Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2295

Search results for: missing values

2295 A Testbed for the Experiments Performed in Missing Value Treatments

Authors: Dias de J. C. Lilian, Lobato M. F. Fábio, de Santana L. Ádamo

Abstract:

The occurrence of missing values in database is a serious problem for Data Mining tasks, responsible for degrading data quality and accuracy of analyses. In this context, the area has shown a lack of standardization for experiments to treat missing values, introducing difficulties to the evaluation process among different researches due to the absence in the use of common parameters. This paper proposes a testbed intended to facilitate the experiments implementation and provide unbiased parameters using available datasets and suited performance metrics in order to optimize the evaluation and comparison between the state of art missing values treatments.

Keywords: Data imputation, data mining, missing values treatment, testbed.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1268
2294 A Distance Function for Data with Missing Values and Its Application

Authors: Loai AbdAllah, Ilan Shimshoni

Abstract:

Missing values in data are common in real world applications. Since the performance of many data mining algorithms depend critically on it being given a good metric over the input space, we decided in this paper to define a distance function for unlabeled datasets with missing values. We use the Bhattacharyya distance, which measures the similarity of two probability distributions, to define our new distance function. According to this distance, the distance between two points without missing attributes values is simply the Mahalanobis distance. When on the other hand there is a missing value of one of the coordinates, the distance is computed according to the distribution of the missing coordinate. Our distance is general and can be used as part of any algorithm that computes the distance between data points. Because its performance depends strongly on the chosen distance measure, we opted for the k nearest neighbor classifier to evaluate its ability to accurately reflect object similarity. We experimented on standard numerical datasets from the UCI repository from different fields. On these datasets we simulated missing values and compared the performance of the kNN classifier using our distance to other three basic methods. Our  experiments show that kNN using our distance function outperforms the kNN using other methods. Moreover, the runtime performance of our method is only slightly higher than the other methods.

Keywords: Missing values, Distance metric, Bhattacharyya distance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2455
2293 Distances over Incomplete Diabetes and Breast Cancer Data Based on Bhattacharyya Distance

Authors: Loai AbdAllah, Mahmoud Kaiyal

Abstract:

Missing values in real-world datasets are a common problem. Many algorithms were developed to deal with this problem, most of them replace the missing values with a fixed value that was computed based on the observed values. In our work, we used a distance function based on Bhattacharyya distance to measure the distance between objects with missing values. Bhattacharyya distance, which measures the similarity of two probability distributions. The proposed distance distinguishes between known and unknown values. Where the distance between two known values is the Mahalanobis distance. When, on the other hand, one of them is missing the distance is computed based on the distribution of the known values, for the coordinate that contains the missing value. This method was integrated with Wikaya, a digital health company developing a platform that helps to improve prevention of chronic diseases such as diabetes and cancer. In order for Wikaya’s recommendation system to work distance between users need to be measured. Since there are missing values in the collected data, there is a need to develop a distance function distances between incomplete users profiles. To evaluate the accuracy of the proposed distance function in reflecting the actual similarity between different objects, when some of them contain missing values, we integrated it within the framework of k nearest neighbors (kNN) classifier, since its computation is based only on the similarity between objects. To validate this, we ran the algorithm over diabetes and breast cancer datasets, standard benchmark datasets from the UCI repository. Our experiments show that kNN classifier using our proposed distance function outperforms the kNN using other existing methods.

Keywords: Missing values, distance metric, Bhattacharyya distance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 542
2292 Adjusted Ratio and Regression Type Estimators for Estimation of Population Mean when some Observations are missing

Authors: Nuanpan Nangsue

Abstract:

Ratio and regression type estimators have been used by previous authors to estimate a population mean for the principal variable from samples in which both auxiliary x and principal y variable data are available. However, missing data are a common problem in statistical analyses with real data. Ratio and regression type estimators have also been used for imputing values of missing y data. In this paper, six new ratio and regression type estimators are proposed for imputing values for any missing y data and estimating a population mean for y from samples with missing x and/or y data. A simulation study has been conducted to compare the six ratio and regression type estimators with a previous estimator of Rueda. Two population sizes N = 1,000 and 5,000 have been considered with sample sizes of 10% and 30% and with correlation coefficients between population variables X and Y of 0.5 and 0.8. In the simulations, 10 and 40 percent of sample y values and 10 and 40 percent of sample x values were randomly designated as missing. The new ratio and regression type estimators give similar mean absolute percentage errors that are smaller than the Rueda estimator for all cases. The new estimators give a large reduction in errors for the case of 40% missing y values and sampling fraction of 30%.

