Search results for: particle size effect
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6362

Search results for: particle size effect

6212 Correlation to Predict the Effect of Particle Type on Axial Voidage Profile in Circulating Fluidized Beds

Authors: M. S. Khurram, S. A. Memon, S. Khan

Abstract:

Bed voidage behavior among different flow regimes for Geldart A, B, and D particles (fluid catalytic cracking catalyst (FCC), particle A and glass beads) of diameter range 57-872 μm, apparent density 1470-3092 kg/m3, and bulk density range 890-1773 kg/m3 were investigated in a gas-solid circulating fluidized bed of 0.1 m-i.d. and 2.56 m-height of plexi-glass. Effects of variables (gas velocity, particle properties, and static bed height) were analyzed on bed voidage. The axial voidage profile showed a typical trend along the riser: a dense bed at the lower part followed by a transition in the splash zone and a lean phase in the freeboard. Bed expansion and dense bed voidage increased with an increase of gas velocity as usual. From experimental results, a generalized model relationship based on inverse fluidization number for dense bed voidage from bubbling to fast fluidization regimes was presented.

Keywords: Axial voidage, circulating fluidized bed, splash zone, static bed.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1226
6211 Anticancer Effect of Doxorubicin Loaded Heparin based Super-paramagnetic Iron oxide Nanoparticles against the Human Ovarian Cancer Cells

Authors: Amaneh Javid, Shahin Ahmadian, Ali A. Saboury, Saeed Rezaei-Zarchi

Abstract:

This study determines the effect of naked and heparinbased super-paramagnetic iron oxide nanoparticles on the human cancer cell lines of A2780. Doxorubicin was used as the anticancer drug, entrapped in the SPIO-NPs. This study aimed to decorate nanoparticles with heparin, a molecular ligand for 'active' targeting of cancerous cells and the application of modified-nanoparticles in cancer treatment. The nanoparticles containing the anticancer drug DOX were prepared by a solvent evaporation and emulsification cross-linking method. The physicochemical properties of the nanoparticles were characterized by various techniques, and uniform nanoparticles with an average particle size of 110±15 nm with high encapsulation efficiencies (EE) were obtained. Additionally, a sustained release of DOX from the SPIO-NPs was successful. Cytotoxicity tests showed that the SPIO-DOX-HP had higher cell toxicity than the individual HP and confocal microscopy analysis confirmed excellent cellular uptake efficiency. These results indicate that HP based SPIO-NPs have potential uses as anticancer drug carriers and also have an enhanced anticancer effect.

Keywords: Heparin, A2780 cells, ovarian cancer, nanoparticles, doxorubicin.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2418
6210 Thermochemical Conversion: Jatropha curcus in Fixed Bed Reactor Using Slow Pyrolysis

Authors: Vipan Kumar Sohpal, Rajesh Kumar Sharma

Abstract:

Thermochemical conversion of non-edible biomass offers an efficient and economically process to provide valuable fuels and prepare chemicals derived from biomass in the context of developing countries. Pyrolysis has advantages over other thermochemical conversion techniques because it can convert biomass directly into solid, liquid and gaseous products by thermal decomposition of biomass in the absence of oxygen. The present paper aims to focus on the slow thermochemical conversion processes for non-edible Jatropha curcus seed cake. The present discussion focuses on the effect of nitrogen gas flow rate on products composition (wt %). In addition, comparative analysis has been performed for different mesh size for product composition. Result shows that, slow pyrolysis experiments of Jatropha curcus seed cake in fixed bed reactor yield the bio-oil 18.42 wt % at a pyrolysis temperature of 500°C, particle size of -6+8 mesh number and nitrogen gas flow rate of 150 ml/min.

