
A New Floating Point Implementation of Base 2
Logarithm

Ahmed M. Mansour, Ali M. El-Sawy, Ahmed T Sayed

Abstract — Logarithms reduce products to sums and powers

communication and information theory. They are primarily

used for hardware calculations, handling multiplications, divi-

sions, powers, and roots effectively. There are three commonly

used bases for logarithms; the logarithm with base-10 is called

the common logarithm, the natural logarithm with base-e and

the binary logarithm with base-2. This paper demonstrates dif-

ferent methods of calculation for log2 showing the complexity

of each and finds out the most accurate and efficient besides

giving insights to their hardware design. We present a new

method called Floor Shift for fast calculation of log2, and

then we combine this algorithm with Taylor series to improve

the accuracy of the output, we illustrate that by using two

examples. We finally compare the algorithms and conclude

with our remarks.

2, floor, iterative, CORDIC,

Taylor series.

I. INTRODUCTION

LOGARITHM tables have been used extensively in the

early 17th century to perform calculations used for many

applications in mathematics and science, until replaced in the

latter half of the 20th century by electronic calculators and

computers. Logarithmic scales reduce wide-ranging quantities

to smaller scopes; the binary logarithm is often used in digital

communications and information theory because it is closely

connected to the binary numeral system, information entropy

involves the binary logarithm, this is needed to compare the

efficiency of different probable implementation alternatives. If

a number n, greater than 1, is divided by 2 repeatedly, the

number of iterations needed to get a value at most 1 is the

integral part of log2(n). This idea is used in the analysis of

several algorithms that we present.

The effective methods to compute the logarithmic values of

data are divided into two main types; one is the look-up

table based algorithms and the other is Iterative methods. This

paper presents different algorithms that are used to calculate

log2 showing the accuracy and complexity in hardware design.

2

shows an Iterative method for calculating log2 where accuracy

Ahmed M. Mansour is with the Department of Electrical and

CORDIC method and how it is used for calculating log2,

2,

2

II. LOOK-UP TABLE METHOD

This algorithm depends on selecting a certain range of

interest and storing a LUT in ROM. It is the traditional method

for calculating the logarithm for any base but we must consider

memory resources needed for look-up tables and available

space. Implementation is direct forward since there are not

any decisions taken [1][2].

III. ITERATIVE METHOD

The input value X is first divided into mantissa m and

exponent e representation as:

X = m2e (1)

The logarithmic value of X can be expressed in terms of m

and e as:

log2(X) = e+ log2(m) =

log2(x)︷ ︸︸ ︷
e︸︷︷︸

Interger Part

+ log2(m)︸ ︷︷ ︸
Fraction Part

(2)

The logarithmic output is simply the sum of the integer part

and the fractional part as shown in Fig. 1. The exponent e is a

signed integer and it is exactly the integer part of y. Since the

exponent is of base-2 and the mantissa m takes values in the

range of [1, 2[, then its logarithmic value is in the range of [0,

1[. Fig. 2, shows the block diagram for calculating log2(x).

��������

	��
�

����
���

�����
���
���������

�

�

�������

�����

�����	��
��

Fig. 1. Main block diagram for Iterative algorithm

Keywords — Logarithms, log

Communication Engineering, Alexandria University, Egypt (e-mail:
ahmed.mansour@wasiela.com).

Ali M. El-Sawy and Ahmed T. Sayed are with wasiela , Cairo ,Egypt
(e-mail: ali.mohamed@wasiela.com , ahmed.sayed@wasiela.com).

II covers calculating log
The remaining of this paper is organized as follows; Section

using a look-up table, Section III

depends on the number of iterations, Section IV refers to the

to products; they play an important role in signal processing, Section V presents our proposed method for calculating log
Section VI presents our proposed method in calculating log
using Taylor series. We compare the algorithms in Section VII,

and finally Section VIII presents our conclusions and future work.