Keywords: Auxiliary variable, missing data, ratio and regression type estimators.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1450
2291 Feature Selection Approaches with Missing Values Handling for Data Mining - A Case Study of Heart Failure Dataset

Authors: N.Poolsawad, C.Kambhampati, J. G. F. Cleland

Abstract:

In this paper, we investigated the characteristic of a clinical dataseton the feature selection and classification measurements which deal with missing values problem.And also posed the appropriated techniques to achieve the aim of the activity; in this research aims to find features that have high effect to mortality and mortality time frame. We quantify the complexity of a clinical dataset. According to the complexity of the dataset, we proposed the data mining processto cope their complexity; missing values, high dimensionality, and the prediction problem by using the methods of missing value replacement, feature selection, and classification.The experimental results will extend to develop the prediction model for cardiology.

Keywords: feature selection, missing values, classification, clinical dataset, heart failure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2885
2290 Comparison of Imputation Techniques for Efficient Prediction of Software Fault Proneness in Classes

Authors: Geeta Sikka, Arvinder Kaur Takkar, Moin Uddin

Abstract:

Missing data is a persistent problem in almost all areas of empirical research. The missing data must be treated very carefully, as data plays a fundamental role in every analysis. Improper treatment can distort the analysis or generate biased results. In this paper, we compare and contrast various imputation techniques on missing data sets and make an empirical evaluation of these methods so as to construct quality software models. Our empirical study is based on NASA-s two public dataset. KC4 and KC1. The actual data sets of 125 cases and 2107 cases respectively, without any missing values were considered. The data set is used to create Missing at Random (MAR) data Listwise Deletion(LD), Mean Substitution(MS), Interpolation, Regression with an error term and Expectation-Maximization (EM) approaches were used to compare the effects of the various techniques.

Keywords: Missing data, Imputation, Missing Data Techniques.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1441
2289 Use of Bayesian Network in Information Extraction from Unstructured Data Sources

Authors: Quratulain N. Rajput, Sajjad Haider

Abstract:

This paper applies Bayesian Networks to support information extraction from unstructured, ungrammatical, and incoherent data sources for semantic annotation. A tool has been developed that combines ontologies, machine learning, and information extraction and probabilistic reasoning techniques to support the extraction process. Data acquisition is performed with the aid of knowledge specified in the form of ontology. Due to the variable size of information available on different data sources, it is often the case that the extracted data contains missing values for certain variables of interest. It is desirable in such situations to predict the missing values. The methodology, presented in this paper, first learns a Bayesian network from the training data and then uses it to predict missing data and to resolve conflicts. Experiments have been conducted to analyze the performance of the presented methodology. The results look promising as the methodology achieves high degree of precision and recall for information extraction and reasonably good accuracy for predicting missing values.

Keywords: Information Extraction, Bayesian Network, ontology, Machine Learning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1955
2288 Prediction Modeling of Alzheimer’s Disease and Its Prodromal Stages from Multimodal Data with Missing Values

Authors: M. Aghili, S. Tabarestani, C. Freytes, M. Shojaie, M. Cabrerizo, A. Barreto, N. Rishe, R. E. Curiel, D. Loewenstein, R. Duara, M. Adjouadi

Abstract:

A major challenge in medical studies, especially those that are longitudinal, is the problem of missing measurements which hinders the effective application of many machine learning algorithms. Furthermore, recent Alzheimer's Disease studies have focused on the delineation of Early Mild Cognitive Impairment (EMCI) and Late Mild Cognitive Impairment (LMCI) from cognitively normal controls (CN) which is essential for developing effective and early treatment methods. To address the aforementioned challenges, this paper explores the potential of using the eXtreme Gradient Boosting (XGBoost) algorithm in handling missing values in multiclass classification. We seek a generalized classification scheme where all prodromal stages of the disease are considered simultaneously in the classification and decision-making processes. Given the large number of subjects (1631) included in this study and in the presence of almost 28% missing values, we investigated the performance of XGBoost on the classification of the four classes of AD, NC, EMCI, and LMCI. Using 10-fold cross validation technique, XGBoost is shown to outperform other state-of-the-art classification algorithms by 3% in terms of accuracy and F-score. Our model achieved an accuracy of 80.52%, a precision of 80.62% and recall of 80.51%, supporting the more natural and promising multiclass classification.

Keywords: eXtreme Gradient Boosting, missing data, Alzheimer disease, early mild cognitive impairment, late mild cognitive impairment, multiclass classification, ADNI, support vector machine, random forest.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 623
2287 Deadline Missing Prediction for Mobile Robots through the Use of Historical Data

Authors: Edwaldo R. B. Monteiro, Patricia D. M. Plentz, Edson R. De Pieri

Abstract:

Mobile robotics is gaining an increasingly important role in modern society. Several potentially dangerous or laborious tasks for human are assigned to mobile robots, which are increasingly capable. Many of these tasks need to be performed within a specified period, i.e, meet a deadline. Missing the deadline can result in financial and/or material losses. Mechanisms for predicting the missing of deadlines are fundamental because corrective actions can be taken to avoid or minimize the losses resulting from missing the deadline. In this work we propose a simple but reliable deadline missing prediction mechanism for mobile robots through the use of historical data and we use the Pioneer 3-DX robot for experiments and simulations, one of the most popular robots in academia.

Keywords: Deadline missing, historical data, mobile robots, prediction mechanism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1444
2286 Studies of Rule Induction by STRIM from the Decision Table with Contaminated Attribute Values from Missing Data and Noise — In the Case of Critical Dataset Size —

Authors: Tetsuro Saeki, Yuichi Kato, Shoutarou Mizuno

Abstract:

STRIM (Statistical Test Rule Induction Method) has been proposed as a method to effectively induct if-then rules from the decision table which is considered as a sample set obtained from the population of interest. Its usefulness has been confirmed by simulation experiments specifying rules in advance, and by comparison with conventional methods. However, scope for future development remains before STRIM can be applied to the analysis of real-world data sets. The first requirement is to determine the size of the dataset needed for inducting true rules, since finding statistically significant rules is the core of the method. The second is to examine the capacity of rule induction from datasets with contaminated attribute values created by missing data and noise, since real-world datasets usually contain such contaminated data. This paper examines the first problem theoretically, in connection with the rule length. The second problem is then examined in a simulation experiment, utilizing the critical size of dataset derived from the first step. The experimental results show that STRIM is highly robust in the analysis of datasets with contaminated attribute values, and hence is applicable to real-world data

Keywords: Rule induction, decision table, missing data, noise.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1120
2285 Imputation Technique for Feature Selection in Microarray Data Set

Authors: Younies Mahmoud, Mai Mabrouk, Elsayed Sallam

Abstract:

Analyzing DNA microarray data sets is a great challenge, which faces the bioinformaticians due to the complication of using statistical and machine learning techniques. The challenge will be doubled if the microarray data sets contain missing data, which happens regularly because these techniques cannot deal with missing data. One of the most important data analysis process on the microarray data set is feature selection. This process finds the most important genes that affect certain disease. In this paper, we introduce a technique for imputing the missing data in microarray data sets while performing feature selection.