Keywords: Jatropha curcus, Thermo-chemical, Pyrolysis, Product composition, Yield.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2814
6209 Novel Rao-Blackwellized Particle Filter for Mobile Robot SLAM Using Monocular Vision

Authors: Maohai Li, Bingrong Hong, Zesu Cai, Ronghua Luo

Abstract:

This paper presents the novel Rao-Blackwellised particle filter (RBPF) for mobile robot simultaneous localization and mapping (SLAM) using monocular vision. The particle filter is combined with unscented Kalman filter (UKF) to extending the path posterior by sampling new poses that integrate the current observation which drastically reduces the uncertainty about the robot pose. The landmark position estimation and update is also implemented through UKF. Furthermore, the number of resampling steps is determined adaptively, which seriously reduces the particle depletion problem, and introducing the evolution strategies (ES) for avoiding particle impoverishment. The 3D natural point landmarks are structured with matching Scale Invariant Feature Transform (SIFT) feature pairs. The matching for multi-dimension SIFT features is implemented with a KD-Tree in the time cost of O(log2 N). Experiment results on real robot in our indoor environment show the advantages of our methods over previous approaches.

Keywords: Mobile robot, simultaneous localization and mapping, Rao-Blackwellised particle filter, evolution strategies, scale invariant feature transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2092
6208 The Particle Swarm Optimization Against the Runge’s Phenomenon: Application to the Generalized Integral Quadrature Method

Authors: A. Zerarka, A. Soukeur, N. Khelil

Abstract:

In the present work, we introduce the particle swarm optimization called (PSO in short) to avoid the Runge-s phenomenon occurring in many numerical problems. This new approach is tested with some numerical examples including the generalized integral quadrature method in order to solve the Volterra-s integral equations

Keywords: Integral equation, particle swarm optimization, Runge's phenomenon.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1371
6207 Induction Motor Design with Limited Harmonic Currents Using Particle Swarm Optimization

Authors: C. Thanga Raj, S. P. Srivastava, Pramod Agarwal

Abstract:

This paper presents an optimal design of poly-phase induction motor using Quadratic Interpolation based Particle Swarm Optimization (QI-PSO). The optimization algorithm considers the efficiency, starting torque and temperature rise as objective function (which are considered separately) and ten performance related items including harmonic current as constraints. The QI-PSO algorithm was implemented on a test motor and the results are compared with the Simulated Annealing (SA) technique, Standard Particle Swarm Optimization (SPSO), and normal design. Some benchmark problems are used for validating QI-PSO. From the test results QI-PSO gave better results and more suitable to motor-s design optimization. Cµ code is used for implementing entire algorithms.

Keywords: Design, harmonics, induction motor, particle swarm optimization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1737
6206 Performance Evaluation and Plugging Characteristics of Controllable Self-Aggregating Colloidal Particle Profile Control Agent

Authors: Zhiguo Yang, Xiangan Yue, Minglu Shao, Yang Yue, Tianqi Yue

Abstract:

In low permeability reservoirs, the reservoir pore throat is small and the micro heterogeneity is prominent. Conventional microsphere profile control agents generally have good injectability but poor plugging effect; however, profile control agents with good plugging effect generally have poor injectability, which makes it difficult for agent to realize deep profile control of reservoir. To solve this problem, styrene and acrylamide were used as monomers in the laboratory. Emulsion polymerization was used to prepare the Controllable Self-Aggregating Colloidal Particle (CSA), which was rich in amide group. The CSA microsphere dispersion solution with a particle diameter smaller than the pore throat diameter was injected into the reservoir to ensure that the profile control agent had good inject ability. After dispersing the CSA microsphere to the deep part of the reservoir, the CSA microspheres dispersed in static for a certain period of time will self-aggregate into large-sized particle clusters to achieve plugging of hypertonic channels. The CSA microsphere has the characteristics of low expansion and avoids shear fracture in the process of migration. It can be observed by transmission electron microscope that CSA microspheres still maintain regular and uniform spherical and core-shell heterogeneous structure after aging at 100 ºC for 35 days, and CSA microspheres have good thermal stability. The results of bottle test showed that with the increase of cation concentration, the aggregation time of CSA microspheres gradually shortened, and the influence of divalent cations was greater than that of monovalent ions. Physical simulation experiments show that CSA microspheres have good injectability, and the aggregated CSA particle clusters can produce effective plugging and migrate to the deep part of the reservoir for profile control.

