Search results for: mixed-type splitting iterative method
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8208

Search results for: mixed-type splitting iterative method

8028 Instability of Ties in Compression

Authors: T. Cornelius

Abstract:

Masonry cavity walls are loaded by wind pressure and vertical load from upper floors. These loads results in bending moments and compression forces in the ties connecting the outer and the inner wall in a cavity wall. Large cavity walls are furthermore loaded by differential movements from the temperature gradient between the outer and the inner wall, which results in critical increase of the bending moments in the ties. Since the ties are loaded by combined compression and moment forces, the loadbearing capacity is derived from instability equilibrium equations. Most of them are iterative, since exact instability solutions are complex to derive, not to mention the extra complexity introducing dimensional instability from the temperature gradients. Using an inverse variable substitution and comparing an exact theory with an analytical instability solution a method to design tie-connectors in cavity walls was developed. The method takes into account constraint conditions limiting the free length of the wall tie, and the instability in case of pure compression which gives an optimal load bearing capacity. The model is illustrated with examples from praxis.

Keywords: Masonry, tie connectors, cavity wall, instability, differential movements, combined bending and compression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1655
8027 Physico-chemical State of the Air at the Stagnation Point during the Atmospheric Reentry of a Spacecraft

Authors: Rabah Haoui

Abstract:

Hypersonic flows around spatial vehicles during their reentry phase in planetary atmospheres are characterized by intense aerothermal phenomena. The aim of this work is to analyze high temperature flows around an axisymmetric blunt body taking into account chemical and vibrational non-equilibrium for air mixture species. For this purpose, a finite volume methodology is employed to determine the supersonic flow parameters around the axisymmetric blunt body, especially at the stagnation point and along the wall of spacecraft for several altitudes. This allows the capture shock wave before a blunt body placed in supersonic free stream. The numerical technique uses the Flux Vector Splitting method of Van Leer. Here, adequate time stepping parameter, along with CFL coefficient and mesh size level are selected to ensure numerical convergence, sought with an order of 10-8

Keywords: Chemical kinetic, dissociation, finite volumes, frozen, hypersonic flow, non-equilibrium, Reactive flow, supersonicflow , vibration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1807
8026 Developing a Simple and an Accurate Formula for the Conduction Angle of a Single Phase Rectifier with RL Load

Authors: S. Ali Al-Mawsawi, Fadhel A. Albasri

Abstract:

The paper presents a simple and an accurate formula that has been developed for the conduction angle (δ) of a single phase half-wave or full-wave controlled rectifier with RL load. This formula can be also used for calculating the conduction angle (δ) in case of A.C. voltage regulator with inductive load under discontinuous current mode. The simulation results shows that the conduction angle calculated from the developed formula agree very well with that obtained from the exact solution arrived from the iterative method. Applying the developed formula can reduce the computational time and reduce the time for manual classroom calculation. In addition, the proposed formula is attractive for real time implementations.

Keywords: Conduction Angle, Firing Angle, Excitation Angle, Load Angle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5072
8025 MAP-Based Image Super-resolution Reconstruction

Authors: Xueting Liu, Daojin Song, Chuandai Dong, Hongkui Li

Abstract:

From a set of shifted, blurred, and decimated image , super-resolution image reconstruction can get a high-resolution image. So it has become an active research branch in the field of image restoration. In general, super-resolution image restoration is an ill-posed problem. Prior knowledge about the image can be combined to make the problem well-posed, which contributes to some regularization methods. In the regularization methods at present, however, regularization parameter was selected by experience in some cases and other techniques have too heavy computation cost for computing the parameter. In this paper, we construct a new super-resolution algorithm by transforming the solving of the System stem Є=An into the solving of the equations X+A*X-1A=I , and propose an inverse iterative method.