Keywords: DNA microarray, feature selection, missing data, bioinformatics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2257
2284 Rotation Invariant Fusion of Partial Image Parts in Vista Creation using Missing View Regeneration

Authors: H. B. Kekre, Sudeep D. Thepade

Abstract:

The automatic construction of large, high-resolution image vistas (mosaics) is an active area of research in the fields of photogrammetry [1,2], computer vision [1,4], medical image processing [4], computer graphics [3] and biometrics [8]. Image stitching is one of the possible options to get image mosaics. Vista Creation in image processing is used to construct an image with a large field of view than that could be obtained with a single photograph. It refers to transforming and stitching multiple images into a new aggregate image without any visible seam or distortion in the overlapping areas. Vista creation process aligns two partial images over each other and blends them together. Image mosaics allow one to compensate for differences in viewing geometry. Thus they can be used to simplify tasks by simulating the condition in which the scene is viewed from a fixed position with single camera. While obtaining partial images the geometric anomalies like rotation, scaling are bound to happen. To nullify effect of rotation of partial images on process of vista creation, we are proposing rotation invariant vista creation algorithm in this paper. Rotation of partial image parts in the proposed method of vista creation may introduce some missing region in the vista. To correct this error, that is to fill the missing region further we have used image inpainting method on the created vista. This missing view regeneration method also overcomes the problem of missing view [31] in vista due to cropping, irregular boundaries of partial image parts and errors in digitization [35]. The method of missing view regeneration generates the missing view of vista using the information present in vista itself.

Keywords: Vista, Overlap Estimation, Rotation Invariance, Missing View Regeneration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1471
2283 Missing Link Data Estimation with Recurrent Neural Network: An Application Using Speed Data of Daegu Metropolitan Area

Authors: JaeHwan Yang, Da-Woon Jeong, Seung-Young Kho, Dong-Kyu Kim

Abstract:

In terms of ITS, information on link characteristic is an essential factor for plan or operation. But in practical cases, not every link has installed sensors on it. The link that does not have data on it is called “Missing Link”. The purpose of this study is to impute data of these missing links. To get these data, this study applies the machine learning method. With the machine learning process, especially for the deep learning process, missing link data can be estimated from present link data. For deep learning process, this study uses “Recurrent Neural Network” to take time-series data of road. As input data, Dedicated Short-range Communications (DSRC) data of Dalgubul-daero of Daegu Metropolitan Area had been fed into the learning process. Neural Network structure has 17 links with present data as input, 2 hidden layers, for 1 missing link data. As a result, forecasted data of target link show about 94% of accuracy compared with actual data.

Keywords: Data Estimation, link data, machine learning, road network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 962
2282 Recovery of Missing Samples in Multi-channel Oversampling of Multi-banded Signals

Authors: J. M. Kim, K. H. Kwon

Abstract:

We show that in a two-channel sampling series expansion of band-pass signals, any finitely many missing samples can always be recovered via oversampling in a larger band-pass region. We also obtain an analogous result for multi-channel oversampling of harmonic signals.

Keywords: oversampling, multi-channel sampling, recovery of missing samples, band-pass signal, harmonic signal

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1037
2281 Categorical Missing Data Imputation Using Fuzzy Neural Networks with Numerical and Categorical Inputs

Authors: Pilar Rey-del-Castillo, Jesús Cardeñosa

Abstract:

There are many situations where input feature vectors are incomplete and methods to tackle the problem have been studied for a long time. A commonly used procedure is to replace each missing value with an imputation. This paper presents a method to perform categorical missing data imputation from numerical and categorical variables. The imputations are based on Simpson-s fuzzy min-max neural networks where the input variables for learning and classification are just numerical. The proposed method extends the input to categorical variables by introducing new fuzzy sets, a new operation and a new architecture. The procedure is tested and compared with others using opinion poll data.

Keywords: Classifier, imputation techniques, fuzzy systems, fuzzy min-max neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1458
2280 Development of a Performance Measurement System for Forwarders

Authors: K. Schmidt, Z. Miodrag, C. Geiger

Abstract:

Performance Measurement is still a difficult task for forwarding companies. This is caused on the one hand by missing resources and on the other hand by missing tools. The research project “Management Information System for Logistics Service Providers" aims for closing the gap between needed and disposable solutions. Core of the project is the development

Keywords: Forwarder, Logistics, Management Information, Performance Measurement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1076
2279 Attribute Analysis of Quick Response Code Payment Users Using Discriminant Non-negative Matrix Factorization

Authors: Hironori Karachi, Haruka Yamashita

Abstract:

Recently, the system of quick response (QR) code is getting popular. Many companies introduce new QR code payment services and the services are competing with each other to increase the number of users. For increasing the number of users, we should grasp the difference of feature of the demographic information, usage information, and value of users between services. In this study, we conduct an analysis of real-world data provided by Nomura Research Institute including the demographic data of users and information of users’ usages of two services; LINE Pay, and PayPay. For analyzing such data and interpret the feature of them, Nonnegative Matrix Factorization (NMF) is widely used; however, in case of the target data, there is a problem of the missing data. EM-algorithm NMF (EMNMF) to complete unknown values for understanding the feature of the given data presented by matrix shape. Moreover, for comparing the result of the NMF analysis of two matrices, there is Discriminant NMF (DNMF) shows the difference of users features between two matrices. In this study, we combine EMNMF and DNMF and also analyze the target data. As the interpretation, we show the difference of the features of users between LINE Pay and Paypay.

Keywords: Data science, non-negative matrix factorization, missing data, quality of services.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 109
2278 Value Analysis of Islamic Banking and Conventional Banking to Measure Value Co-creation

Authors: Amna Javed, Hisashi Masuda, Youji Kohda

Abstract:

This study examines the value analysis in Islamic and conventional banking services in Pakistan. Many scholars have focused on co-creation of values in services but mainly economic values not non-economic. As Islamic banking is based on Islamic principles that are more concerned with non-economic values (well-being, partnership, fairness, trust worthy, and justice) than economic values as money in terms of interest.  This study is important to know the providers point of view about the co-created values, because, it may be more sustainable and appropriate for today’s unpredictable socio-economic environment. Data were collected from 4 banks (2 Islamic and 2 conventional banks). Text mining technique is applied for data analysis, and values with 100% occurrences in Islamic banking are chosen. The results reflect that Islamic banking is more centric towards non-economic values than economic values and it promotes team work and partnership concept by applying Islamic spirit and trust worthiness concept.

Keywords: Economic values, Islamic banking, Non-economic values, Value system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2904
2277 Reusing Assessments Tests by Generating Arborescent Test Groups Using a Genetic Algorithm

Authors: Ovidiu Domşa, Nicolae Bold

Abstract:

Using Information and Communication Technologies (ICT) notions in education and three basic processes of education (teaching, learning and assessment) can bring benefits to the pupils and the professional development of teachers. In this matter, we refer to these notions as concepts taken from the informatics area and apply them to the domain of education. These notions refer to genetic algorithms and arborescent structures, used in the specific process of assessment or evaluation. This paper uses these kinds of notions to generate subtrees from a main tree of tests related between them by their degree of difficulty. These subtrees must contain the highest number of connections between the nodes and the lowest number of missing edges (which are subtrees of the main tree) and, in the particular case of the non-existence of a subtree with no missing edges, the subtrees which have the lowest (minimal) number of missing edges between the nodes, where a node is a test and an edge is a direct connection between two tests which differs by one degree of difficulty. The subtrees are represented as sequences. The tests are the same (a number coding a test represents that test in every sequence) and they are reused for each sequence of tests.

Keywords: Chromosome, genetic algorithm, subtree, test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 476
2276 Array Signal Processing: DOA Estimation for Missing Sensors

Authors: Lalita Gupta, R. P. Singh

Abstract:

Array signal processing involves signal enumeration and source localization. Array signal processing is centered on the ability to fuse temporal and spatial information captured via sampling signals emitted from a number of sources at the sensors of an array in order to carry out a specific estimation task: source characteristics (mainly localization of the sources) and/or array characteristics (mainly array geometry) estimation. Array signal processing is a part of signal processing that uses sensors organized in patterns or arrays, to detect signals and to determine information about them. Beamforming is a general signal processing technique used to control the directionality of the reception or transmission of a signal. Using Beamforming we can direct the majority of signal energy we receive from a group of array. Multiple signal classification (MUSIC) is a highly popular eigenstructure-based estimation method of direction of arrival (DOA) with high resolution. This Paper enumerates the effect of missing sensors in DOA estimation. The accuracy of the MUSIC-based DOA estimation is degraded significantly both by the effects of the missing sensors among the receiving array elements and the unequal channel gain and phase errors of the receiver.