Keywords: Heterogeneous reservoir, deep profile control, emulsion polymerization, colloidal particles, plugging characteristic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 418
6205 Exponential Particle Swarm Optimization Approach for Improving Data Clustering

Authors: Neveen I. Ghali, Nahed El-Dessouki, Mervat A. N., Lamiaa Bakrawi

Abstract:

In this paper we use exponential particle swarm optimization (EPSO) to cluster data. Then we compare between (EPSO) clustering algorithm which depends on exponential variation for the inertia weight and particle swarm optimization (PSO) clustering algorithm which depends on linear inertia weight. This comparison is evaluated on five data sets. The experimental results show that EPSO clustering algorithm increases the possibility to find the optimal positions as it decrease the number of failure. Also show that (EPSO) clustering algorithm has a smaller quantization error than (PSO) clustering algorithm, i.e. (EPSO) clustering algorithm more accurate than (PSO) clustering algorithm.

Keywords: Particle swarm optimization, data clustering, exponential PSO.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1640
6204 Resveratrol Incorporated Liposomes Prepared from Pegylated Phospholipids and Cholesterol

Authors: Mont Kumpugdee-Vollrath, Khaled Abdallah

Abstract:

Liposomes and pegylated liposomes were widely used as drug delivery system in pharmaceutical field since a long time. However, in the former time, polyethylene glycol (PEG) was connected into phospholipid after the liposomes were already prepared. In this paper, we intend to study the possibility of applying phospholipids which already connected with PEG and then they were used to prepare liposomes. The model drug resveratrol was used because it can be applied against different diseases. Cholesterol was applied to stabilize the membrane of liposomes. The thin film technique in a laboratory scale was a preparation method. The liposomes were then characterized by nanoparticle tracking analysis (NTA), photon correlation spectroscopy (PCS) and light microscopic techniques. The stable liposomes can be produced and the particle sizes after filtration were in nanometers. The 2- and 3-chains-PEG-phospholipid (PL) caused in smaller particle size than the 4-chains-PEG-PL. Liposomes from PL 90G and cholesterol were stable during storage at 8 °C of 56 days because the particle sizes measured by PCS were almost not changed. There was almost no leakage of resveratrol from liposomes PL 90G with cholesterol after diffusion test in dialysis tube for 28 days. All liposomes showed the sustained release during measuring time of 270 min. The maximum release amount of 16-20% was detected with liposomes from 2- and 3-chains-PEG-PL. The other liposomes gave max. release amount of resveratrol only of 10%. The release kinetic can be explained by Korsmeyer-Peppas equation. 

Keywords: Liposome, NTA, resveratrol, pegylation, cholesterol.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1022
6203 A Hybrid Particle Swarm Optimization Solution to Ramping Rate Constrained Dynamic Economic Dispatch

Authors: Pichet Sriyanyong

Abstract:

This paper presents the application of an enhanced Particle Swarm Optimization (EPSO) combined with Gaussian Mutation (GM) for solving the Dynamic Economic Dispatch (DED) problem considering the operating constraints of generators. The EPSO consists of the standard PSO and a modified heuristic search approaches. Namely, the ability of the traditional PSO is enhanced by applying the modified heuristic search approach to prevent the solutions from violating the constraints. In addition, Gaussian Mutation is aimed at increasing the diversity of global search, whilst it also prevents being trapped in suboptimal points during search. To illustrate its efficiency and effectiveness, the developed EPSO-GM approach is tested on the 3-unit and 10-unit 24-hour systems considering valve-point effect. From the experimental results, it can be concluded that the proposed EPSO-GM provides, the accurate solution, the efficiency, and the feature of robust computation compared with other algorithms under consideration.

Keywords: Particle Swarm Optimization (PSO), GaussianMutation (GM), Dynamic Economic Dispatch (DED).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1749
6202 Steady State Creep Behavior of Functionally Graded Thick Cylinder

Authors: Tejeet Singh, Harmanjit Singh

Abstract:

Creep behavior of thick-walled functionally graded cylinder consisting of AlSiC and subjected to internal pressure and high temperature has been analyzed. The functional relationship between strain rate with stress can be described by the well known threshold stress based creep law with a stress exponent of five. The effect of imposing non-linear particle gradient on the distribution of creep stresses in the thick-walled functionally graded composite cylinder has been investigated. The study revealed that for the assumed non-linear particle distribution, the radial stress decreases throughout the cylinder, whereas the tangential, axial and effective stresses have averaging effect. The strain rates in the functionally graded composite cylinder could be reduced to significant extent by employing non-linear gradient in the distribution of reinforcement.

