzzy Control by Particle Swarm Optimization Technique for Control of CSTR

Authors: Saeed Vaneshani, Hooshang Jazayeri-Rad

Abstract:

Fuzzy logic control (FLC) systems have been tested in many technical and industrial applications as a useful modeling tool that can handle the uncertainties and nonlinearities of modern control systems. The main drawback of the FLC methodologies in the industrial environment is challenging for selecting the number of optimum tuning parameters. In this paper, a method has been proposed for finding the optimum membership functions of a fuzzy system using particle swarm optimization (PSO) algorithm. A synthetic algorithm combined from fuzzy logic control and PSO algorithm is used to design a controller for a continuous stirred tank reactor (CSTR) with the aim of achieving the accurate and acceptable desired results. To exhibit the effectiveness of proposed algorithm, it is used to optimize the Gaussian membership functions of the fuzzy model of a nonlinear CSTR system as a case study. It is clearly proved that the optimized membership functions (MFs) provided better performance than a fuzzy model for the same system, when the MFs were heuristically defined.

Keywords: continuous stirred tank reactor (CSTR), fuzzy logiccontrol (FLC), membership function(MF), particle swarmoptimization (PSO)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3158
5486 Solving Machine Loading Problem in Flexible Manufacturing Systems Using Particle Swarm Optimization

Authors: S. G. Ponnambalam, Low Seng Kiat

Abstract:

In this paper, a particle swarm optimization (PSO) algorithm is proposed to solve machine loading problem in flexible manufacturing system (FMS), with bicriterion objectives of minimizing system unbalance and maximizing system throughput in the occurrence of technological constraints such as available machining time and tool slots. A mathematical model is used to select machines, assign operations and the required tools. The performance of the PSO is tested by using 10 sample dataset and the results are compared with the heuristics reported in the literature. The results support that the proposed PSO is comparable with the algorithms reported in the literature.

Keywords: Machine loading problem, FMS, Particle Swarm Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2069
5485 An Enhanced Particle Swarm Optimization Algorithm for Multiobjective Problems

Authors: Houda Abadlia, Nadia Smairi, Khaled Ghedira

Abstract:

Multiobjective Particle Swarm Optimization (MOPSO) has shown an effective performance for solving test functions and real-world optimization problems. However, this method has a premature convergence problem, which may lead to lack of diversity. In order to improve its performance, this paper presents a hybrid approach which embedded the MOPSO into the island model and integrated a local search technique, Variable Neighborhood Search, to enhance the diversity into the swarm. Experiments on two series of test functions have shown the effectiveness of the proposed approach. A comparison with other evolutionary algorithms shows that the proposed approach presented a good performance in solving multiobjective optimization problems.

Keywords: Particle swarm optimization, migration, variable neighborhood search, multiobjective optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 754
5484 Using Jumping Particle Swarm Optimization for Optimal Operation of Pump in Water Distribution Networks

Authors: R. Rajabpour, N. Talebbeydokhti, M. H. Ahmadi

Abstract:

Carefully scheduling the operations of pumps can be resulted to significant energy savings. Schedules can be defined either implicit, in terms of other elements of the network such as tank levels, or explicit by specifying the time during which each pump is on/off. In this study, two new explicit representations based on timecontrolled triggers were analyzed, where the maximum number of pump switches was established beforehand, and the schedule may contain fewer switches than the maximum. The optimal operation of pumping stations was determined using a Jumping Particle Swarm Optimization (JPSO) algorithm to achieve the minimum energy cost. The model integrates JPSO optimizer and EPANET hydraulic network solver. The optimal pump operation schedule of VanZyl water distribution system was determined using the proposed model and compared with those from Genetic and Ant Colony algorithms. The results indicate that the proposed model utilizing the JPSO algorithm is a versatile management model for the operation of realworld water distribution system.