World Academy of Science, Engineering and Technology
International Journal of Information and Communication Engineering

 Vol:8, No:10, 2014

1352International Scholarly and Scientific Research & Innovation 8(10) 2014 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 I
nf

or
m

at
io

n
an

d
C

om
m

un
ic

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:8

, N
o:

10
, 2

01
4

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/9

99
96

00
.p

df

� � �

� � ���
�� ���

� �� � 	
��

����

� � ���
�� ���

�

��� �

�	�
�	����

	�
�

����

�

Fig. 2. Log2(m) calculation

Fig. 3, presents the exact value and the calculated value

of Log2(m) with different number of iterations, showing that

as number of iterations increases accuracy increases and vice

versa.

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Input value

Lo
g 2(I

np
ut

V
al

ue
)

Log2 Exact Value

Log2 calculated value at (N = 4)

Log2 calculated value at (N = 5)

Log2 calculated value at (N = 9)

Fig. 3. Exact value and calculated value of Log2(m)

IV. CORDIC METHOD

The CORDIC algorithm uses only adders and shifters. It

provides a relatively high precision output, which is suit-

able for hardware implementation. Calculating log2 using the

CORDIC algorithm depends on linear and inverse hyperbolic

tangent modes of CORDIC, then using (4) for conversion

between logarithm base-2 and natural logarithm [4][3].

ln(m) = 2 ∗ tanh−1(
m− 1

m+ 1
) (3)

log2(m) = loge(m) ∗ log2(e) (4)

The design of CORDIC algorithm for calculating loge(X)
using CORDIC method is presented in Fig. 4.

������
��	
��
���

������
���
��

� ����

�

�

�

��	��
� �

�

����
�

�

!�"#

Fig. 4. Main block diagram for CORDIC method

Error analysis shows that our CORDIC design is more

accurate than the design presented in [4] for the same example

points that we mentioned in Table I showing our minimized

error.

TABLE I
ERROR ANALYSIS

����� ���� �	
��
 �	���
 �	���
 �	��

����� �	������
 �	������� �	������
 �	
�����

V. NEW FLOOR-SHIFT METHOD

This section presents our new method of implementing log2,

let X be a binary number

X = XN−1XN−2..........X1X0 (5)

Where Xk is the binary digit, Xk = {0, 1}. Assume that

the binary digits XN−1XN−2....Xk+1 of X are all zeros and

Xk is 1. Then the leading one is Xk , thus we get:

X =

k∑
i=0

xi2
i = 2k +

k−1∑
i=0

xi2
i (6)

Since the logarithmic value of X can be expressed in terms

of m and e as in (1), so our method tries to calculate log2(X)
directly by getting the integer part then add the fraction part.

Our proposed method based on that presented in [5] which

creates a dependence between accuracy and number of itera-

tions, but here we calculate log2(X) directly independent of

the number of iterations; getting the floor of log2 of the input

obtaining the integer part then adding log2 of the mantissa

that presents the fraction part. This operation is described as

follows:

1) We calculate log2(X) by searching for the leading one

(i.e., position of Xk) to get the integer part of log2(X).
2) We can get the approximated value for log2(mantissa)

using (7), this operation is described in Fig. 5, noting

that we must have the same length N for data after

shifting the decimal point [6].

log2(m) =
x− 2�(log2(x)�

2�log2(x)�
(7)

Fig. 5. Floor shift method operation

If we apply (7) directly, we will get a maximum error

between exact and calculated values of 0.086, but I we

World Academy of Science, Engineering and Technology
International Journal of Information and Communication Engineering

 Vol:8, No:10, 2014

1353International Scholarly and Scientific Research & Innovation 8(10) 2014 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 I
nf

or
m

at
io

n
an

d
C

om
m

un
ic

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:8

, N
o:

10
, 2

01
4

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/9

99
96

00
.p

df

combine a simple LUT for certain values range and adding

0.04 as bias to center the error around zero for other values,

this modification will minimize the error to half. The next

section will present more improvements to this method for

calculating mantissa with more accuracy depending on Taylor

series.

Ex: log2(0.1): integer part = log2(0.1) = −4 and fraction part

calculation using (7) = 0.6, so log2(0.1) using this method =

(equals) -3.4.

