Recovery of Missing Samples in Multi-channel Oversampling of Multi-banded Signals

J. M. Kim, and K. H. Kwon

Abstract—We show that in a two-channel sampling series expansion of band-pass signals, any finitely many missing samples can always be recovered via oversampling in a larger band-pass region. We also obtain an analogous result for multi-channel oversampling of harmonic signals.

Keywords—oversampling, multi-channel sampling, recovery of missing samples, band-pass signal, harmonic signal

I. INTRODUCTION

F OR a bounded and closed band-region B, let PW_B be the Paley-Wiener space of finite energy (i.e. square integrable) signals of which frequencies are confined in B. That is,

$$PW_B := \{ f(t) \in L^2(\mathbb{R}) : \text{supp } \hat{f}(\xi) \subset B \},\$$

where $\mathcal{F}(f)(\xi) = \hat{f}(\xi) := \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) e^{-it\xi} dt$ is the Fourier transform of f(t) with inverse Fourier transform $f(t) = \mathcal{F}^{-1}(\hat{f})(t) := \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{f}(\xi) e^{it\xi} d\xi.$

If a signal f(t) is single-banded with band-region $B = [-\pi\omega, \pi\omega]$ ($\omega > 0$), then f(t) can be expanded as a Shannon sampling series:

$$f(t) = \sum_{n \in \mathbb{Z}} f\left(\frac{n}{\omega}\right) \frac{\sin \pi (t-n)}{\pi (t-n)}$$

in which all samples $\{f(\frac{n}{\omega}) : n \in \mathbb{Z}\}\$ are independent. However, if we oversample f(t) with higher rate than the optimal Nyquist rate ω , then the resulting samples are dependent. Using this observation, we may recover finitely many missing samples([2,3,5,8]). When we join oversampling and multi-channeling, we may or may not able to recover finitely missing samples depending on the nature of the band-region B and pre-filters used in channeling ([6,10]). In this work, we show that in case of band-pass and harmonic signals, any finitely many missing samples can be always recovered through a multi-channel oversampling in a larger band-region of the same type.

II. OVERSAMPLING OF BAND-PASS SIGNALS

Consider a band-pass region $B = B_- \cup B_+$, where $w_0, w > 0$ and

$$B_{-} = [-\pi(\omega_0 + \omega), -\pi\omega_0]$$
 and $B_{+} = [\pi\omega_0, \pi(\omega_0 + \omega)].$

Then the optimal Nyquist rate for signals in PW_B is ω samples per second. For τ with $0 < \tau \le w_0$, let $\tilde{B} = \tilde{B}_- \cup \tilde{B}_+$ be another band-pass region, where

$$B_{-} = \left[-\pi(\omega_0 + \omega + \tau), -\pi(\omega_0 - \tau)\right]$$

and

$$\tilde{B}_{+} = [\pi(\omega_0 - \tau), \pi(\omega_0 + \omega + \tau)].$$

We take τ so that $r := \frac{2\omega_0 + \omega}{2\tau + \omega}$ is a positive integer. Then $\tilde{B}_+ = \tilde{B}_- + r\pi(2\tau + \omega)$ so that \tilde{B} becomes a so-called selectively tiled band-region([4]) of length $2\pi\tilde{\omega}$ with $\tilde{\omega} = \omega + 2\tau$. Note that the smallest such τ is obtained when we take r to be the largest integer less than $1 + \frac{2\omega_0}{\omega}$. We now take two pre-filters of bounded measurable functions $A_j(\xi)$ (j = 1, 2) on \tilde{B} . We set

$$A(\xi) = \begin{bmatrix} A_1(\xi) & A_1(\xi + r\pi\tilde{\omega}) \\ A_2(\xi) & A_2(\xi + r\pi\tilde{\omega}) \end{bmatrix} \text{ on } \tilde{B}_-$$

and assume for some constant $\alpha > 0$, $|\det A(\xi)| \ge \alpha$ a.e. on \tilde{B}_{-} .