Keywords: JPSO, operation, optimization, water distribution system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1999
5483 Obstacle and Collision Avoidance Control Laws of a Swarm of Boids

Authors: Bibhya Sharma, Jito Vanualailai, Jai Raj

Abstract:

This paper proposes a new obstacle and collision avoidance control laws for a three-dimensional swarm of boids. The swarm exhibit collective emergent behaviors whilst avoiding the obstacles in the workspace. While flocking, animals group up in order to do various tasks and even a greater chance of evading predators. A generalized algorithms for attraction to the centroid, inter-individual swarm avoidance and obstacle avoidance is designed in this paper. We present a set of new continuous time-invariant velocity control laws is presented which is formulated via the Lyapunov-based control scheme. The control laws proposed in this paper also ensures practical stability of the system. The effectiveness of the proposed control laws is demonstrated via computer simulations

 

Keywords: Lyapunov-based Control Scheme, Motion planning, Practical stability, Swarm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2457
5482 Real-Time Episodic Memory Construction for Optimal Action Selection in Cognitive Robotics

Authors: Deon de Jager, Yahya Zweiri, Dimitrios Makris

Abstract:

The three most important components in the cognitive architecture for cognitive robotics is memory representation, memory recall, and action-selection performed by the executive. In this paper, action selection, performed by the executive, is defined as a memory quantification and optimization process. The methodology describes the real-time construction of episodic memory through semantic memory optimization. The optimization is performed by set-based particle swarm optimization, using an adaptive entropy memory quantification approach for fitness evaluation. The performance of the approach is experimentally evaluated by simulation, where a UAV is tasked with the collection and delivery of a medical package. The experiments show that the UAV dynamically uses the episodic memory to autonomously control its velocity, while successfully completing its mission.

Keywords: Cognitive robotics, semantic memory, episodic memory, maximum entropy principle, particle swarm optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1571
5481 Reduced Order Modelling of Linear Dynamic Systems using Particle Swarm Optimized Eigen Spectrum Analysis

Authors: G. Parmar, S. Mukherjee, R. Prasad

Abstract:

The authors present an algorithm for order reduction of linear time invariant dynamic systems using the combined advantages of the eigen spectrum analysis and the error minimization by particle swarm optimization technique. Pole centroid and system stiffness of both original and reduced order systems remain same in this method to determine the poles, whereas zeros are synthesized by minimizing the integral square error in between the transient responses of original and reduced order models using particle swarm optimization technique, pertaining to a unit step input. It is shown that the algorithm has several advantages, e.g. the reduced order models retain the steady-state value and stability of the original system. The algorithm is illustrated with the help of two numerical examples and the results are compared with the other existing techniques.

Keywords: Eigen spectrum, Integral square error, Orderreduction, Particle swarm optimization, Stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1621
5480 Parallel Particle Swarm Optimization Optimized LDI Controller with Lyapunov Stability Criterion for Nonlinear Structural Systems

Authors: P.-W. Tsai, W.-L. Hong, C.-W. Chen, C.-Y. Chen

Abstract:

In this paper, we present a neural-network (NN) based approach to represent a nonlinear Tagagi-Sugeno (T-S) system. A linear differential inclusion (LDI) state-space representation is utilized to deal with the NN models. Taking advantage of the LDI representation, the stability conditions and controller design are derived for a class of nonlinear structural systems. Moreover, the concept of utilizing the Parallel Particle Swarm Optimization (PPSO) algorithm to solve the common P matrix under the stability criteria is given in this paper.

Keywords: Lyapunov Stability, Parallel Particle Swarm Optimization, Linear Differential Inclusion, Artificial Intelligence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1816
5479 IBFO_PSO: Evaluating the Performance of Bio-Inspired Integrated Bacterial Foraging Optimization Algorithm and Particle Swarm Optimization Algorithm in MANET Routing

Authors: K. Geetha, P. Thangaraj, C. Rasi Priya, C. Rajan, S. Geetha

Abstract:

This paper presents the performance of Integrated Bacterial Foraging Optimization and Particle Swarm Optimization (IBFO_PSO) technique in MANET routing. The BFO is a bio-inspired algorithm, which simulates the foraging behavior of bacteria. It is effectively applied in improving the routing performance in MANET. In results, it is proved that the PSO integrated with BFO reduces routing delay, energy consumption and communication overhead.

