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Abstract—The original 3D Lorenz-Haken equations -which describe 

laser dynamics- are converted into 2-second-order differential equations 
out of which the so far missing mathematics is extracted. Leaning on high-
order trigonometry, important outcomes are pulled out: A fundamental 
result attributes chaos to forbidden periodic solutions, inside some 
precisely delimited region of the control parameter space that governs 
self-pulsing. 
 

Keywords—Chaos, Lorenz-Haken equations, laser dynamics, 
nonlinearities. 

I. INTRODUCTION 
MONG a variety of nonlinearly coupled differential 
equations to involve chaotic dynamics, the Lorenz-Haken 

is undoubtedly the set that implicated incomparable interest 
from scientists in physics and mathematics [1], [2]. Yet, at the 
end of the 1990’s, after decades of widespread attention, 
Stephen Smale, the 1966 medal-Field laureate, had no other 
choice than include the Lorenz attractor among a list of 
challenging-problems for the 21st century [3]. Despite countless 
publications devoted to nonlinear dynamics, put out from the 
early 1960’s to the late 1990’s, Smale probes justifiably pointed 
out the lack of rigorous mathematical proofs to clarify the origin 
of aperiodic solutions. In addition, given the set of control-
parameter digits that govern the dynamics of nonlinear systems, 
no method is put forward to predict the manifestation of chaos. 
The solution characteristics extract with computer algorithms. 

Centered on basic trigonometry, a methodical routine applies 
to the coupled-oscillator model to pull out useful and genuine 
analytics, ultimately answering the question: Why do Lorenz-
Haken equations deliver aperiodic solutions when solving with 
computer algorithms?  

II. FROM THE ORIGINAL 3D SET TO A 2-COUPLED-OSCILLATOR 
MODEL 

Using Einstein’s notation, the Lorenz-Haken equations, 
which govern laser dynamics, write [4], [5] 

 ( ) = −( ( ) + 2 ( )),      (1a) 
 ( ) = − ( ) + ( ) ( ),      (1b) 
 = − ( ( ) + 1 + ( ) ( ))      (1c) 
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where ( ), ( ), and ( ) represent, respectively, the laser 
field amplitude, the polarization, and the population inversion 
of the amplifying medium.  and  are the field and population 
relaxation rates, both scaled to the polarization decay rate, while 2  quantifies some external power supply, meant to break the 
natural thermodynamic equilibrium, and transform an initially 
absorbing material into an amplifier. The dot above all three 
variables represents the first derivative with respect to time. 

In the unstable regime of operation, depending on the control 
parameter values, (1) delivers a wealth of solutions, accessible 
through computer algorithms, only. The lack of any 
mathematical proofs to elucidate the occurrence of chaotic 
dynamics led Smales [3] to hand out the strangeness of the 
Lorenz attractor as a challenge to the 21st century. 

The present contribution aims at solving Smale problem with 
basic trigonometry applied to a proposed set, which consists of 
two second-order differential equations, derived from (1) to 
couple the population inversion to the electric field and laser 
intensity, leaving aside the medium’s polarization. 

The key element to the conversion method consists in 
reordering (1a) into 

 ( ) = − ( ) − ( )         (2) 
 

Plugging ( ) and its first derivative into (1b), we pull out a 
second order differential equation for the electric field, with the 
population inversion as the driving source 

 ( ) + ( + 1) ( ) + ( ) + 2 ( ) ( ) = 0   (3) 
 

While (1c) reorganizes, likewise, into a second order 
differential equation for the population inversion, as 

 ( ) + ( ) + ( ) ( ) = ( ) ( ) 1 −


+ ( )


−( )              (4) 
 

Despite their apparent complexity, compared to (1), these 
equations have much to offer in analytical efficiency, especially 
in the strong harmonic mode associated with self-pulsing and 
chaos. 

III. ANALYTICAL OUTCOMES 
For completeness, the two oscillators will be investigated in 
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the small and strong harmonic modes. Both modes belonging to 
the class of solutions the Lorenz Haken equations deliver with 
computer simulations. 