For any band-pass signal f(t) in $PW_{\tilde{B}}$, let

$$c_j(f)(t) := \mathcal{F}^{-1}(A_j(\xi)\hat{f}(\xi))(t) = \frac{1}{\sqrt{2\pi}} \int_{\tilde{B}} A_j(\xi)\hat{f}(\xi)e^{it\xi}d\xi$$
(1)

be the channeled output signals of the input signal f(t). Then ([4,7,8,9])

$$f(t) = \sum_{j=1}^{2} \sum_{n} c_j(f) \left(\frac{2n}{\tilde{\omega}}\right) S_{j,n}(t), \qquad (2)$$

which converges in $PW_{\tilde{B}}$ and also converges uniformly on \mathbb{R} . By taking Fourier transform on (2), we obtain

$$\hat{f}(\xi) = \sum_{j=1}^{2} \sum_{n} c_j(f) \left(\frac{2n}{\tilde{\omega}}\right) \phi_{j,n}(\xi),$$

which converges in $L^2(B)$, where

$$\phi_{j,n}(\xi) = \frac{1}{\tilde{\omega}} \sqrt{\frac{2}{\pi}} U_j(\xi) e^{-i\frac{2n}{\tilde{\omega}}} \xi$$

and

$$A(\xi)^{-1} = \begin{bmatrix} U_1(\xi) & U_2(\xi) \\ U_1(\xi + r\pi\tilde{\omega}) & U_2(\xi + r\pi\tilde{\omega}) \end{bmatrix} \text{ on } \tilde{B}_-.$$
 (3)

If f(t) is in PW_B , i.e., supp $\hat{f} \subset B$, then

$$\hat{f}(\xi) = \sum_{j=1}^{2} \sum_{n} c_j(f) \left(\frac{2n}{\tilde{\omega}}\right) \phi_{j,n}(\xi) \chi_B(\xi) \text{ in } L^2(B), \quad (4)$$

where $\chi_B(\xi)$ is the characteristic function of *B*. By taking inverse Fourier transform on (4), we have

$$f(t) = \sum_{j=1}^{2} \sum_{n} c_j(f) \left(\frac{2n}{\tilde{\omega}}\right) T_{j,n}(t)$$
(5)

where $T_{j,n}(t) = \frac{1}{\sqrt{2\pi}} \int_B \phi_{j,n} e^{it\xi} d\xi$. We may call (5) a twochannel oversampling series expansion of f(t) in PW_B .

The authors are with the Division of Applied Mathematics KAIST, Daejeon, Korea (e-mail: franzkim@amath.kaist.ac.kr, khkwon@amath.kaist.ac.kr)

III. RECOVERING MISSING SAMPLES

For a band-pass signal f(t) in PW_B , consider its oversampled expansion (5).

Lemma 1. We have for any integer m

$$c_k(f)\left(\frac{2m}{\tilde{\omega}}\right) = \frac{1}{\pi\tilde{\omega}}\sum_n c_k(f)\left(\frac{2n}{\tilde{\omega}}\right)\int_{B_-} e^{i\frac{2}{\tilde{\omega}}(m-n)\xi}$$
(6)

for k = 1, 2.

Proof: By (1) and (4), we have

$$c_k(f)(t) = \frac{1}{\sqrt{2\pi}} \int_{\tilde{B}} A_k(\xi) \hat{f}(\xi) e^{it\xi} d\xi$$
$$= \frac{1}{\pi\tilde{\omega}} \sum_{j=1}^2 \sum_n c_j \left(\frac{2n}{\tilde{\omega}}\right) \int_{\tilde{B}} A_k(\xi) U_j(\xi) \chi_B(\xi) e^{i(t-\frac{2n}{\tilde{\omega}})\xi} d\xi.$$

Hence for any integer m we have

$$c_{k}(f)\left(\frac{2m}{\tilde{\omega}}\right) = \frac{1}{\pi\tilde{\omega}}\sum_{j=1}^{2}\sum_{n}c_{j}\left(\frac{2n}{\tilde{\omega}}\right)\left[\int_{\tilde{B}_{-}}A_{k}(\xi)U_{j}(\xi)\chi_{B}(\xi)e^{i\frac{2}{\omega}(m-n)}d\xi\right] + \int_{\tilde{B}_{+}}A_{k}(\xi)U_{j}(\xi)\chi_{B}(\xi)e^{i\frac{2}{\omega}(m-n)}d\xi\right] = \frac{1}{\pi\tilde{\omega}}\sum_{j=1}^{2}\sum_{n}c_{j}\left(\frac{2n}{\tilde{\omega}}\right)\int_{\tilde{B}_{-}}\left[A_{k}(\xi)U_{j}(\xi) + A_{k}(\xi+r\pi\tilde{\omega})U_{j}(\xi+r\pi\tilde{\omega})\right]\chi_{B_{-}}(\xi)e^{i\frac{2}{\tilde{\omega}}(m-n)}d\xi,$$

from which (6) comes since $A_k(\xi)U_j(\xi) + A_k(\xi + \pi\tilde{\omega})U_j(\xi + \pi\tilde{\omega}) = \delta_{jk}$ by (3).