Keywords: High-resolution MAP image, Reconstruction, Image interpolation, Motion Estimation, Hermitian positive definite solutions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2118
8024 Sparse Unmixing of Hyperspectral Data by Exploiting Joint-Sparsity and Rank-Deficiency

Authors: Fanqiang Kong, Chending Bian

Abstract:

In this work, we exploit two assumed properties of the abundances of the observed signatures (endmembers) in order to reconstruct the abundances from hyperspectral data. Joint-sparsity is the first property of the abundances, which assumes the adjacent pixels can be expressed as different linear combinations of same materials. The second property is rank-deficiency where the number of endmembers participating in hyperspectral data is very small compared with the dimensionality of spectral library, which means that the abundances matrix of the endmembers is a low-rank matrix. These assumptions lead to an optimization problem for the sparse unmixing model that requires minimizing a combined l2,p-norm and nuclear norm. We propose a variable splitting and augmented Lagrangian algorithm to solve the optimization problem. Experimental evaluation carried out on synthetic and real hyperspectral data shows that the proposed method outperforms the state-of-the-art algorithms with a better spectral unmixing accuracy.

Keywords: Hyperspectral unmixing, joint-sparse, low-rank representation, abundance estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 732
8023 Accurate And Efficient Global Approximation using Adaptive Polynomial RSM for Complex Mechanical and Vehicular Performance Models

Authors: Y. Z. Wu, Z. Dong, S. K. You

Abstract:

Global approximation using metamodel for complex mathematical function or computer model over a large variable domain is often needed in sensibility analysis, computer simulation, optimal control, and global design optimization of complex, multiphysics systems. To overcome the limitations of the existing response surface (RS), surrogate or metamodel modeling methods for complex models over large variable domain, a new adaptive and regressive RS modeling method using quadratic functions and local area model improvement schemes is introduced. The method applies an iterative and Latin hypercube sampling based RS update process, divides the entire domain of design variables into multiple cells, identifies rougher cells with large modeling error, and further divides these cells along the roughest dimension direction. A small number of additional sampling points from the original, expensive model are added over the small and isolated rough cells to improve the RS model locally until the model accuracy criteria are satisfied. The method then combines local RS cells to regenerate the global RS model with satisfactory accuracy. An effective RS cells sorting algorithm is also introduced to improve the efficiency of model evaluation. Benchmark tests are presented and use of the new metamodeling method to replace complex hybrid electrical vehicle powertrain performance model in vehicle design optimization and optimal control are discussed.

Keywords: Global approximation, polynomial response surface, domain decomposition, domain combination, multiphysics modeling, hybrid powertrain optimization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1868
8022 Comparison of Two Types of Preconditioners for Stokes and Linearized Navier-Stokes Equations

Authors: Ze-Jun Hu, Ting-Zhu Huang, Ning-Bo Tan

Abstract:

To solve saddle point systems efficiently, several preconditioners have been published. There are many methods for constructing preconditioners for linear systems from saddle point problems, for instance, the relaxed dimensional factorization (RDF) preconditioner and the augmented Lagrangian (AL) preconditioner are used for both steady and unsteady Navier-Stokes equations. In this paper we compare the RDF preconditioner with the modified AL (MAL) preconditioner to show which is more effective to solve Navier-Stokes equations. Numerical experiments indicate that the MAL preconditioner is more efficient and robust, especially, for moderate viscosities and stretched grids in steady problems. For unsteady cases, the convergence rate of the RDF preconditioner is slightly faster than the MAL perconditioner in some circumstances, but the parameter of the RDF preconditioner is more sensitive than the MAL preconditioner. Moreover the convergence rate of the MAL preconditioner is still quite acceptable. Therefore we conclude that the MAL preconditioner is more competitive than the RDF preconditioner. These experiments are implemented with IFISS package. 

Keywords: Navier-Stokes equations, Krylov subspace method, preconditioner, dimensional splitting, augmented Lagrangian preconditioner.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1835
8021 Ultra-Precise Hybrid Lens Distortion Correction

Authors: Christian Bräuer-Burchardt, Peter Kühmstedt, Gunther Notni

Abstract:

A new hybrid method to realise high-precision distortion determination for optical ultra-precision 3D measurement systems based on stereo cameras using active light projection is introduced. It consists of two phases: the basic distortion determination and the refinement. The refinement phase of the procedure uses a plane surface and projected fringe patterns as calibration tools to determine simultaneously the distortion of both cameras within an iterative procedure. The new technique may be performed in the state of the device “ready for measurement" which avoids errors by a later adjustment. A considerable reduction of distortion errors is achieved and leads to considerable improvements of the accuracy of 3D measurements, especially in the precise measurement of smooth surfaces.