A. The Small-Harmonic Mode 
With small enough perturbations as initial conditions, the 

electric field and population signals consist of small amplitude 
oscillations around the steady state ( , ) 

 ( ) = + cos( )       (5a) 
 ( ) = + ( )       (5b) 
 

with ≪  and ≪ . At the instability threshold, all 
quantities relate to the control parameters  and  (in the 
following, = 1 [4]) 

 

 = ±√2 − 1 = ± ( )( )


      (5c) 
 = − = − 

( )        (5d) 
 = ( )


          (5e) 

 
Driven with (5a), (4) transforms into a series of algebraic 

relations pointing solutions of the form 
 ( ) = + cos( ) + sin( ) = + cos( − )  

(6a) 
 

yielding, with further algebra, the phase and amplitude 
relationships  

 tan( ) = = 1 − = ( )( )


   (6b) 
 = 1 −


× = 

 ( ) ( )( )( )
 ( )( )

             (6c) 
 

Note the exclusive dependence on the control parameter . 
Driven with (5b), (3) implies a solution of the form 

 ( ) = + ( ) + sin( ) = + cos ( + )   
(6d) 

 
Additional algebra pulls out new expressions to the phase  

and amplitude  that are identical to (6b) and (6c). 
One may conclude that, in the small amplitude regime, the 

electric field and population oscillators hold the same harmonic 
solutions, with similar phase factors and amplitude 
relationships, indistinctly extracting from each of the coupled 
oscillators. Both oscillators nonlinearly interact to deliver 
coherent responses with respect to one another. This constitutes 
a first proof to the model cogency. To explore the chaos 
question, we need to put attention on strong harmonic solutions. 

These characterize (1) when the system drives away from the 
permanent state ( , ), at the onset of instability, to wander 
along unpredictable routes 

B. The Strong-Harmonic Mode 
The strong harmonic mode refers to the conditions under 

which the system delivers strong amplitude oscillations with 
zero mean values for the electric field 

 ( ) = ∑ cos (2 + 1)       (7a) 
 

While the population inversion evolves according to 
 ( ) = + ∑ cos(2 )      (7b) 
 

Limiting the developments to first and third order for the 
electric field, to second order for the population inversion, is all 
it takes to extract useful analytics and information. In view of 
their structural differences, the two oscillators are considered 
separately. 

1. The Population Oscillator 
The dominant part the driving field is its fundamental 

component 
 ( ) = cos ( )        (8a) 
 

injected into (4), we obtain 
 ( ) + ( ) +  ( ) ( ) =


− −


+ cos(2 ) − 1 −


sin(2 )  (8b) 

 
In response to the forcing factors, all of which contain second 

harmonic components, the population inversion expresses as 
 ( ) = + cos(2 ) + sin(2 ) = + cos 2 −

                (8c) 
 

Converting (4) into an algebraic equation from which gathers 
a series of relationships and ultimate expressions for the phase 
factor  and amplitude  

 tan = =  

 
( )( )


     (8d) 

 = 2√ ( )( )
( ) ×( )( ) ( )(  ) ( )( )


( )(  ) ( )(  ) ( )  (8e) 

 
Being real for any , these two expressions imply that driven 

with a strong harmonic field, the population inversion admits 
periodic solutions for any cavity decay rate. The same 
demonstration applies to any exciting higher field-order. This is 
not the case for the electric field oscillator, as hereafter 
established. 
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2. The Electric-Field Oscillator 
Considering a driving population of the form 

 ( ) = + cos(2 )       (9a) 
 

implies a coupling factor ( ) ( ) in (3), developing into first 
and third harmonics. The electric field response is bound to 
follow these same orders. Comprising essential out-of-phase 
components with respect to ( ), ( ) develops as 

 ( ) = cos( ) + sin( ) + cos(3 ) +sin(3 ) = cos( − ) + cos(3 − )     (9b) 
 

With (9a) and (9b), (3) converts into somewhat lengthy but 
straightforward relationship, out of which extract the following 

equations for the first and third order amplitude ratios  and 

 
 4 +  + 2  


+ 4 −  = 0   (10a) 

 4 −  + 2  


+ 4 +  = 0    (10b) 

 
both bearing the form of a second-degree polynomial equation + + = 0, with the solutions 

 

= tan( ) = −  
  ±  


  

     (10c) 

 

= tan( ) = −  
  ±  


  

    (10d) 

 
The discriminant, which is the same in (10c) and (10d), 

simplifies as 
 ∆=  


+ − 16      (10e) 

 
Transforming, at the instability threshold, into 

 ∆= ( )( )  ( )( ) + 1 − 16     (10f) 

 
Like any such polynomial equation, for real solutions to 

exist, ∆() must be positive. 
The discriminant, depicted Fig. 1, includes the expression for 

the population amplitude  (8e). The graph indicates that ∆ is 
negative for  values inside the range [2.17; 30.42]. The diagram 
may directly obtain, with minor differences, setting ≅ 0.4 in 
(10f). Consistently with (8e), the population amplitude always 
remains close to 0.4, for all ’s, in accordance with numerical 

outputs. According to this fundamental result, periodic 
solutions for the electric field oscillator admit exclusively 
outside the range of ’s with positive ∆; i.e., for  < 2.17 and  
> 30.42. That is just about what a chart of numerical solutions 
indicates [4], [5]. Periodic S1 solutions are obtained with (1) for 
 < 2.11 and  > 28.3. Theoretically, inside the range [2.17; 
30.42], aperiodicity and chaos should take over. These behaviors 
and characteristics go along computer-generated solutions, as a 
few typical examples demonstrate in the following section. 
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Fig. 1 Discriminant  vs , setting the limits of forbidden periodic 
solutions to the range [2.17; 30.42], for the electric-field oscillator 