Keywords: Ant Colony Optimization, Bacterial Foraging Optimization, Hybrid Routing Intelligent Algorithm, Naturally inspired algorithms, Particle Swarm Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2683
5478 Economic Load Dispatch with Daily Load Patterns and Generator Constraints by Particle Swarm Optimization

Authors: N. Phanthuna V. Phupha N. Rugthaicharoencheep, S. Lerdwanittip

Abstract:

This paper presents an optimization technique to economic load dispatch (ELD) problems with considering the daily load patterns and generator constraints using a particle swarm optimization (PSO). The objective is to minimize the fuel cost. The optimization problem is subject to system constraints consisting of power balance and generation output of each units. The application of a constriction factor into PSO is a useful strategy to ensure convergence of the particle swarm algorithm. The proposed method is able to determine, the output power generation for all of the power generation units, so that the total constraint cost function is minimized. The performance of the developed methodology is demonstrated by case studies in test system of fifteen-generation units. The results show that the proposed algorithm scan give the minimum total cost of generation while satisfying all the constraints and benefiting greatly from saving in power loss reduction

Keywords: Particle Swarm Optimization, Economic Load Dispatch, Generator Constraints.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1814
5477 Spread Spectrum Code Estimationby Particle Swarm Algorithm

Authors: Vahid R. Asghari, Mehrdad Ardebilipour

Abstract:

In the context of spectrum surveillance, a new method to recover the code of spread spectrum signal is presented, while the receiver has no knowledge of the transmitter-s spreading sequence. In our previous paper, we used Genetic algorithm (GA), to recover spreading code. Although genetic algorithms (GAs) are well known for their robustness in solving complex optimization problems, but nonetheless, by increasing the length of the code, we will often lead to an unacceptable slow convergence speed. To solve this problem we introduce Particle Swarm Optimization (PSO) into code estimation in spread spectrum communication system. In searching process for code estimation, the PSO algorithm has the merits of rapid convergence to the global optimum, without being trapped in local suboptimum, and good robustness to noise. In this paper we describe how to implement PSO as a component of a searching algorithm in code estimation. Swarm intelligence boasts a number of advantages due to the use of mobile agents. Some of them are: Scalability, Fault tolerance, Adaptation, Speed, Modularity, Autonomy, and Parallelism. These properties make swarm intelligence very attractive for spread spectrum code estimation. They also make swarm intelligence suitable for a variety of other kinds of channels. Our results compare between swarm-based algorithms and Genetic algorithms, and also show PSO algorithm performance in code estimation process.

Keywords: Code estimation, Particle Swarm Optimization(PSO), Spread spectrum.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2085
5476 Comparative Study on Swarm Intelligence Techniques for Biclustering of Microarray Gene Expression Data

Authors: R. Balamurugan, A. M. Natarajan, K. Premalatha

Abstract:

Microarray gene expression data play a vital in biological processes, gene regulation and disease mechanism. Biclustering in gene expression data is a subset of the genes indicating consistent patterns under the subset of the conditions. Finding a biclustering is an optimization problem. In recent years, swarm intelligence techniques are popular due to the fact that many real-world problems are increasingly large, complex and dynamic. By reasons of the size and complexity of the problems, it is necessary to find an optimization technique whose efficiency is measured by finding the near optimal solution within a reasonable amount of time. In this paper, the algorithmic concepts of the Particle Swarm Optimization (PSO), Shuffled Frog Leaping (SFL) and Cuckoo Search (CS) algorithms have been analyzed for the four benchmark gene expression dataset. The experiment results show that CS outperforms PSO and SFL for 3 datasets and SFL give better performance in one dataset. Also this work determines the biological relevance of the biclusters with Gene Ontology in terms of function, process and component.