Keywords: 3D Surface Measurement, Fringe Projection, Lens Distortion, Stereo.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2018
8020 A New Floating Point Implementation of Base 2 Logarithm

Authors: Ahmed M. Mansour, Ali M. El-Sawy, Ahmed T Sayed

Abstract:

Logarithms reduce products to sums and powers to products; they play an important role in signal processing, communication and information theory. They are primarily used for hardware calculations, handling multiplications, divisions, powers, and roots effectively. There are three commonly used bases for logarithms; the logarithm with base-10 is called the common logarithm, the natural logarithm with base-e and the binary logarithm with base-2. This paper demonstrates different methods of calculation for log2 showing the complexity of each and finds out the most accurate and efficient besides giving insights to their hardware design. We present a new method called Floor Shift for fast calculation of log2, and then we combine this algorithm with Taylor series to improve the accuracy of the output, we illustrate that by using two examples. We finally compare the algorithms and conclude with our remarks.

Keywords: Logarithms, log2, floor, iterative, CORDIC, Taylor series.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3768
8019 Alternative Convergence Analysis for a Kind of Singularly Perturbed Boundary Value Problems

Authors: Jiming Yang

Abstract:

A kind of singularly perturbed boundary value problems is under consideration. In order to obtain its approximation, simple upwind difference discretization is applied. We use a moving mesh iterative algorithm based on equi-distributing of the arc-length function of the current computed piecewise linear solution. First, a maximum norm a posteriori error estimate on an arbitrary mesh is derived using a different method from the one carried out by Chen [Advances in Computational Mathematics, 24(1-4) (2006), 197-212.]. Then, basing on the properties of discrete Green-s function and the presented posteriori error estimate, we theoretically prove that the discrete solutions computed by the algorithm are first-order uniformly convergent with respect to the perturbation parameter ε.

Keywords: Convergence analysis, green's function, singularly perturbed, equi-distribution, moving mesh.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1659
8018 Identifying Unknown Dynamic Forces Applied on Two Dimensional Frames

Authors: H. Katkhuda

Abstract:

A time domain approach is used in this paper to identify unknown dynamic forces applied on two dimensional frames using the measured dynamic structural responses for a sub-structure in the two dimensional frame. In this paper a sub-structure finite element model with short length of measurement from only three or four accelerometers is required, and an iterative least-square algorithm is used to identify the unknown dynamic force applied on the structure. Validity of the method is demonstrated with numerical examples using noise-free and noise-contaminated structural responses. Both harmonic and impulsive forces are studied. The results show that the proposed approach can identify unknown dynamic forces within very limited iterations with high accuracy and shows its robustness even noise- polluted dynamic response measurements are utilized.

Keywords: Dynamic Force Identification, Dynamic Responses, Sub-structure and Time Domain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1487
8017 A Virtual Learning Environment for Deaf Children: Design and Evaluation

Authors: Nicoletta Adamo-Villani

Abstract:

The object of this research is the design and evaluation of an immersive Virtual Learning Environment (VLE) for deaf children. Recently we have developed a prototype immersive VR game to teach sign language mathematics to deaf students age K- 4 [1] [2]. In this paper we describe a significant extension of the prototype application. The extension includes: (1) user-centered design and implementation of two additional interactive environments (a clock store and a bakery), and (2) user-centered evaluation including development of user tasks, expert panel-based evaluation, and formative evaluation. This paper is one of the few to focus on the importance of user-centered, iterative design in VR application development, and to describe a structured evaluation method.