 
Worth mentioning is that the Lorenz attractor, pointed out 

with an arrow in Fig. 1, traps way down at the bottom of the 
graph. Such a deep position is a sign of no periodic solution to 
the set of parameters originally selected by Lorenz, and clears 
up why the corresponding trajectory designates as robust. No 
matter how strong the external conditions vary, the attractor 
keeps the same strange shape. It is easy to sense the difficulty 
to vary and impose conditions that would pull the system from 
such negative values, which imply complex amplitudes for the 
electric field, and make it jump to real ones, with periodic 
solutions. Whereas, for control-parameter-values lower than, 
but close to 30, the solution may always constrain to hurdle 
through the region of positive values and acquire the properties 
of an S1 orbit.  

In short, in the unstable strong harmonic regime, the two 
coupled oscillators, derived out of the original Lorenz Haken 
equations, disclose no common solutions inside some specific 
region of the control parameter space. Whereas periodic 
solutions do characterize the population inversion oscillator for 
any , these are totally forbidden for the electric field oscillator 
inside some specifically delimited range of  values. The 
following computer simulations go along these analytical 
properties. 

IV. ANALYTICS VS NUMERIC: FROM COMPUTER 
SIMULATIONS TO ANALYTICAL SOLUTIONS 

The periodic and chaotic attractors represented in Fig. 2 fit-
in remarkably well to the analytical graph of Fig. 1. While for 
 = 2.1 (Fig. 2 (a)) the orbit is a symmetric limit cycle, it 
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explodes into chaotic, inside the whole range of forbidden 
periodic solutions. Respectively represented in Figs. 2 (b)-(d) 
are the attractors obtained with  = 2.4,  = 4.45 and  = 16.8. 
Beyond  = 30, the orbit remains permanently periodic. 
Conforming to the predicting mathematics are Figs. 2 (e) and 
(f), respectively simulated with  = 30, and  = 100. Indeed, it 
makes no sense to search for analytical portrayals of the 

aperiodic solutions, as those of Figs. 2 (b)-(d). On the other 
hand, any orbit that corresponds to control parameters values 
for which  is positive, as those of Figs. 2 (a), (e) and (f), is 
obtained analytically. The associated amplitudes and phase 
factors are extracted for the strong harmonic expressions. A few 
of these were developed in the preceding sections, while others 
are extracted with simple algebra. 
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Fig. 2 Regular and chaotic orbits, numerically simulated with (1), for (a)  = 2.1, (b)  = 2.4, (c)  = 4.45, (d)  = 16.8, (e)  = 30, and (f)  = 
100 

 
The periodic solution, simulated with  = 2.1, as represented 

in Fig. 3 (a), reproduces with the field and population 
expressions 

 ( ) = 19.3 cos( )       (11a) 
 ( ) = −0.01 + 0.39 cos(2 + /12)   (11b) 
 

Note that in this example, the electric field third order is 
irrelevant. Its inclusion does not notably alter the solution. 

The S1 solution of Fig. 3 (b) describes with 
 ( ) = 15.6  ( )       (12a) 
 ( ) = −0.03 + 0.39 cos(2 + /2.5)    (12b) 
 

It corresponds to Fig. 2 (e) and  = 30. In this case, playing 
some more important role, the third order harmonic cannot be 
neglected. 
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Fig. 3 Symmetric S1 phase-space orbits describing with (11) and 

(12). Compare with the numerical counterparts of Figs. 2 (a) and (e) 

V. CONCLUSION 
We put forward a methodical routine centered on a two-

oscillator model and basic trigonometry to pull out useful and 
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genuine analytics, ultimately answering the question: Why do 
the Lorenz-Haken equations deliver aperiodic solutions when 
solved with computer algorithms? Our investigations clarify the 
question with definitive analytics, recapitulating in a clear-cut 
verdict: inside an accurately defined range of control 
parameters, the Lorenz Haken equations provide no periodic 
solutions.  

As a straight consequence, Smale’s 14th problem cracks 
down. The Lorenz system becoming fully decidable. Let us 
point out that the original set of parameters chosen by Lorenz, 
in his first publication, bears no specific singularity. It belongs 
to a widespread control parameter-range that delivers no other 
trajectory than aperiodic. 
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