VI. TAYLOR SERIES BASED IMPROVED METHOD

This method used Taylor series expansion to calculate log2
of the mantissa and then add its value to the floor of log2
of the input as shown in the last section, here we use (8) to

get the fraction part using Taylor series as in (9,10). We will

demonstrate how error depends on the point of expansion at

x=1 and x=1.5.

log2(m) =
X

2�log2(X)� (8)

Taylor series expansion can be written as follows:

ln(x) =
∞∑

n=1

(−1)n−1

n
(x− 1)n (9)

Also the conversion equation between ln(x) or loge(x) to

log2(x) can be rewritten as:

log2(x) =
ln(x)

ln(2)
=

loge(x)

loge(2)
(10)

Fig. 6, shows log2(m) using Taylor series when taking

3rd, 4th terms and taking the average of both will produce

approximated value for exact log2(m), noting that the accuracy

of output value increases as number of terms increases, also

noting here the performance of taking average of both 3rd and

4th terms is better than using 5th terms for this case.

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

m

Lo
g 2(m

)

Exact log2 value
taylor 3rd terms
taylor 4th terms
taylor average 3rd & 4th terms
taylor 5th terms

Fig. 6. Exact and calculated values for Taylor series algorithm

The error in this case of algorithm (x= 1) can be minimized

if we add certain values to the diverging o.

Ex: add 0.0119 to values greater than 1.6, the error distribution

is shown in Fig. 7.

−0.01 −0.008 −0.006 −0.004 −0.002 0 0.002 0.004 0.006 0.008 0.01
0

500

1000

1500

2000

2500

3000

3500

4000

Error

N
um

be
ro

fR
ep

et
iti

on

Fig. 7. Difference between exact and calculated values for Taylor series
algorithm with average Taylor terms with modification

B. Taylor Series Expansion Centered at x=1.5

Taylor series expansion can be written as follows:

ln(x) = ln(1.5) +

∞∑
n=1

(−1)n−1

n ∗ (1.5)n (x− 1.5)n (11)

The fraction part here of (log2(m)) is calculated by using

Taylor series expansion taking 4-terms as in (12):

log2(m) =
ln(1.5)

ln(2)
+

1

ln(2)

4∑
n=1

(−1)n−1

n ∗ (1.5)n (m− 1.5)n (12)

This case of algorithm does not need any modification or

biasing as shown in the error distribution in Fig. 8.

−2 −1.5 −1 −0.5 0 0.5 1
x 10−3

0

1000

2000

3000

4000

5000

6000

7000

Error

N
um

be
ro

fR
ep

et
iti

on

Fig. 8. Difference between exact and calculated values for Taylor series
algorithm with 4 terms Taylor series centered at x = 1.5

VII. COMPARISON

Fig. 9, presents the error analysis of each algorithm as a

function in SQNR and shows the maximum error that can

be obtained. It is clear that as SQNR increases the error

decreases and vice versa, also we can observe the curves are

overlapping together at specific SQNR values giving the same

error for all algorithms. If we increase the number of bits, the

additional bits will have different effect in reducing the error

and increasing SQNR of each algorithm. For example the gain

of increasing SQNR of CORDIC method is less than Taylor

which is also less than both, the Iterative and LUT methods,

also the gain of CORDIC method is higher than floor shift

A. Taylor Series Expansion Centered at x=1

World Academy of Science, Engineering and Technology
International Journal of Information and Communication Engineering

 Vol:8, No:10, 2014

1354International Scholarly and Scientific Research & Innovation 8(10) 2014 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 I
nf

or
m

at
io

n
an

d
C

om
m

un
ic

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:8

, N
o:

10
, 2

01
4

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/9

99
96

00
.p

df

method. Table II presents the maximum value of SQNR that

we can obtain to get minimum error for each algorithm.