Keywords: 3D Animation, Virtual Reality, Virtual Learning Environments, User-Centered Design, User-centered Evaluation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2149
8016 Parallel Pipelined Conjugate Gradient Algorithm on Heterogeneous Platforms

Authors: Sergey Kopysov, Nikita Nedozhogin, Leonid Tonkov

Abstract:

The article presents a parallel iterative solver for large sparse linear systems which can be used on a heterogeneous platform. Traditionally, the problem of solving linear systems do not scale well on cluster containing multiple Central Processing Units (multi-CPUs cluster) or cluster containing multiple Graphics Processing Units (multi-GPUs cluster). For example, most of the attempts to implement the classical conjugate gradient method were at best counted in the same amount of time as the problem was enlarged. The paper proposes the pipelined variant of the conjugate gradient method (PCG), a formulation that is potentially better suited for hybrid CPU/GPU computing since it requires only one synchronization point per one iteration, instead of two for standard CG (Conjugate Gradient). The standard and pipelined CG methods need the vector entries generated by current GPU and other GPUs for matrix-vector product. So the communication between GPUs becomes a major performance bottleneck on miltiGPU cluster. The article presents an approach to minimize the communications between parallel parts of algorithms. Additionally, computation and communication can be overlapped to reduce the impact of data exchange. Using pipelined version of the CG method with one synchronization point, the possibility of asynchronous calculations and communications, load balancing between the CPU and GPU for solving the large linear systems allows for scalability. The algorithm is implemented with the combined use of technologies: MPI, OpenMP and CUDA. We show that almost optimum speed up on 8-CPU/2GPU may be reached (relatively to a one GPU execution). The parallelized solver achieves a speedup of up to 5.49 times on 16 NVIDIA Tesla GPUs, as compared to one GPU.

Keywords: Conjugate Gradient, GPU, parallel programming, pipelined algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 326
8015 A Modularized Design for Multi-Drivers Off-Road Vehicle Driving-Line and its Performance Assessment

Authors: Yi Jianjun, Sun Yingce, Hu Diqing, Li Chenggang

Abstract:

Modularized design approach can facilitate the modeling of complex systems and support behavior analysis and simulation in an iterative and thus complex engineering process, by using encapsulated submodels of components and of their interfaces. Therefore it can improve the design efficiency and simplify the solving complicated problem. Multi-drivers off-road vehicle is comparatively complicated. Driving-line is an important core part to a vehicle; it has a significant contribution to the performance of a vehicle. Multi-driver off-road vehicles have complex driving-line, so its performance is heavily dependent on the driving-line. A typical off-road vehicle-s driving-line system consists of torque converter, transmission, transfer case and driving-axles, which transfer the power, generated by the engine and distribute it effectively to the driving wheels according to the road condition. According to its main function, this paper puts forward a modularized approach for designing and evaluation of vehicle-s driving-line. It can be used to effectively estimate the performance of driving-line during concept design stage. Through appropriate analysis and assessment method, an optimal design can be reached. This method has been applied to the practical vehicle design, it can improve the design efficiency and is convenient to assess and validate the performance of a vehicle, especially of multi-drivers off-road vehicle.

Keywords: Heavy-loaded Off-road Vehicle, Power Driving-line, Modularized Design, Performance Assessment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1806
8014 On the Solution of the Towers of Hanoi Problem

Authors: Hayedeh Ahrabian, Comfar Badamchi, Abbass Nowzari-Dalini

Abstract:

In this paper, two versions of an iterative loopless algorithm for the classical towers of Hanoi problem with O(1) storage complexity and O(2n) time complexity are presented. Based on this algorithm the number of different moves in each of pegs with its direction is formulated.