Keywords: Functionally Graded Material, Pressure, Steady State Creep, Thick-Cylinder.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1929
6201 A Novel Approach for Tracking of a Mobile Node Based on Particle Filter and Trilateration

Authors: Muhammad Haroon Siddiqui, Muhammad Rehan Khalid

Abstract:

This paper evaluates the performance of a novel algorithm for tracking of a mobile node, interms of execution time and root mean square error (RMSE). Particle Filter algorithm is used to track the mobile node, however a new technique in particle filter algorithm is also proposed to reduce the execution time. The stationary points were calculated through trilateration and finally by averaging the number of points collected for a specific time, whereas tracking is done through trilateration as well as particle filter algorithm. Wi-Fi signal is used to get initial guess of the position of mobile node in x-y coordinates system. Commercially available software “Wireless Mon" was used to read the WiFi signal strength from the WiFi card. Visual Cµ version 6 was used to interact with this software to read only the required data from the log-file generated by “Wireless Mon" software. Results are evaluated through mathematical modeling and MATLAB simulation.

Keywords: Particle Filter, Tracking, Wireless Local Area Network, WiFi, Trilateration

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2018
6200 Mass Transfer Modeling of Nitrate in an Ion Exchange Selective Resin

Authors: A. A. Hekmatzadeh, A. Karimi-Jashani, N. Talebbeydokhti

Abstract:

The rate of nitrate adsorption by a nitrate selective ion exchange resin was investigated in a well-stirred batch experiments. The kinetic experimental data were simulated with diffusion models including external mass transfer, particle diffusion and chemical adsorption. Particle pore volume diffusion and particle surface diffusion were taken into consideration separately and simultaneously in the modeling. The model equations were solved numerically using the Crank-Nicholson scheme. An optimization technique was employed to optimize the model parameters. All nitrate concentration decay data were well described with the all diffusion models. The results indicated that the kinetic process is initially controlled by external mass transfer and then by particle diffusion. The external mass transfer coefficient and the coefficients of pore volume diffusion and surface diffusion in all experiments were close to each other with the average value of 8.3×10-3 cm/S for external mass transfer coefficient. In addition, the models are more sensitive to the mass transfer coefficient in comparison with particle diffusion. Moreover, it seems that surface diffusion is the dominant particle diffusion in comparison with pore volume diffusion.

Keywords: External mass transfer, pore volume diffusion, surface diffusion, mass action law isotherm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2193
6199 Validity of Universe Structure Conception as Nested Vortexes

Authors: Khaled M. Nabil

Abstract:

This paper introduces the Nested Vortexes conception of the universe structure and interprets all the physical phenomena according this conception. The paper first reviews recent physics theories, either in microscopic scale or macroscopic scale, to collect evidence that the space is not empty. But, these theories describe the property of the space medium without determining its structure. Determining the structure of space medium is essential to understand the mechanism that leads to its properties. Without determining the space medium structure, many phenomena; such as electric and magnetic fields, gravity, or wave-particle duality remain uninterpreted. Thus, this paper introduces a conception about the structure of the universe. It assumes that the universe is a medium of ultra-tiny homogeneous particles which are still undiscovered. Like any medium with certain movements, possibly because of a great asymmetric explosion, vortexes have occurred. A vortex condenses the ultra-tiny particles in its center forming a bigger particle, the bigger particles, in turn, could be trapped in a bigger vortex and condense in its center forming a much bigger particle and so on. This conception describes galaxies, stars, protons as particles at different levels. Existing of the particle’s vortexes make the consistency of the speed of light postulate is not true. This conception shows that the vortex motion dynamic agrees with the motion of all the universe particles at any level. An experiment has been carried out to detect the orbiting effect of aggregated vortexes of aligned atoms of a permanent magnet. Based on the described particle’s structure, the gravity force of a particle and attraction between particles as well as charge, electric and magnetic fields and quantum mechanics characteristics are interpreted. All augmented physics phenomena are solved.