Keywords: Particle swarm optimization, Shuffled frog leaping, Cuckoo search, biclustering, gene expression data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2624
5475 Non-Convex Multi Objective Economic Dispatch Using Ramp Rate Biogeography Based Optimization

Authors: Susanta Kumar Gachhayat, S. K. Dash

Abstract:

Multi objective non-convex economic dispatch problems of a thermal power plant are of grave concern for deciding the cost of generation and reduction of emission level for diminishing the global warming level for improving green-house effect. This paper deals with ramp rate constraints for achieving better inequality constraints so as to incorporate valve point loading for cost of generation in thermal power plant through ramp rate biogeography based optimization involving mutation and migration. Through 50 out of 100 trials, the cost function and emission objective function were found to have outperformed other classical methods such as lambda iteration method, quadratic programming method and many heuristic methods like particle swarm optimization method, weight improved particle swarm optimization method, constriction factor based particle swarm optimization method, moderate random particle swarm optimization method etc. Ramp rate biogeography based optimization applications prove quite advantageous in solving non convex multi objective economic dispatch problems subjected to nonlinear loads that pollute the source giving rise to third harmonic distortions and other such disturbances.

Keywords: Economic load dispatch, Biogeography based optimization, Ramp rate biogeography based optimization, Valve Point loading, Moderate random particle swarm optimization method, Weight improved particle swarm optimization method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1003
5474 Constrained Particle Swarm Optimization of Supply Chains

Authors: András Király, Tamás Varga, János Abonyi

Abstract:

Since supply chains highly impact the financial performance of companies, it is important to optimize and analyze their Key Performance Indicators (KPI). The synergistic combination of Particle Swarm Optimization (PSO) and Monte Carlo simulation is applied to determine the optimal reorder point of warehouses in supply chains. The goal of the optimization is the minimization of the objective function calculated as the linear combination of holding and order costs. The required values of service levels of the warehouses represent non-linear constraints in the PSO. The results illustrate that the developed stochastic simulator and optimization tool is flexible enough to handle complex situations.

Keywords: stochastic processes, empirical distributions, Monte Carlo simulation, PSO, supply chain management

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2038
5473 Particle Swarm Optimization Approach on Flexible Structure at Wiper Blade System

Authors: A. Zolfagharian, M.Z. Md. Zain, A. R. AbuBakar, M. Hussein

Abstract:

Application of flexible structures has been significantly, increased in industry and aerospace missions due to their contributions and unique advantages over the rigid counterparts. In this paper, vibration analysis of a flexible structure i.e., automobile wiper blade is investigated and controlled. The wiper generates unwanted noise and vibration during the wiping the rain and other particles on windshield which may cause annoying noise in different ranges of frequency. A two dimensional analytical modeled wiper blade whose model accuracy is verified by numerical studies in literature is considered in this study. Particle swarm optimization (PSO) is employed in alliance with input shaping (IS) technique in order to control or to attenuate the amplitude level of unwanted noise/vibration of the wiper blade.

Keywords: Input shaping, noise reduction, particle swarmoptimization, wiper blade

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1948
5472 Multiple Object Tracking using Particle Swarm Optimization

Authors: Chen-Chien Hsu, Guo-Tang Dai

Abstract:

This paper presents a particle swarm optimization (PSO) based approach for multiple object tracking based on histogram matching. To start with, gray-level histograms are calculated to establish a feature model for each of the target object. The difference between the gray-level histogram corresponding to each particle in the search space and the target object is used as the fitness value. Multiple swarms are created depending on the number of the target objects under tracking. Because of the efficiency and simplicity of the PSO algorithm for global optimization, target objects can be tracked as iterations continue. Experimental results confirm that the proposed PSO algorithm can rapidly converge, allowing real-time tracking of each target object. When the objects being tracked move outside the tracking range, global search capability of the PSO resumes to re-trace the target objects.