Keywords: Loopless algorithm, Binary tree, Towers of Hanoi.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4791
8013 Selecting Materialized Views Using Two-Phase Optimization with Multiple View Processing Plan

Authors: Jiratta Phuboon-ob, Raweewan Auepanwiriyakul

Abstract:

A data warehouse (DW) is a system which has value and role for decision-making by querying. Queries to DW are critical regarding to their complexity and length. They often access millions of tuples, and involve joins between relations and aggregations. Materialized views are able to provide the better performance for DW queries. However, these views have maintenance cost, so materialization of all views is not possible. An important challenge of DW environment is materialized view selection because we have to realize the trade-off between performance and view maintenance cost. Therefore, in this paper, we introduce a new approach aimed at solve this challenge based on Two-Phase Optimization (2PO), which is a combination of Simulated Annealing (SA) and Iterative Improvement (II), with the use of Multiple View Processing Plan (MVPP). Our experiments show that our method provides a further improvement in term of query processing cost and view maintenance cost.

Keywords: Data warehouse, materialized views, view selectionproblem, two-phase optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1619
8012 Selecting the Best Sub-Region Indexing the Images in the Case of Weak Segmentation Based On Local Color Histograms

Authors: Mawloud Mosbah, Bachir Boucheham

Abstract:

Color Histogram is considered as the oldest method used by CBIR systems for indexing images. In turn, the global histograms do not include the spatial information; this is why the other techniques coming later have attempted to encounter this limitation by involving the segmentation task as a preprocessing step. The weak segmentation is employed by the local histograms while other methods as CCV (Color Coherent Vector) are based on strong segmentation. The indexation based on local histograms consists of splitting the image into N overlapping blocks or sub-regions, and then the histogram of each block is computed. The dissimilarity between two images is reduced, as consequence, to compute the distance between the N local histograms of the both images resulting then in N*N values; generally, the lowest value is taken into account to rank images, that means that the lowest value is that which helps to designate which sub-region utilized to index images of the collection being asked. In this paper, we make under light the local histogram indexation method in the hope to compare the results obtained against those given by the global histogram. We address also another noteworthy issue when Relying on local histograms namely which value, among N*N values, to trust on when comparing images, in other words, which sub-region among the N*N sub-regions on which we base to index images. Based on the results achieved here, it seems that relying on the local histograms, which needs to pose an extra overhead on the system by involving another preprocessing step naming segmentation, does not necessary mean that it produces better results. In addition to that, we have proposed here some ideas to select the local histogram on which we rely on to encode the image rather than relying on the local histogram having lowest distance with the query histograms.

Keywords: CBIR, Color Global Histogram, Color Local Histogram, Weak Segmentation, Euclidean Distance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1684
8011 Bond Graph Modeling of Mechanical Dynamics of an Excavator for Hydraulic System Analysis and Design

Authors: Mutuku Muvengei, John Kihiu

Abstract:

This paper focuses on the development of bond graph dynamic model of the mechanical dynamics of an excavating mechanism previously designed to be used with small tractors, which are fabricated in the Engineering Workshops of Jomo Kenyatta University of Agriculture and Technology. To develop a mechanical dynamics model of the manipulator, forward recursive equations similar to those applied in iterative Newton-Euler method were used to obtain kinematic relationships between the time rates of joint variables and the generalized cartesian velocities for the centroids of the links. Representing the obtained kinematic relationships in bondgraphic form, while considering the link weights and momenta as the elements led to a detailed bond graph model of the manipulator. The bond graph method was found to reduce significantly the number of recursive computations performed on a 3 DOF manipulator for a mechanical dynamic model to result, hence indicating that bond graph method is more computationally efficient than the Newton-Euler method in developing dynamic models of 3 DOF planar manipulators. The model was verified by comparing the joint torque expressions of a two link planar manipulator to those obtained using Newton- Euler and Lagrangian methods as analyzed in robotic textbooks. The expressions were found to agree indicating that the model captures the aspects of rigid body dynamics of the manipulator. Based on the model developed, actuator sizing and valve sizing methodologies were developed and used to obtain the optimal sizes of the pistons and spool valve ports respectively. It was found that using the pump with the sized flow rate capacity, the engine of the tractor is able to power the excavating mechanism in digging a sandy-loom soil.