Keywords: Astrophysics, cosmology, particles’ structure model, particles’ forces, vortex dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 782
6198 Optimized Detection in Multi-Antenna System using Particle Swarm Algorithm

Authors: A. A. Khan, M. Naeem, S. Bashir, S. I. Shah

Abstract:

In this paper we propose a Particle Swarm heuristic optimized Multi-Antenna (MA) system. Efficient MA systems detection is performed using a robust stochastic evolutionary computation algorithm based on movement and intelligence of swarms. This iterative particle swarm optimized (PSO) detector significantly reduces the computational complexity of conventional Maximum Likelihood (ML) detection technique. The simulation results achieved with this proposed MA-PSO detection algorithm show near optimal performance when compared with ML-MA receiver. The performance of proposed detector is convincingly better for higher order modulation schemes and large number of antennas where conventional ML detector becomes non-practical.

Keywords: Multi Antenna (MA), Multi-input Multi-output(MIMO), Particle Swarm Optimization (PSO), ML detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1452
6197 Effect of Adding Sawdust on Mechanical- Physical Properties of Ceramic Bricks to Obtain Lightweight Building Material

Authors: Bachir Chemani, Halima Chemani

Abstract:

This paper studies the application of a variety of sawdust materials in the production of lightweight insulating bricks. First, the mineralogical and chemical composition of clays was determined. Next, ceramic bricks were fabricated with different quantities of materials (3–6 and 9 wt. % for sawdust, 65 wt. % for grey clay, 24–27 and 30 wt. % for yellow clay and 2 wt% of tuff). These bricks were fired at 800 and 950 °C. The effect of adding this sawdust on the technological behaviour of the brick was assessed by drying and firing shrinkage, water absorption, porosity, bulk density and compressive strength. The results have shown that the optimum sintering temperature is 950 °C. Below this temperature, at 950 °C, increased open porosity was observed, which decreased the compressive strength of the bricks. Based on the results obtained, the optimum amounts of waste were 9 wt. % sawdust of eucalyptus, 24 wt. % shaping moisture and 1.6 particle size diameter. These percentages produced bricks whose mechanical properties were suitable for use as secondary raw materials in ceramic brick production.

Keywords: Clay brick, Porosity, Sawdust.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4101
6196 Comparing the Performance of the Particle Swarm Optimization and the Genetic Algorithm on the Geometry Design of Longitudinal Fin

Authors: Hassan Azarkish, Said Farahat, S.Masoud H. Sarvari

Abstract:

In the present work, the performance of the particle swarm optimization and the genetic algorithm compared as a typical geometry design problem. The design maximizes the heat transfer rate from a given fin volume. The analysis presumes that a linear temperature distribution along the fin. The fin profile generated using the B-spline curves and controlled by the change of control point coordinates. An inverse method applied to find the appropriate fin geometry yield the linear temperature distribution along the fin corresponds to optimum design. The numbers of the populations, the count of iterations and time to convergence measure efficiency. Results show that the particle swarm optimization is most efficient for geometry optimization.

Keywords: Genetic Algorithm, Geometry Optimization, longitudinal Fin, Particle Swarm Optimization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1592
6195 On Discretization of Second-order Derivatives in Smoothed Particle Hydrodynamics

Authors: R. Fatehi, M.A. Fayazbakhsh, M.T. Manzari

Abstract:

Discretization of spatial derivatives is an important issue in meshfree methods especially when the derivative terms contain non-linear coefficients. In this paper, various methods used for discretization of second-order spatial derivatives are investigated in the context of Smoothed Particle Hydrodynamics. Three popular forms (i.e. "double summation", "second-order kernel derivation", and "difference scheme") are studied using one-dimensional unsteady heat conduction equation. To assess these schemes, transient response to a step function initial condition is considered. Due to parabolic nature of the heat equation, one can expect smooth and monotone solutions. It is shown, however in this paper, that regardless of the type of kernel function used and the size of smoothing radius, the double summation discretization form leads to non-physical oscillations which persist in the solution. Also, results show that when a second-order kernel derivative is used, a high-order kernel function shall be employed in such a way that the distance of inflection point from origin in the kernel function be less than the nearest particle distance. Otherwise, solutions may exhibit oscillations near discontinuities unlike the "difference scheme" which unconditionally produces monotone results.