Keywords: Array Signal Processing, Beamforming, ULA, Direction of Arrival, MUSIC

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2749
2275 Cognitive Landscape of Values – Understanding the Information Contents of Mental Representations

Authors: J. Maksimainen

Abstract:

The values of managers and employees in organizations are phenomena that have captured the interest of researchers at large. Despite this attention, there continues to be a lack of agreement on what values are and how they influence individuals, or how they are constituted in individuals- mind. In this article content-based approach is presented as alternative reference frame for exploring values. In content-based approach human thinking in different contexts is set at the focal point. Differences in valuations can be explained through the information contents of mental representations. In addition to the information contents, attention is devoted to those cognitive processes through which mental representations of values are constructed. Such informational contents are in decisive role for understanding human behavior. By applying content-based analysis to an examination of values as mental representations, it is possible to reach a deeper to the motivational foundation of behaviors, such as decision making in organizational procedures, through understanding the structure and meanings of specific values at play.

Keywords: Content-based Approach, Mental Content, Mental Representations, Organizational values, Values

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1198
2274 Molecular Docking on Recomposed versus Crystallographic Structures of Zn-Dependent Enzymes and their Natural Inhibitors

Authors: Tudor Petreuş, Andrei Neamţu, Cristina Dascălu, Paul Dan Sîrbu, Carmen E. Cotrutz

Abstract:

Matrix metalloproteinases (MMP) are a class of structural and functional related enzymes involved in altering the natural elements of the extracellular matrix. Most of the MMP structures are cristalographycally determined and published in WorldWide ProteinDataBank, isolated, in full structure or bound to natural or synthetic inhibitors. This study proposes an algorithm to replace missing crystallographic structures in PDB database. We have compared the results of a chosen docking algorithm with a known crystallographic structure in order to validate enzyme sites reconstruction there where crystallographic data are missing.

Keywords: matrix metalloproteinases, molecular docking, structure superposition, surface complementarity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1390
2273 The Potential Involvement of Platelet Indices in Insulin Resistance in Morbid Obese Children

Authors: Orkide Donma, Mustafa M. Donma

Abstract:

Association between insulin resistance (IR) and hematological parameters has long been a matter of interest. Within this context, body mass index (BMI), red blood cells, white blood cells and platelets were involved in this discussion. Parameters related to platelets associated with IR may be useful indicators for the identification of IR. Platelet indices such as mean platelet volume (MPV), platelet distribution width (PDW) and plateletcrit (PCT) are being questioned for their possible association with IR. The aim of this study was to investigate the association between platelet (PLT) count as well as PLT indices and the surrogate indices used to determine IR in morbid obese (MO) children. A total of 167 children participated in the study. Three groups were constituted. The number of cases was 34, 97 and 36 children in the normal BMI, MO and metabolic syndrome (MetS) groups, respectively. Sex- and age-dependent BMI-based percentile tables prepared by World Health Organization were used for the definition of morbid obesity. MetS criteria were determined. BMI values, homeostatic model assessment for IR (HOMA-IR), alanine transaminase-to-aspartate transaminase ratio (ALT/AST) and diagnostic obesity notation model assessment laboratory (DONMA-lab) index values were computed. PLT count and indices were analyzed using automated hematology analyzer. Data were collected for statistical analysis using SPSS for Windows. Arithmetic mean and standard deviation were calculated. Mean values of PLT-related parameters in both control and study groups were compared by one-way ANOVA followed by Tukey post hoc tests to determine whether a significant difference exists among the groups. The correlation analyses between PLT as well as IR indices were performed. Statistically significant difference was accepted as p-value < 0.05. Increased values were detected for PLT (p < 0.01) and PCT (p > 0.05) in MO group compared to those observed in children with N-BMI. Significant increases for PLT (p < 0.01) and PCT (p < 0.05) were observed in MetS group in comparison with the values obtained in children with N-BMI (p < 0.01). Significantly lower MPV and PDW values were obtained in MO group compared to the control group (p < 0.01). HOMA-IR (p < 0.05), DONMA-lab index (p < 0.001) and ALT/AST (p < 0.001) values in MO and MetS groups were significantly increased compared to the N-BMI group. On the other hand, DONMA-lab index values also differed between MO and MetS groups (p < 0.001). In the MO group, PLT was negatively correlated with MPV and PDW values. These correlations were not observed in the N-BMI group. None of the IR indices exhibited a correlation with PLT and PLT indices in the N-BMI group. HOMA-IR showed significant correlations both with PLT and PCT in the MO group. All of the three IR indices were well-correlated with each other in all groups. These findings point out the missing link between IR and PLT activation. In conclusion, PLT and PCT may be related to IR in addition to their identities as hemostasis markers during morbid obesity. Our findings have suggested that DONMA-lab index appears as the best surrogate marker for IR due to its discriminative feature between morbid obesity and MetS.

