Search results for: mini wastewater treatment plant
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2322

Search results for: mini wastewater treatment plant

2232 Sewage Sludge Management in Egypt: Current Status and Perspectives towards a Sustainable Agricultural Use

Authors: M. Ghazy, T. Dockhorn, N. Dichtl

Abstract:

The present disposal routes of sewage sludge represent a critical environmental issue in Egypt. Recently, there has been an increasing concern about sewage sludge management due to the environmental risks, which resulted from the fast expansion of wastewater treatment plants without equal attention in dealing with the produced sludge. This paper discusses the current situation of sewage sludge management in Egypt presenting a brief overview of the existing wastewater treatment plants, sludge production and characteristics as well as options of beneficial use and potential demand of sewage sludge under Egyptian conditions. The characteristics of sewage sludge are discussed considering the results of own sampling and analysis as well as previous studies. Furthermore, alternative treatment scenarios for sewage sludge, which have been recently developed in Egypt, are discussed and perspectives for a sustainable agricultural use are outlined.

Keywords: Beneficial use, Egypt, Monetary value, Stabilization processes, Sewage sludge, Sludge management

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4381
2231 Well-Being of Lagos Urban Mini-Bus Drivers: The Influence of Age and Marital Status

Authors: Bolajoko I. Malomo, Maryam O. Yusuf

Abstract:

Lagos urban mini bus drivers play a critical role in the transportation sector. The current major mode of transportation within Lagos metropolis remains road transportation and this confirms the relevance of urban mini-bus drivers in transporting the populace to their various destinations. Other modes of transportation such as the train and waterways are currently inadequate. Various threats to the well-being of urban bus drivers include congested traffic typical of modern day lifestyles, dwindling financial returns due to long hours in traffic, fewer hours of sleep, inadequate diet, time pressure, and assaults related to fare disputes. Several healthrelated problems have been documented to be associated with urban bus driving. For instance, greater rates of hypertension, obesity and cholesterol level have been reported. Research studies are yet to identify the influence of age and marital status on the well-being of urban mini-bus drivers in Lagos metropolis. A study of this nature is necessary as it is culturally perceived in Nigeria that older and married people are especially influenced by family affiliation and would behave in ways that would project positive outcomes. The study sample consisted of 150 urban mini-bus drivers who were conveniently sampled from six (6) different terminuses where their journey begins and terminates. The well-being questionnaire was administered to participants. The criteria for inclusion in the study included the ability to read in English language and the confirmation that interested participants were on duty and suited to be driving mini-buses. Due to the nature of the job of bus driving, the researcher administered the questionnaires on participants who were free and willing to respond to the survey. All participants were males of various age groups and of different marital statuses. Results of analyses conducted revealed no significant influence of age and marital status on the well-being of urban mini-bus drivers. This indicates that the well-being of urban mini bus drivers is not influenced by age or marital status. The findings of this study have cultural implications. It negates the popularly held belief that older and married people care more about their well-being than younger and single people. It brings to fore the need to also identify and consider other factors when certifying people for the job of urban bus driving.

Keywords: Age, Lagos metropolis, marital status, well-being of urban mini bus drivers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1765
2230 Hydrodynamic Modeling of a Surface Water Treatment Pilot Plant

Authors: C.-M. Militaru, A. Pǎcalǎ, I. Vlaicu, K. Bodor, G.-A. Dumitrel, T. Todinca

Abstract:

A mathematical model for the hydrodynamics of a surface water treatment pilot plant was developed and validated by the determination of the residence time distribution (RTD) for the main equipments of the unit. The well known models of ideal/real mixing, ideal displacement (plug flow) and (one-dimensional axial) dispersion model were combined in order to identify the structure that gives the best fitting of the experimental data for each equipment of the pilot plant. RTD experimental results have shown that pilot plant hydrodynamics can be quite well approximated by a combination of simple mathematical models, structure which is suitable for engineering applications. Validated hydrodynamic models will be further used in the evaluation and selection of the most suitable coagulation-flocculation reagents, optimum operating conditions (injection point, reaction times, etc.), in order to improve the quality of the drinking water.