Keywords: Actuators, bond graphs, inverse dynamics, recursive equations, quintic polynomial trajectory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2844
8010 Design of Two-Channel Quadrature Mirror Filter Banks Using Digital All-Pass Filters

Authors: Ju-Hong Lee, Yi-Lin Shieh

Abstract:

The paper deals with the minimax design of two-channel linear-phase (LP) quadrature mirror filter (QMF) banks using infinite impulse response (IIR) digital all-pass filters (DAFs). Based on the theory of two-channel QMF banks using two IIR DAFs, the design problem is appropriately formulated to result in an appropriate Chebyshev approximation for the desired group delay responses of the IIR DAFs and the magnitude response of the low-pass analysis filter. Through a frequency sampling and iterative approximation method, the design problem can be solved by utilizing a weighted least squares approach. The resulting two-channel QMF banks can possess approximately LP response without magnitude distortion. Simulation results are presented for illustration and comparison.

Keywords: Chebyshev approximation, Digital All-Pass Filter, Quadrature Mirror Filter, Weighted Least Squares.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2692
8009 Interactive Effects in Blended Learning Mode: Exploring Hybrid Data Sources and Iterative Linkages

Authors: Hock Chuan, Lim

Abstract:

This paper presents an approach for identifying interactive effects using Network Science (NS) supported by Social Network Analysis (SNA) techniques. Based on general observations that learning processes and behaviors are shaped by the social relationships and influenced by learning environment, the central idea was to understand both the human and non-human interactive effects for a blended learning mode of delivery of computer science modules. Important findings include (a) the importance of non-human nodes to influence the centrality and transfer; (b) the degree of non-human and human connectivity impacts learning. This project reveals that the NS pattern and connectivity as measured by node relationships offer alternative approach for hypothesis generation and design of qualitative data collection. An iterative process further reinforces the analysis, whereas the experimental simulation option itself is an interesting alternative option, a hybrid combination of both experimental simulation and qualitative data collection presents itself as a promising and viable means to study complex scenario such as blended learning delivery mode. The primary value of this paper lies in the design of the approach for studying interactive effects of human (social nodes) and non-human (learning/study environment, Information and Communication Technologies (ICT) infrastructures nodes) components. In conclusion, this project adds to the understanding and the use of SNA to model and study interactive effects in blended social learning.

Keywords: Blended learning, network science, social learning, social network analysis, study environment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 608
8008 Weighted Harmonic Arnoldi Method for Large Interior Eigenproblems

Authors: Zhengsheng Wang, Jing Qi, Chuntao Liu, Yuanjun Li

Abstract:

The harmonic Arnoldi method can be used to find interior eigenpairs of large matrices. However, it has been shown that this method may converge erratically and even may fail to do so. In this paper, we present a new method for computing interior eigenpairs of large nonsymmetric matrices, which is called weighted harmonic Arnoldi method. The implementation of the method has been tested by numerical examples, the results show that the method converges fast and works with high accuracy.

Keywords: Harmonic Arnoldi method, weighted harmonic Arnoldi method, eigenpair, interior eigenproblem, non symmetric matrix.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1504
8007 Clustering Categorical Data Using Hierarchies (CLUCDUH)

Authors: Gökhan Silahtaroğlu

Abstract:

Clustering large populations is an important problem when the data contain noise and different shapes. A good clustering algorithm or approach should be efficient enough to detect clusters sensitively. Besides space complexity, time complexity also gains importance as the size grows. Using hierarchies we developed a new algorithm to split attributes according to the values they have and choosing the dimension for splitting so as to divide the database roughly into equal parts as much as possible. At each node we calculate some certain descriptive statistical features of the data which reside and by pruning we generate the natural clusters with a complexity of O(n).

Keywords: Clustering, tree, split, pruning, entropy, gini.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1502
8006 Dissipation of Higher Mode using Numerical Integration Algorithm in Dynamic Analysis

Authors: Jin Sup Kim, Woo Young Jung, Minho Kwon

Abstract:

In general dynamic analyses, lower mode response is of interest, however the higher modes of spatially discretized equations generally do not represent the real behavior and not affects to global response much. Some implicit algorithms, therefore, are introduced to filter out the high-frequency modes using intended numerical error. The objective of this study is to introduce the P-method and PC α-method to compare that with dissipation method and Newmark method through the stability analysis and numerical example. PC α-method gives more accuracy than other methods because it based on the α-method inherits the superior properties of the implicit α-method. In finite element analysis, the PC α-method is more useful than other methods because it is the explicit scheme and it achieves the second order accuracy and numerical damping simultaneously.