Keywords: multiple object tracking, particle swarm optimization, gray-level histogram, image

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4049
5471 A Hybrid Particle Swarm Optimization-Nelder- Mead Algorithm (PSO-NM) for Nelson-Siegel- Svensson Calibration

Authors: Sofia Ayouche, Rachid Ellaia, Rajae Aboulaich

Abstract:

Today, insurers may use the yield curve as an indicator evaluation of the profit or the performance of their portfolios; therefore, they modeled it by one class of model that has the ability to fit and forecast the future term structure of interest rates. This class of model is the Nelson-Siegel-Svensson model. Unfortunately, many authors have reported a lot of difficulties when they want to calibrate the model because the optimization problem is not convex and has multiple local optima. In this context, we implement a hybrid Particle Swarm optimization and Nelder Mead algorithm in order to minimize by least squares method, the difference between the zero-coupon curve and the NSS curve.

Keywords: Optimization, zero-coupon curve, Nelson-Siegel- Svensson, Particle Swarm Optimization, Nelder-Mead Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1444
5470 Performance of Power System Stabilizer (UNITROL D) in Benghazi North Power Plant

Authors: T. Hussein

Abstract:

The use of power system stabilizers (PSSs) to damp power system swing mode of oscillations is practical important. Our purpose is to retune the power system stabilizer (PSS1A) parameters in Unitrol D produced by ABB– was installed in 1995in Benghazi North Power Plants (BNPPs) at General Electricity Company of Libya (GECOL). The optimal values of the power system stabilizer (PSS1A) parameters are determined off-line by a particle swarm optimization technique (PSO). The objective is to damp the local and inter-area modes of oscillations that occur following power system disturbances. The retuned power system stabilizer (PSS1A) can cope with large disturbance at different operating points and has enhanced power system stability.

Keywords: Static excitation system, particle swarm optimization (PSO), power system stabilizer (PSS).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2388
5469 A Two-Stage Airport Ground Movement Speed Profile Design Methodology Using Particle Swarm Optimization

Authors: Zhang Tianci, Ding Meng, Zuo Hongfu, Zeng Lina, Sun Zejun

Abstract:

Automation of airport operations can greatly improve ground movement efficiency. In this paper, we study the speed profile design problem for advanced airport ground movement control and guidance. The problem is constrained by the surface four-dimensional trajectory generated in taxi planning. A decomposed approach of two stages is presented to solve this problem efficiently. In the first stage, speeds are allocated at control points, which ensure smooth speed profiles can be found later. In the second stage, detailed speed profiles of each taxi interval are generated according to the allocated control point speeds with the objective of minimizing the overall fuel consumption. We present a swarm intelligence based algorithm for the first-stage problem and a discrete variable driven enumeration method for the second-stage problem, since it only has a small set of discrete variables. Experimental results demonstrate the presented methodology performs well on real world speed profile design problems.

Keywords: Airport ground movement, fuel consumption, particle swarm optimization, smoothness, speed profile design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1898
5468 Swarm Navigation in a Complex Environment

Authors: Jai Raj, Jito Vanualailai, Bibhya Sharma, Shonal Singh

Abstract:

This paper proposes a solution to the motion planning and control problem of car-like mobile robots which is required to move safely to a designated target in a priori known workspace cluttered with swarm of boids exhibiting collective emergent behaviors. A generalized algorithm for target convergence and swarm avoidance is proposed that will work for any number of swarms. The control laws proposed in this paper also ensures practical stability of the system. The effectiveness of the proposed control laws are demonstrated via computer simulations of an emergent behavior.

Keywords: Swarm, practical stability, motion planning, emergent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1354
5467 Manipulation of Image Segmentation Using Cleverness Artificial Bee Colony Approach

Authors: Y. Harold Robinson, E. Golden Julie, P. Joyce Beryl Princess

Abstract:

Image segmentation is the concept of splitting the images into several images. Image Segmentation algorithm is used to manipulate the process of image segmentation. The advantage of ABC is that it conducts every worldwide exploration and inhabitant exploration for iteration. Particle Swarm Optimization (PSO) and Evolutionary Particle Swarm Optimization (EPSO) encompass a number of search problems. Cleverness Artificial Bee Colony algorithm has been imposed to increase the performance of a neighborhood search. The simulation results clearly show that the presented ABC methods outperform the existing methods. The result shows that the algorithms can be used to implement the manipulator for grasping of colored objects. The efficiency of the presented method is improved a lot by comparing to other methods.