Theorem 1. For any finite index sets of integers I_1 and I_2 , any finite missing samples $\{c_1(f)(\frac{2m}{\tilde{\omega}}) : m \in I_1\} \cup \{c_2(f)(\frac{2n}{\tilde{\omega}}) : n \in I_2\}$ can be uniquely recovered.

Proof: Set $I_1 = \{m_1, m_2, \cdots, m_M\}$ if $I_1 \neq \phi$ and $I_2 = \{n_1, n_2, \cdots, n_N\}$ if $I_2 \neq \phi$. Then we have from (6)

$$c_1(f)\left(\frac{2m_j}{\tilde{\omega}}\right) = \frac{1}{\pi\tilde{\omega}} \sum_{k=1}^M r(m_j, m_k) c_1(f)\left(\frac{2m_k}{\tilde{\omega}}\right) + g_{1j} \quad (7)$$

for $1 \leq j \leq M$ and

$$c_2(f)\left(\frac{2n_j}{\tilde{\omega}}\right) = \frac{1}{\pi\tilde{\omega}}\sum_{k=1}^N r(n_j, n_k)c_2(f)\left(\frac{2n_k}{\tilde{\omega}}\right) + g_{2j} \quad (8)$$

for $1 \leq j \leq N$ where g_{1j} 's and g_{2j} 's are known quantities and

$$r(m,n) := \int_{B_-} e^{i\frac{2}{\omega}(m-n)\xi} d\xi \text{ for } m, n \in \mathbb{Z}.$$

We may write (7-8) in a vector form as :

$$\begin{cases} (I - S_1)\mathbf{c}_1 = \mathbf{g}_1\\ (I - S_2)\mathbf{c}_2 = \mathbf{g}_2 \end{cases}$$
(9)

where

$$\mathbf{c}_{1} := \left(c_{1}(f)\left(\frac{2m_{1}}{\tilde{\omega}}\right), \cdots, c_{1}(f)\left(\frac{2m_{M}}{\tilde{\omega}}\right)\right)^{T}, \\ \mathbf{c}_{2} := \left(c_{2}(f)\left(\frac{2n_{1}}{\tilde{\omega}}\right), \cdots, c_{2}(f)\left(\frac{2n_{N}}{\tilde{\omega}}\right)\right)^{T}, \\ \mathbf{g}_{1} := \left(g_{11}, \cdots, g_{1M}\right)^{T}, \\ \mathbf{g}_{2} := \left(g_{21}, \cdots, g_{2N}\right)^{T}, \end{cases}$$

and

$$S_1 = \left[\frac{1}{\pi\tilde{\omega}}r(m_j,m_k)\right]_{j,k=1}^M, \ S_2 = \left[\frac{1}{\pi\tilde{\omega}}r(n_j,n_k)\right]_{j,k=1}^N.$$

Note that S_1 and S_2 are self-adjoint. Now for any $u = (u_1, \cdots, u_M) \in \mathbb{C} \setminus \{0\},\$

$$\langle S_1 u, u \rangle = \frac{1}{\pi \tilde{\omega}} \sum_{j,k=1}^M r(m_j, m_k) u_k \overline{u_j}$$

$$= \int_{\tilde{B}_-} \Big| \sum_{j=1}^M \overline{u_j} \frac{1}{\sqrt{\pi \tilde{\omega}}} e^{i\frac{2}{\tilde{\omega}}m_j\xi} \Big|^2 \chi_{B_-}(\xi) d\xi$$

$$< \int_{\tilde{B}_-} \Big| \sum_{j=1}^M \overline{u_j} \frac{1}{\sqrt{\pi \tilde{\omega}}} e^{i\frac{2}{\tilde{\omega}}m_j\xi} \Big|^2 d\xi = \sum_{j=1}^M |u_j|^2$$

since $\{\frac{1}{\sqrt{\pi\tilde{\omega}}}e^{i\frac{2}{\tilde{\omega}}m\xi}\}_{m\in\mathbb{Z}}$ is an orthonormal basis of $L^2(\tilde{B}_-)$. Hence, 1 cannot be an eigenvalue of S_1 . Similarly, 1 cannot be an eigenvalue of S_2 . Therefore, both equations in (9) have unique solutions \mathbf{c}_1 and \mathbf{c}_2 .