Keywords: Dynamic, α-Method, P-Method, PC α-Method, Newmark method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3024
8005 Capacity of Anchors in Structural Connections

Authors: T. Cornelius, G. Secilmis

Abstract:

When dealing with safety in structures, the connections between structural components play an important role. Robustness of a structure as a whole depends both on the load- bearing capacity of the structural component and on the structures capacity to resist total failure, even though a local failure occurs in a component or a connection between components. To avoid progressive collapse it is necessary to be able to carry out a design for connections. A connection may be executed with anchors to withstand local failure of the connection in structures built with prefabricated components. For the design of these anchors, a model is developed for connections in structures performed in prefabricated autoclaved aerated concrete components. The design model takes into account the effect of anchors placed close to the edge, which may result in splitting failure. Further the model is developed to consider the effect of reinforcement diameter and anchor depth. The model is analytical and theoretically derived assuming a static equilibrium stress distribution along the anchor. The theory is compared to laboratory test, including the relevant parameters and the model is refined and theoretically argued analyzing the observed test results. The method presented can be used to improve safety in structures or even optimize the design of the connections

Keywords: Robustness, anchors, connections, aircrete, prefabricated components.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1978
8004 Lagrange-s Inversion Theorem and Infiltration

Authors: Pushpa N. Rathie, Prabhata K. Swamee, André L. B. Cavalcante, Luan Carlos de S. M. Ozelim

Abstract:

Implicit equations play a crucial role in Engineering. Based on this importance, several techniques have been applied to solve this particular class of equations. When it comes to practical applications, in general, iterative procedures are taken into account. On the other hand, with the improvement of computers, other numerical methods have been developed to provide a more straightforward methodology of solution. Analytical exact approaches seem to have been continuously neglected due to the difficulty inherent in their application; notwithstanding, they are indispensable to validate numerical routines. Lagrange-s Inversion Theorem is a simple mathematical tool which has proved to be widely applicable to engineering problems. In short, it provides the solution to implicit equations by means of an infinite series. To show the validity of this method, the tree-parameter infiltration equation is, for the first time, analytically and exactly solved. After manipulating these series, closed-form solutions are presented as H-functions.

Keywords: Green-Ampt Equation, Lagrange's Inversion Theorem, Talsma-Parlange Equation, Three-Parameter Infiltration Equation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1833
8003 Automatic Choice of Topics for Seminars by Clustering Students According to Their Profile

Authors: J.R. Quevedo, E. Montañés, J. Ranilla, A. Bahamonde

Abstract:

The new framework the Higher Education is immersed in involves a complete change in the way lecturers must teach and students must learn. Whereas the lecturer was the main character in traditional education, the essential goal now is to increase the students' participation in the process. Thus, one of the main tasks of lecturers in this new context is to design activities of different nature in order to encourage such participation. Seminars are one of the activities included in this environment. They are active sessions that enable going in depth into specific topics as support of other activities. They are characterized by some features such as favoring interaction between students and lecturers or improving their communication skills. Hence, planning and organizing strategic seminars is indeed a great challenge for lecturers with the aim of acquiring knowledge and abilities. This paper proposes a method using Artificial Intelligence techniques to obtain student profiles from their marks and preferences. The goal of building such profiles is twofold. First, it facilitates the task of splitting the students into different groups, each group with similar preferences and learning difficulties. Second, it makes it easy to select adequate topics to be a candidate for the seminars. The results obtained can be either a guarantee of what the lecturers could observe during the development of the course or a clue to reconsider new methodological strategies in certain topics.