Keywords: Children, insulin resistance, metabolic syndrome, plateletcrit, platelet indices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 358
2272 The Effects of Work Values, Work-Value Congruence and Work Centrality on Organizational Citizenship Behavior

Authors: Başak Uçanok

Abstract:

The aim of this study is to test the “work values" inventory developed by Tevruz and Turgut and to utilize the concept in a model, which aims to create a greater understanding of the work experience. In the study multiple effects of work values, work-value congruence and work centrality on organizational citizenship behavior are examined. In this respect, it is hypothesized that work values and work-value congruence predict organizational citizenship behavior through work centrality. Work-goal congruence test, Tevruz and Turgut-s work values inventory are administered along with Kanungo-s work centrality and Podsakoff et al.-s [47] organizational citizenship behavior test to employees working in Turkish SME-s. The study validated that Tevruz and Turgut-s work values inventory and the work-value congruence test were reliable and could be used for future research. The study revealed the mediating role of work centrality only for the relationship of work values and the responsibility dimension of citizenship behavior. Most important, this study brought in an important concept, work-value congruence, which enables a better understanding of work values and their relation to various attitudinal variables.

Keywords: Work values, work-value congruence, work centrality, organizational citizenship behavior.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3344
2271 Co-Creation of Non-Economic Values in Islamic Banking: A New Frontier in Service Science

Authors: Amna Javed, Katsuhiro Umemoto, Youji Kohda

Abstract:

The purpose of this paper is to examine co-creation of non-economic values in Islamic banking services and their significance for service science by comparing Islamic and conventional banking services. Although many scholars have discussed co-creation of values in services, most of them have focused on only economic values.

Following Sharia (Islamic principles that are based on Qur’an and Sunnah) traditions, Islamic banking is more concerned with such non-economic values as well-being, partnership, fairness, trust, and justice, than such economic values as money in terms of interest.  Therefore, it may be more sustainable and suitable for today’s unpredictable socio-economic environments.

We also argue that Islamic banking is essentially a value co-creation business model that fits better with the so-called Service-Dominant Logic (SDL) than conventional banking. This paper explores a new frontier of value co-creation in services, thereby contributing to further development of service science.

Keywords: Value co-creation, Islamic banking, Non-economic values, Service science.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2043
2270 The Relationship between Excreta Viscosity and TMEn in SBM

Authors: Ali Nouri Emamzadeh

Abstract:

The experiment was performed to study the relationship between excreta viscosity and Nitrogen-corrected true metabolisable energy quantities of soybean meals using conventional addition method (CAM) in adult cockerels for 7 d: a 3-d preexperiment and a 4-d experiment period. Results indicated that differences between the excreta viscosity values were (P<0.01) significant for SBMs. The excreta viscosity values were less (P<0.01) for SBMs 6, 2, 8, 1 and 3 than other SBMs. The mean TMEn (kcal/kg) values were significant (P<0.01) between SBMs. The most TMEn values were (P<0.01) for SBMs 6, 2, 8 and 1, also the lowest TMEn values were (P<0.01) for SBMs 3, 7, 4, 9 and 5. There was a reverse linear relationship between the values of excreta viscosity and TMEn in SBMs. In conclusion, there was a reverse linear relationship between the values of excreta viscosity and TMEn in SBMs probably due to their various soluble NSPs.