Above process can be readily extended to multi-channel oversampling of harmonic signals (see [1] and Chaper 13 in [4]). Let f(t) be a harmonic signal in PW_B , where

$$B := \bigcup_{i=1}^{N} [a_i, b_i]$$

is a harmonic band-region and

$$b_i - a_i = \pi \omega \ (1 \le i \le N)$$

$$a_{i+1} - b_i = 2\pi \omega_0 \ (1 \le i < N) \text{ for } \omega, \ \omega_0 > 0.$$

For $0 < \tau \leq \omega_0$, let $\tilde{B} := \bigcup_{i=1}^N \tilde{B}_i$ be another harmonic bandregion, where

$$\tilde{B}_i = [a_i - \pi\tau, b_i + \pi\tau] \text{ for } 1 \le i \le N.$$

We take τ so that $r := \frac{2\omega_0 + \omega}{2\tau + \omega}$ is a positive integer. Then $\tilde{B}_j = \tilde{B}_i + (j - i)r\pi(2\tau + \omega)$ for $1 \le i < j \le N$ so that \tilde{B} becomes a so-called selectively tiled band-region of total length $N\pi\tilde{\omega}$, where $\tilde{\omega} = \omega + 2\tau$. We now take N pre-filters $A_j(\xi)$ $(j = 1, 2, \dots, N)$ of bounded measurable functions on \tilde{B} . We set $A(\xi)$ be the $N \times N$ matrix whose (j, k)th component is given by

$$A_{jk}(\xi) = A_j(\xi + (k-1)r\pi\tilde{\omega})$$

and assume $|\det A(\xi)| \ge \alpha > 0$ a.e. on \tilde{B}_1 . Let

$$c_j(f)(t) := \mathcal{F}^{-1}(A_j(\xi)\hat{f}(\xi))(t) = \frac{1}{\sqrt{2\pi}} \int_{\tilde{B}} A_j(\xi)\hat{f}(\xi)e^{it\xi}d\xi$$

be the channeled output signals. Proceeding as in Section 2, we can obtain an oversampling formula for any harmonic signal f(t) in PW_B (but viewed as a signal in $PW_{\tilde{B}}$) as

$$f(t) = \sum_{j=1}^{N} \sum_{n} c_j(f) \left(\frac{2n}{\tilde{\omega}}\right) T_{j,n}(t).$$
(10)

Then, we have the following multi-channel analog of Theorem 3.2.

Theorem 2. For any finite index sets of integers $I_i(i = 1, 2, \dots, N)$, any finite missing samples $\bigcup_{i=1}^{N} \{c_i(f)(\frac{2m}{\tilde{\omega}}) : m \in I_i\}$ from the oversampling (10) can be uniquely recovered.

ACKNOWLEDGMENT

This work is partially supported by BK-21 project and KRF(2002-070-C0004).

REFERENCES

- M.G. Beaty, M.M. Dodson, *The distribution of sampling rates for signals with equally wide, equally spaced spectral bands*, SIAM J. Appl. Math, vol. 53, no. 3, 1993, 893-906.
- [2] P.J.S.G. Ferreira, Incomplete sampling series and the recovery of missing samples from oversampled band-limited signals, IEEE Trans. Signal Processing, vol. 40, no. 1, 1992, 225-227.
- [3] P.J.S.G. Ferreira, The stability of a procedure for the recovery of lost samples in band-limited signals, Signal Proc., vol. 40, no. 3, 1994, 195-205.
- [4] J.R. Higgins, Sampling Theory in Fourier and Signal Analysis, Oxford University Press, Oxford, 1996.
- [5] Y.M. Hong, J.M. Kim and K.H. Kwon, Sampling theory in abstract reproducing kernel Hilbert space, submitted.
- [6] J.M. Kim and K.H. Kwon, *Recovery of finite missing samples in two*channel oversampling, preprint.
- [7] J.M. Kim, K.H. Kwon and E.H. Lee, Asymmetric multi-channel sampling formula and its aliasing error, submitted.
- [8] R.J. Marks II, Introduction to Shannon Sampling and Interpolation Theory, Springer-Verlag, New York, 1991.
- [9] A. Papoulis, Generalized sampling expansion, IEEE Trans. on circuits and systems, vol. 24, no. 11, 1977, 652-654.
- [10] D.M.S. Santos and P.J.S.G Ferreira, *Reconstruction from missing function and derivative samples and oversampled filter banks*, in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 04, vol. 3, 2004, 941-944.