Keywords: Heat conduction, Meshfree methods, Smoothed ParticleHydrodynamics (SPH), Second-order derivatives.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3040
6194 Behavior of Cu-WC-Ti Metal Composite Afterusing Planetary Ball Milling

Authors: A.T.Z. Mahamat, A.M. A Rani, Patthi Husain

Abstract:

Copper based composites reinforced with WC and Ti particles were prepared using planetary ball-mill. The experiment was designed by using Taguchi technique and milling was carried out in an air for several hours. The powder was characterized before and after milling using the SEM, TEM and X-ray for microstructure and for possible new phases. Microstructures show that milled particles size and reduction in particle size depend on many parameters. The distance d between planes of atoms estimated from X-ray powder diffraction data and TEM image. X-ray diffraction patterns of the milled powder did not show clearly any new peak or energy shift, but the TEM images show a significant change in crystalline structure of corporate on titanium in the composites.

Keywords: ball milling, microstructures, titanium, tungstencarbides, X-ray

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1562
6193 Phase Control Array Synthesis Using Constrained Accelerated Particle Swarm Optimization

Authors: Mohammad Taha, Dia abu al Nadi

Abstract:

In this paper, the phase control antenna array synthesis is presented. The problem is formulated as a constrained optimization problem that imposes nulls with prescribed level while maintaining the sidelobe at a prescribed level. For efficient use of the algorithm memory, compared to the well known Particle Swarm Optimization (PSO), the Accelerated Particle Swarm Optimization (APSO) is used to estimate the phase parameters of the synthesized array. The objective function is formed using a main objective and set of constraints with penalty factors that measure the violation of each feasible solution in the search space to each constraint. In this case the obtained feasible solution is guaranteed to satisfy all the constraints. Simulation results have shown significant performance increases and a decreased randomness in the parameter search space compared to a single objective conventional particle swarm optimization.

Keywords: Array synthesis, Sidelobe level control, Constrainedoptimization, Accelerated Particle Swarm Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1886
6192 Effect of Landfill Leachate on Engineering Properties of Test Soil

Authors: S. A. Nta, M. J. Ayotamuno, I. J. Udom

Abstract:

The work presents result of laboratory analysis of the effects of landfill leachate on engineering properties of test soil. The soil used for the present study was a sandy loam soil and acidic in nature. It was collected at a depth of 0.9 m. The landfill leachate used was collected from a hole dug some meters away from dumped solid waste and analyzed to identify the pollutants and its effect on engineering properties of the test soil. The test soil applied with landfill leachate was collected at 0.25 and 0.50 m radial distances at a depth of 0.15, 0.30, 0.45 and 0.60 m from the point of application of leachate after 50 days were the application of the leachate end and 80 days from the start of the experiment for laboratory analysis. Engineering properties such as particle size distribution, specific gravity, optimum moisture content, maximum dry density, unconfined compressive strength, liquid limit, plastic limit and shrinkage limit were considered. The concentration of various chemicals at 0.25 and 0.50 radial distances and 0.15, 0.30, 0.45 and 0.6 m depth from the point of application of leachate were different. This study founds the effect of landfill leachate on the engineering properties of soil. It can be concluded that, the type of soil, chemical composition of the leachate, infiltration rate, aquifers, ground water table etc., will have a major role on the area of influence zone of the pollutants in a landfill.

Keywords: Engineering properties of test soil, landfill leachate, Municipal solid waste.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 579
6191 Richtmyer-Meshkov Instability and Gas-Particle Interaction of Contoured Shock-Tube Flows: A Numerical Study

Authors: Yi Liu

Abstract:

In this paper, computational fluid dynamics (CFD) is utilized to characterize a prototype biolistic delivery system, the biomedical device based on the contoured-shock-tube design (CST), with the aim at investigating shocks induced flow instabilities within the contoured shock tube. The shock/interface interactions, the growth of perturbation at an interface between two fluids of different density are interrogated. The key features of the gas dynamics and gas-particle interaction are discussed

Keywords: Simulation, Shock wave, Particle, Interface, Supersonic, Richtmyer-Meshkov Instability

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1713
6190 Preservation of Carbon Dioxide Clathrate Hydrate Coexisting with Sucrose at Temperatures below the Water Freezing Point under Atmospheric Pressure

Authors: Tadaaki Sato, Ryo Ohmura

Abstract:

This paper reports the influence of sucrose on the preservation of CO2 hydrate crystal samples. The particle diameter of hydrate samples were 1.0 and 5.6-8.0 mm. Mass fraction of sucrose in the sample was 0.16. The samples were stored at the aerated condition under atmospheric pressure and at the temperature of 253 or 258 K. The results indicated that the mass fractions of CO2 hydrate in the samples with sucrose were 0.10 ± 0.03 at the end of 3-week preservation, regardless of temperature and particle diameter. Mass fraction of CO2 hydrate in the samples with sucrose was higher than that of pure CO2 hydrate for 1.0 mm particle diameter, while was lower than that of pure CO2 hydrate for 5.6-8.0 mm particle diameter. Discussion is made on the influence of sucrose on the dissociation of CO2 hydrate and the resulting formation of ice.