Keywords: Color information, EPSO, ABC, image segmentation, particle swarm optimization, active contour, GMM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1246
5466 PSO Based Weight Selection and Fixed Structure Robust Loop Shaping Control for Pneumatic Servo System with 2DOF Controller

Authors: Randeep Kaur, Jyoti Ohri

Abstract:

This paper proposes a new technique to design a fixed-structure robust loop shaping controller for the pneumatic servosystem. In this paper, a new method based on a particle swarm optimization (PSO) algorithm for tuning the weighting function parameters to design an H∞ controller is presented. The PSO algorithm is used to minimize the infinity norm of the transfer function of the nominal closed loop system to obtain the optimal parameters of the weighting functions. The optimal stability margin is used as an objective in PSO for selecting the optimal weighting parameters; it is shown that the proposed method can simplify the design procedure of H∞ control to obtain optimal robust controller for pneumatic servosystem. In addition, the order of the proposed controller is much lower than that of the conventional robust loop shaping controller, making it easy to implement in practical works. Also two-degree-of-freedom (2DOF) control design procedure is proposed to improve tracking performance in the face of noise and disturbance. Result of simulations demonstrates the advantages of the proposed controller in terms of simple structure and robustness against plant perturbations and disturbances.

Keywords: Robust control, Pneumatic Servosystem, PSO, H∞ control, 2DOF.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2376
5465 Multiple Power Flow Solutions Using Particle Swarm Optimization with Embedded Local Search Technique

Authors: P. Acharjee, S. K. Goswami

Abstract:

Particle Swarm Optimization (PSO) with elite PSO parameters has been developed for power flow analysis under practical constrained situations. Multiple solutions of the power flow problem are useful in voltage stability assessment of power system. A method of determination of multiple power flow solutions is presented using a hybrid of Particle Swarm Optimization (PSO) and local search technique. The unique and innovative learning factors of the PSO algorithm are formulated depending upon the node power mismatch values to be highly adaptive with the power flow problems. The local search is applied on the pbest solution obtained by the PSO algorithm in each iteration. The proposed algorithm performs reliably and provides multiple solutions when applied on standard and illconditioned systems. The test results show that the performances of the proposed algorithm under critical conditions are better than the conventional methods.

Keywords: critical conditions, ill-conditioned systems, localsearch technique, multiple power flow solutions, particle swarmoptimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1770
5464 Coordinated Design of TCSC Controller and PSS Employing Particle Swarm Optimization Technique

Authors: Sidhartha Panda, N. P. Padhy

Abstract:

This paper investigates the application of Particle Swarm Optimization (PSO) technique for coordinated design of a Power System Stabilizer (PSS) and a Thyristor Controlled Series Compensator (TCSC)-based controller to enhance the power system stability. The design problem of PSS and TCSC-based controllers is formulated as a time domain based optimization problem. PSO algorithm is employed to search for optimal controller parameters. By minimizing the time-domain based objective function, in which the deviation in the oscillatory rotor speed of the generator is involved; stability performance of the system is improved. To compare the capability of PSS and TCSC-based controller, both are designed independently first and then in a coordinated manner for individual and coordinated application. The proposed controllers are tested on a weakly connected power system. The eigenvalue analysis and non-linear simulation results are presented to show the effectiveness of the coordinated design approach over individual design. The simulation results show that the proposed controllers are effective in damping low frequency oscillations resulting from various small disturbances like change in mechanical power input and reference voltage setting.

Keywords: Particle swarm optimization, Phillips-Heffron model, power system stability, PSS, TCSC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2116