25 30 35 40 45 50 55 60 65 70

10−2

10−1

SQNR

E
rr

or
(lo

g
sc

al
e)

LUT
Taylor (4 terms)
CORDIC
Iterative (N = 9)
Floor Shift

Fig. 9. SQNR Vs Error of each algorithm

Fig. 10, shows that the error distribution at maximum value

of SQNR for CORDIC and Iterative algorithms has a uniform

distribution around zero, while the mean of the errors in Taylor

and LUT algorithms are at zero with a little variance. Floor-

Shift algorithm has a uniform distribution of error for the

whole range.

Based on error distribution curves in Fig. 10, and the values

of SQNR in Table II. We chose the LUT, CORDIC, Taylor

and Iterative as the best algorithms for our next clarifying

comparison shown in Fig. 11.

TABLE II
MAXIMUM SQNR

�������	
 ��� ������	
� ��
 ������ ����� ��	��	�� ������

��
� ��� �� �� � �!

−4 −3 −2 −1 0 1 2 3 4
x 10−3

0

200

400

600

800

1000

1200

1400

1600

1800

Error

N
um

be
ro

fO
cc

ur
re

nc
e

LUT
Taylor (4 Terms)
Cordic
Iterative (N = 9)
Floor Shift

Fig. 10. Error distribution of each algorithm

Table III shows that the Taylor algorithm performance with

variance = 1.5e-07 and can be reduced if we increase the

number of terms, also the CORDIC algorithm has a variance =

9.8e-07 compared to the variance of the LUT algorithm which

is 7.6e-11.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
x 10−3

0

0.5

1

1.5

2

2.5

3

3.5
x 104

Error

N
um

be
ro

fO
cc

ur
re

nc
e

LUT
Taylor (4 Terms)
Cordic
Iterative (N = 9)

Fig. 11. Error distribution of efficient algorithms

TABLE III
VARIANCE OF EACH ALGORITHM

�������	
 ��� ������	
� ��
 ������ ����� ��	��	�� ������

�������� ��������� "�$������
�%������ $�%�����& ��'������

VIII. CONCLUSION

This paper presents the most common algorithms that are

used for the calculation of log2. It also proposes a new

technique for log2 calculation that exhibits good trade-off

between error, SQNR and accuracy. It is similar to the LUT

in that the accuracy is configurable, viz. more bits in LUT

provides the same effect on variance as adding terms to the

Taylor series or increase number of iterations. The analysis

shows that the LUT algorithm is the fastest one but it is not

area and power efficient. The Iterative has average speed, area

and power but its latency is high compared to the LUT and

Taylor. The CORDIC has average speed, but it is a power

design.

REFERENCES

[1] H. Hassler and N. Takagi, Function evaluation by table look-up and
addition, in Proc.12th Symp.on Computer Arithmetic, pp. 10-16, Jul.1995.

[2] D. DasSarma, D.W. Matula, Measuring the Accumcy of ROM Reciprocal
Tables, IEEE 11th Symp.on Computer Arithmetic, pp.932-940, Aug.1994.

[3] Pramod K. Meher, Javier Valls, Tso-Bing Juang, K. Sridharan and
Koushik Maharatna, 50 Years of CORDIC: Algorithms, Architectures and
Applications, Circuits and Systems I: Regular Papers, IEEE Transactions
on (Volume:56, Issue: 9).

[4] Liu Bangqiang, He Ling, Yan Xiao, Base-N Logarithm Implementation
on FPGA for the Data with Random Decimal Point Positions, (2013 IEEE
9th International Colloquium on Signal Processing and its Applications,
8-10 Mac. 2013, Kuala Lumpur, Malaysia)

[5] Kostopoulos, D.K, An algorithm for the computation of binary logarithms,
Computers, IEEE Transactions on (Volume:40 , Issue: 11).

[6] Tropea, S.E, FPGA Implementation of Base-N Logarithm, Programmable
Logic, 2007. SPL07. 2007 3rd Southern Conference.

World Academy of Science, Engineering and Technology
International Journal of Information and Communication Engineering

 Vol:8, No:10, 2014

1355International Scholarly and Scientific Research & Innovation 8(10) 2014 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 I
nf

or
m

at
io

n
an

d
C

om
m

un
ic

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:8

, N
o:

10
, 2

01
4

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/9

99
96

00
.p

df