Keywords: soybean meals (SBMs), Nitrogen-corrected true metabolisable energy (TMEn), viscosity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1406
2269 Understanding of Heritage Values within University Education Systems in the Kingdom of Saudi Arabia

Authors: Mahmoud Tarek Mohamed Hammad

Abstract:

Despite the importance of the role and efforts made by the universities of the Kingdom of Saudi Arabia in reviving and preserving heritage architecture as an important cultural heritage in the Kingdom, The idea revolves around restoration and conservation processes and neglects the architectural heritage values, whose content can be used in sustainable contemporary architectural works. Educational values based on heritage architecture and how to integrate with the contemporary requirements were investigated in this research. For this purpose, by understanding the heritage architectural values as well as educational, academic process, the researcher presented an educational model of questionnaire forms for architecture students and the staff at the Architecture Department at Al-Baha University as a case study that serves the aims of the research. The results of the research show that heritage values especially those interview results are considered as a positive indicator of the importance of these values. The students and the staff need both to gain an understanding of heritage values as well as an understanding of theories of incorporating those values into the design process of contemporary local architecture. The research concludes that a correct understanding of the heritage values, its performance, and its reintegration with modern architecture technology should be focused on architectural education.

Keywords: Heritage architecture, academic work, heritage values, sustainable contemporary local architectural.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 250
2268 Review and Experiments on SDMSCue

Authors: Ashraf Anwar

Abstract:

In this work, I present a review on Sparse Distributed Memory for Small Cues (SDMSCue), a variant of Sparse Distributed Memory (SDM) that is capable of handling small cues. I then conduct and show some cognitive experiments on SDMSCue to test its cognitive soundness compared to SDM. Small cues refer to input cues that are presented to memory for reading associations; but have many missing parts or fields from them. The original SDM failed to handle such a problem. SDMSCue handles and overcomes this pitfall. The main idea in SDMSCue; is the repeated projection of the semantic space on smaller subspaces; that are selected based on the input cue length and pattern. This process allows for Read/Write operations using an input cue that is missing a large portion. SDMSCue is augmented with the use of genetic algorithms for memory allocation and initialization. I claim that SDM functionality is a subset of SDMSCue functionality.

Keywords: Artificial intelligence, recall, recognition, SDM, SDMSCue.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1153
2267 Neural Network Imputation in Complex Survey Design

Authors: Safaa R. Amer

Abstract:

Missing data yields many analysis challenges. In case of complex survey design, in addition to dealing with missing data, researchers need to account for the sampling design to achieve useful inferences. Methods for incorporating sampling weights in neural network imputation were investigated to account for complex survey designs. An estimate of variance to account for the imputation uncertainty as well as the sampling design using neural networks will be provided. A simulation study was conducted to compare estimation results based on complete case analysis, multiple imputation using a Markov Chain Monte Carlo, and neural network imputation. Furthermore, a public-use dataset was used as an example to illustrate neural networks imputation under a complex survey design

Keywords: Complex survey, estimate, imputation, neural networks, variance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1631
2266 Political Preconditions for National Values of the Kazakhstan Nation

Authors: Zhazira Kuanyshbayeva

Abstract:

Article is devoted to the problem of Kazakhstan people national values in the conditions of the Republic of Kazakhstan independence. Formation of ethnos national values is viewed as the mandatory constituent of this process in contemporary conditions. The article shows the dynamics of forming socialspiritual basis of Kazakhstan people-s national values. It depicts peculiarities of interethnic relations in poly-ethnic and multiconfessional Kazakhstan. The study reviews in every detail various directions of the state social policy development in the sphere of national values. It is aimed to consolidation of the society to achieve the shared objective, i.e. building democratic and civilized state. The author discloses peculiarities of ethnos national values development using specific sources. It is underlined that renewal and modernization of Kazakhstan society represents new stage in the national value development, and its typical feature is integration process based on peoples- friendship, cultural principles of interethnic communication.

Keywords: Interethnic relation, Kazakhstan people, national policy, national values.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1589