Keywords: drinking water, hydrodynamic modeling, pilot plant, residence time distribution, surface water.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1631
2229 Effect of Domestic Treated Wastewater use on Three Varieties of Quinoa (Chenopodium quinoa) under Semi Arid Conditions

Authors: El Youssfi L., Choukr-Allah R., Zaafrani M., Mediouni T., Ba Samba M., Hirich A

Abstract:

The purpose of this work was to study the effect of the irrigation using waste water with various electric conductivities (T(0,92ds/m), EC3 (3ds/m) and EC6 (6ds/m) on three varieties of quinoa cultivated in a field south of Morocco. The follow up of the evolution of the chemical and agronomic parameters throughout the culture made it possible to determine the responses to the saline stress in arid conditions. Results showed that the salinity caused the depression of plant-s height, and reduced the fresh and dry weight in the different parts of the three varieties plants. The increase of the irrigation water EC didn-t affect the yield for the varieties. Thus, quinoa resisted to salinity and proved a behavior of a facultative halophyte crop. In fact, the cultivation of this using treated wastewater is feasible especially in arid areas for a sustainable use of water resources.

Keywords: Quinoa, salinity, semi-arid, treated wastewater.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1872
2228 Estimation and Removal of Chlorophenolic Compounds from Paper Mill Waste Water by Electrochemical Treatment

Authors: R. Sharma, S. Kumar, C. Sharma

Abstract:

A number of toxic chlorophenolic compounds are formed during pulp bleaching. The nature and concentration of these chlorophenolic compounds largely depends upon the amount and nature of bleaching chemicals used. These compounds are highly recalcitrant and difficult to remove but are partially removed by the biochemical treatment processes adopted by the paper industry. Identification and estimation of these chlorophenolic compounds has been carried out in the primary and secondary clarified effluents from the paper mill by GCMS. Twenty-six chorophenolic compounds have been identified and estimated in paper mill waste waters. Electrochemical treatment is an efficient method for oxidation of pollutants and has successfully been used to treat textile and oil waste water. Electrochemical treatment using less expensive anode material, stainless steel electrodes has been tried to study their removal. The electrochemical assembly comprised a DC power supply, a magnetic stirrer and stainless steel (316 L) electrode. The optimization of operating conditions has been carried out and treatment has been performed under optimized treatment conditions. Results indicate that 68.7% and 83.8% of cholorphenolic compounds are removed during 2 h of electrochemical treatment from primary and secondary clarified effluent respectively. Further, there is a reduction of 65.1, 60 and 92.6% of COD, AOX and color, respectively for primary clarified and 83.8%, 75.9% and 96.8% of COD, AOX and color, respectively for secondary clarified effluent. EC treatment has also been found to increase significantly the biodegradability index of wastewater because of conversion of non- biodegradable fraction into biodegradable fraction. Thus, electrochemical treatment is an efficient method for the degradation of cholorophenolic compounds, removal of color, AOX and other recalcitrant organic matter present in paper mill waste water.

Keywords: Chlorophenolics, effluent, electrochemical treatment, wastewater.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1857
2227 Effects of Oilfield Water Treated by Electroflocculation and Reverse Osmosis in a Typical Brazilian Semiarid Soil

Authors: P. S. A. Souza, M. R. C. Marques, M. M. Rigo, A. A. Cerqueira, J. L. Paiva, F. Merçon, D. V. Perez

Abstract:

Produced water (PW), which is water extracted along with oil, is the largest waste stream in the oil and gas industry. With the proper treatment, this wastewater can be used in agricultural irrigation. This study evaluated the effects the application of PW treated by electroflocculation (EF) and combined electroflocculation-reverse osmosis (EF-RO) on soil salinity and sodification parameters. Excessive sodium levels in PW treated by EF may affect soil structural stability and plant growth, and tends to accumulate in upper layers, displacing the nutrient K to deeper layers of the soil profile. PW treated by EF-RO did not promote salinization and soil sodification, indicating that this combined technique may be a viable alternative for oily water treatment aiming at irrigation use in semiarid regions.

Keywords: Electroflocculation, irrigation, produced water, reverse osmosis, soil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 535
2226 Improving Water Productivity of Chickpea by the Use of Deficit Irrigation with Treated Domestic Wastewater

Authors: Hirich A., Choukr-allah R., Jacobsen S-E., Hamdy A., El youssfi L., El Omari H.

Abstract:

An experiment was performed in the south of Morocco in order to evaluate the effect of deficit irrigation by treated wastewater on chickpea production. We applied six irrigation treatments on a local variety of chickpea by supplying alternatively 50 or 100% of ETm in a completely randomized design. We found a highly significant difference between treatments in terms of biomass production. Drought stress during the vegetative period showed highest yield with 6.5 t/ha which was more than the yield obtained for the control (4.9 t/ha). The optimal crop stage in which deficit irrigation can be applied is the vegetative growth stage, as the crop has a chance to develop its root system, to be able to cover the plant needs for water and nutrient supply during the rest of cycle, and non stress conditions during the flowering and seed filling stages allow the plant to optimize its photosynthesis and carbon translocation, therefore increase its productivity.