Keywords: Clathrate hydrates, Carbon dioxide

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1867
6189 Impact of Ship Traffic to PM2.5 and Particle Number Concentrations in Three Port-Cities of the Adriatic/Ionian Area

Authors: Daniele Contini, Antonio Donateo, Andrea Gambaro, Athanasios Argiriou, Dimitrios Melas, Daniela Cesari, Anastasia Poupkou, Athanasios Karagiannidis, Apostolos Tsakis, Eva Merico, Rita Cesari, Adelaide Dinoi

Abstract:

Emissions of atmospheric pollutants from ships and harbour activities are a growing concern at international level given their potential impacts on air quality and climate. These close-to-land emissions have potential impact on local communities in terms of air quality and health. Recent studies show that the impact of maritime traffic to atmospheric particulate matter concentrations in several coastal urban areas is comparable with the impact of road traffic of a medium size town. However, several different approaches have been used for these estimates making difficult a direct comparison of results. In this work, an integrated approach based on emission inventories and dedicated measurement campaigns has been applied to give a comparable estimate of the impact of maritime traffic to PM2.5 and particle number concentrations in three major harbours of the Adriatic/Ionian Seas. The influences of local meteorology and of the logistic layout of the harbours are discussed.

Keywords: Ship emissions, PM2.5, particle number concentrations, impact of shipping to atmospheric aerosol.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2345
6188 Meteorological Data Study and Forecasting Using Particle Swarm Optimization Algorithm

Authors: S. Esfandeh, M. Sedighizadeh

Abstract:

Weather systems use enormously complex combinations of numerical tools for study and forecasting. Unfortunately, due to phenomena in the world climate, such as the greenhouse effect, classical models may become insufficient mostly because they lack adaptation. Therefore, the weather forecast problem is matched for heuristic approaches, such as Evolutionary Algorithms. Experimentation with heuristic methods like Particle Swarm Optimization (PSO) algorithm can lead to the development of new insights or promising models that can be fine tuned with more focused techniques. This paper describes a PSO approach for analysis and prediction of data and provides experimental results of the aforementioned method on realworld meteorological time series.

Keywords: Weather, Climate, PSO, Prediction, Meteorological

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2038
6187 Experimental Study on Capturing of Magnetic Nanoparticles Transported in an Implant Assisted Cylindrical Tube under Magnetic Field

Authors: Anurag Gaur, Nidhi, Shashi Sharma

Abstract:

Targeted drug delivery is a method of delivering medication to a patient in a manner that increases the concentration of the medication in some parts of the body relative to others. Targeted drug delivery seeks to concentrate the medication in the tissues of interest while reducing the relative concentration of the medication in the remaining tissues. This improves efficacy of the while reducing side effects. In the present work, we investigate the effect of magnetic field, flow rate and particle concentration on the capturing of magnetic particles transported in a stent implanted fluidic channel. Iron oxide magnetic nanoparticles (Fe3O4) nanoparticles were synthesized via co-precipitation method. The synthesized Fe3O4 nanoparticles were added in the de-ionized (DI) water to prepare the Fe3O4 magnetic particle suspended fluid. This fluid is transported in a cylindrical tube of diameter 8 mm with help of a peristaltic pump at different flow rate (25-40 ml/min). A ferromagnetic coil of SS 430 has been implanted inside the cylindrical tube to enhance the capturing of magnetic nanoparticles under magnetic field. The capturing of magnetic nanoparticles was observed at different magnetic magnetic field, flow rate and particle concentration. It is observed that capture efficiency increases from 47-67% at magnetic field 2-5kG, respectively at particle concentration 0.6mg/ml and at flow rate 30 ml/min. However, the capture efficiency decreases from 65 to 44% by increasing the flow rate from 25 to 40 ml/min, respectively. Furthermore, it is observed that capture efficiency increases from 51 to 67% by increasing the particle concentration from 0.3 to 0.6 mg/ml, respectively.

