Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30576
Exponential Particle Swarm Optimization Approach for Improving Data Clustering

Authors: Neveen I. Ghali, Nahed El-Dessouki, Mervat A. N., Lamiaa Bakrawi

Abstract:

In this paper we use exponential particle swarm optimization (EPSO) to cluster data. Then we compare between (EPSO) clustering algorithm which depends on exponential variation for the inertia weight and particle swarm optimization (PSO) clustering algorithm which depends on linear inertia weight. This comparison is evaluated on five data sets. The experimental results show that EPSO clustering algorithm increases the possibility to find the optimal positions as it decrease the number of failure. Also show that (EPSO) clustering algorithm has a smaller quantization error than (PSO) clustering algorithm, i.e. (EPSO) clustering algorithm more accurate than (PSO) clustering algorithm.

Keywords: Particle Swarm Optimization, Data Clustering, exponential PSO

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1071063

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1320

References:


[1] Cui, X., Potok, T., Palathingal, P., Document Clustering using Particle Swarm Optimization, Swarm Intelligence Symposium, 2005. Proceedings 2005 IEEE, pp. 185- 191
[2] Cui, X., Potok T., Document Clustering Analysis based on Hybrid PSO+K-means Algorithm, Journal of Computer Sciences (special issue), pp. 27-33, 2005.
[3] Falco, I., Cioppa, A., Tarantino, E., Facing Classification Problems with Particle Swarm Optimization, Applied Soft Computing, Vol.7, pp. 652- 658, 2007
[4] Jain, A., Murty, M., Flynn, P., Data Clustering: A Review, ACM Computing Surveys, Vol. 31, No. 3, 1999.
[5] Kao, Y. -T. et al., A Hybridized Approach to Data Clustering, Expert systems and applications (2007), doi: 10.1016/j.eswa.2007.01.028
[6] Kennedy, J., Eberhart, R., Particle Swarm Optimization, proceedings of the IEEE International joint conference or Neural networks, vol.4, pp. 1942-1948, 1995.
[7] Li-ping, Z., Huan-jun, Y., Shang-xu, H., Optimal Choice of Parameters for Particle Swarm Optimization, Journal of Zhejiang University Science, Vol. 6(A)6, pp.528-534, 2004.
[8] Merwe DW., Engelbrecht AP., Data Clustering using Particle Swarm Optimization, IEEE Congress on Evolutionary Computation, Canberra, Australia, 215-220, 2003
[9] Shi, Y., Eberhart, R., Parameter Selection in Particle Swarm Optimization, proceedings of the 7th International Conference on Evolutionary Programming VII, pp. 591 - 600, 1998.
[10] Sousa, T., Silva, A., Neves, A., Particle Swarm Based Data Mining Algorithms for Classification Tasks, Parallel Computing 30, pp. 767- 783, 2004.
[11] El-Desouky N., Ghali N., Zaki M., A New Approach to Weight Variation in Swarm Optimization, proceedings of Al-azhar Engineering, the 9th International Conference, April 12 - 14, 2007.