Keywords: artificial intelligence, clustering, organizingseminars, student profile

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1323
8002 Genetic Algorithm Based Wavelength Division Multiplexing Networks Planning

Authors: S.Baskar, P.S.Ramkumar, R.Kesavan

Abstract:

This paper presents a new heuristic algorithm useful for long-term planning of survivable WDM networks. A multi-period model is formulated that combines network topology design and capacity expansion. The ability to determine network expansion schedules of this type becomes increasingly important to the telecommunications industry and to its customers. The solution technique consists of a Genetic Algorithm that allows generating several network alternatives for each time period simultaneously and shortest-path techniques to deduce from these alternatives a least-cost network expansion plan over all time periods. The multi-period planning approach is illustrated on a realistic network example. Extensive simulations on a wide range of problem instances are carried out to assess the cost savings that can be expected by choosing a multi-period planning approach instead of an iterative network expansion design method.

Keywords: Wavelength Division Multiplexing, Genetic Algorithm, Network topology, Multi-period reliable network planning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1398
8001 Iteration Acceleration for Nonlinear Coupled Parabolic-Hyperbolic System

Authors: Xia Cui, Guang-wei Yuan, Jing-yan Yue

Abstract:

A Picard-Newton iteration method is studied to accelerate the numerical solution procedure of a class of two-dimensional nonlinear coupled parabolic-hyperbolic system. The Picard-Newton iteration is designed by adding higher-order terms of small quantity to an existing Picard iteration. The discrete functional analysis and inductive hypothesis reasoning techniques are used to overcome difficulties coming from nonlinearity and coupling, and theoretical analysis is made for the convergence and approximation properties of the iteration scheme. The Picard-Newton iteration has a quadratic convergent ratio, and its solution has second order spatial approximation and first order temporal approximation to the exact solution of the original problem. Numerical tests verify the results of the theoretical analysis, and show the Picard-Newton iteration is more efficient than the Picard iteration.

Keywords: Nonlinearity, iterative acceleration, coupled parabolic hyperbolic system, quadratic convergence, numerical analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1517
8000 A Design-Based Approach to Developing a Mobile Learning System

Authors: Martina Holenko Dlab, Natasa Hoic-Bozic, Ivica Boticki

Abstract:

This paper presents technologically innovative and scalable mobile learning solution within the SCOLLAm project (“Opening up education through Seamless and COLLAborative mobile learning on tablet computers”). The main research method applied during the development of the SCOLLAm mobile learning system is design-based research. It assumes iterative refinement of the system guided by collaboration between researches and practitioners. Following the identification of requirements, a multiplatform mobile learning system SCOLLAm [in]Form was developed. Several experiments were designed and conducted in the first and second grade of elementary school. SCOLLAm [in]Form system was used to design learning activities for math classes during which students practice calculation. System refinements were based on experience and interaction data gathered during class observations. In addition to implemented improvements, the data were used to outline possible improvements and deficiencies of the system that should be addressed in the next phase of the SCOLLAm [in]Form development.

Keywords: Adaptation, collaborative learning, educational technology, mobile learning, tablet computers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1183
7999 A Numerical Approach for Static and Dynamic Analysis of Deformable Journal Bearings

Authors: D. Benasciutti, M. Gallina, M. Gh. Munteanu, F. Flumian

Abstract:

This paper presents a numerical approach for the static and dynamic analysis of hydrodynamic radial journal bearings. In the first part, the effect of shaft and housing deformability on pressure distribution within oil film is investigated. An iterative algorithm that couples Reynolds equation with a plane finite elements (FE) structural model is solved. Viscosity-to-pressure dependency (Vogel- Barus equation) is also included. The deformed lubrication gap and the overall stress state are obtained. Numerical results are presented with reference to a typical journal bearing configuration at two different inlet oil temperatures. Obtained results show the great influence of bearing components structural deformation on oil pressure distribution, compared with results for ideally rigid components. In the second part, a numerical approach based on perturbation method is used to compute stiffness and damping matrices, which characterize the journal bearing dynamic behavior.

Keywords: Journal bearing, finite elements, deformation, dynamic analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1994