Keywords: Capture efficiency, Implant assisted-Magnetic drug targeting (IA-MDT), Magnetic nanoparticles, in vitro study.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1796
6186 Microbial Leaching Process to Recover Valuable Metals from Spent Petroleum Catalyst Using Iron Oxidizing Bacteria

Authors: Debabrata Pradhan, Dong J. Kim, Jong G. Ahn, Seoung W. Lee

Abstract:

Spent petroleum catalyst from Korean petrochemical industry contains trace amount of metals such as Ni, V and Mo. Therefore an attempt was made to recover those trace metal using bioleaching process. Different leaching parameters such as Fe(II) concentration, pulp density, pH, temperature and particle size of spent catalyst particle were studied to evaluate their effects on the leaching efficiency. All the three metal ions like Ni, V and Mo followed dual kinetics, i.e., initial faster followed by slower rate. The percentage of leaching efficiency of Ni and V were higher than Mo. The leaching process followed a diffusion controlled model and the product layer was observed to be impervious due to formation of ammonium jarosite (NH4)Fe3(SO4)2(OH)6. In addition, the lower leaching efficiency of Mo was observed due to a hydrophobic coating of elemental sulfur over Mo matrix in the spent catalyst.

Keywords: Bioleaching, diffusion control, shrinking core, spentpetroleum catalyst.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1952
6185 Lattice Boltzmann Simulation of the Carbonization of Wood Particle

Authors: Ahmed Mahmoudi, Imen Mejri, Mohamed A. Abbassi, Ahmed Omri

Abstract:

A numerical study based on the Lattice Boltzmann Method (LBM) is proposed to solve one, two and three dimensional heat and mass transfer for isothermal carbonization of thick wood particles. To check the validity of the proposed model, computational results have been compared with the published data and a good agreement is obtained. Then, the model is used to study the effect of reactor temperature and thermal boundary conditions, on the evolution of the local temperature and the mass distributions of the wood particle during carbonization

Keywords: Lattice Boltzmann Method, pyrolysis conduction, carbonization, Heat and mass transfer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2616
6184 The Effect of the Parameters of the Grinding on the Characteristics of the Deposit Phosphate Ore of Kef Es Sennoun, Djebel Onk-Tebessa, Algeria

Authors: N. Benabdeslam, N. Bouzidi, F. Atmani, R. Boucif, A. Sakhri

Abstract:

The objective of this study was to provide answers for a better understanding of the mechanisms involved during grinding. To obtain a phosphate powder, we carry out sieving - grinding circuits for each parameter influencing the process. The analysis of the average particle size of the different tests carried out served in the first place as a basis for the determination of the granulometric curve area, the characteristics and the granular coefficients, then the exploitation of the different results for the calculation of the energies consumed for the fragmentation of different ore types, the energy coefficients as well as the ability to grind. Indeed, a time of 5 to 10 minutes can be chosen as the optimal grinding time in a disc mill for a % in weight of the highest pass. However, grinding time can influence the granular characteristics of ore.

Keywords: Energy, granular characteristics, grinding, mineralogical composition, phosphate ore.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 741
6183 Effect of Inclusions on the Shape and Size of Crack Tip Plastic Zones by Element Free Galerkin Method

Authors: A. Jameel, G. A. Harmain, Y. Anand, J. H. Masoodi, F. A. Najar

Abstract:

The present study investigates the effect of inclusions on the shape and size of crack tip plastic zones in engineering materials subjected to static loads by employing the element free Galerkin method (EFGM). The modeling of the discontinuities produced by cracks and inclusions becomes independent of the grid chosen for analysis. The standard displacement approximation is modified by adding additional enrichment functions, which introduce the effects of different discontinuities into the formulation. The level set method has been used to represent different discontinuities present in the domain. The effect of inclusions on the extent of crack tip plastic zones is investigated by solving some numerical problems by the EFGM.

Keywords: EFGM, stress intensity factors, crack tip plastic zones, inclusions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 840