Keywords: chickpea, crop stages, drought stress, water productivity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3479
2225 Energy Production Potential from Co-Digestion between Frozen Seafood Wastewater and Decanter Cake in Thailand

Authors: Thaniya Kaosol, Narumol Sohgrathok

Abstract:

In this paper, a Biochemical Methane Potential (BMP) test provides a measure of the energy production potential from codigestion between the frozen seafood wastewater and the decanter cake. The experiments were conducted in laboratory-scale. The suitable ratio of the frozen seafood wastewater and the decanter cake was observed in the BMP test. The ratio of the co-digestion between the frozen seafood wastewater and the decanter cake has impacts on the biogas production and energy production potential. The best performance for energy production potential using BMP test observed from the 180 ml of the frozen seafood wastewater and 10 g of the decanter cake ratio. This ratio provided the maximum methane production at 0.351 l CH4/g TCODremoval. The removal efficiencies are 76.18%, 83.55%, 43.16% and 56.76% at TCOD, SCOD, TS and VS, respectively. The result can be concluded that the decanter cake can improve the energy production potential of the frozen seafood wastewater. The energy provides from co-digestion between frozen seafood wastewater and decanter cake approximately 19x109 MJ/year in Thailand.

Keywords: Frozen seafood wastewater, decanter cake, biogas, methane, BMP test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2228
2224 Influence of the Flow Rate Ratio in a Jet Pump on the Size of Air Bubbles

Authors: L. Grinis, N. Lubashevsky, Y. Ostrovski

Abstract:

In wastewater treatment processes, aeration introduces air into a liquid. In these systems, air is introduced by different devices submerged in the wastewater. Smaller bubbles result in more bubble surface area per unit of volume and higher oxygen transfer efficiency. Jet pumps are devices that use air bubbles and are widely used in wastewater treatment processes. The principle of jet pumps is their ability to transfer energy of one fluid, called primary or motive, into a secondary fluid or gas. These pumps have no moving parts and are able to work in remote areas under extreme conditions. The objective of this work is to study experimentally the characteristics of the jet pump and the size of air bubbles in the laboratory water tank. The effect of flow rate ratio on pump performance is investigated in order to have a better understanding about pump behavior under various conditions, in order to determine the efficiency of receiving air bubbles different sizes. The experiments show that we should take care when increasing the flow rate ratio while seeking to decrease bubble size in the outlet flow. This study will help improve and extend the use of the jet pump in many practical applications.

Keywords: Jet pump, air bubbles size, retention time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2955
2223 Bioremediation of Hydrocarbon and Some Heavy Metal Polluted Wastewater Effluent of a Typical Refinery

Authors: S. Abdulsalam, A. D. I. Suleiman, N. M. Musa, M. Yusuf

Abstract:

Environment free of pollutants should be the concern of every individual but with industrialization and urbanization it is difficult to achieve. In view of achieving a pollution limited environment at low cost, a study was conducted on the use of bioremediation technology to remediate hydrocarbons and three heavy metals namely; copper (Cu), zinc (Zn) and iron (Fe) from a typical petroleum refinery wastewater in a closed system. Physicochemical and microbiological characteristics on the wastewater sample revealed that it was polluted with the aforementioned pollutants. Isolation and identification of microorganisms present in the wastewater sample revealed the presence of Bacillus subtilis, Micrococcus luteus, Staphylococcus aureus and Staphylococcus epidermidis. Bioremediation experiments carried out on five batch reactors with different compositions but at same environmental conditions revealed that treatment T5 (boosted with the association of Bacillus subtilis, Micrococcus luteus) gave the best result in terms of oil and grease content removal (i.e. 67% in 63 days). In addition, these microorganisms were able of reducing the concentrations of heavy metals in the sample. Treatments T5, T3 (boosted with Bacillus subtilis only) and T4 (boosted with Micrococcus luteus only) gave optimum percentage uptakes of 65, 75 and 25 for Cu, Zn and Fe respectively.

Keywords: Boosted, bioremediation, closed system, aeration, uptake, wastewater.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1552
2222 Effect of Different Treatments on the Periphyton Quantity and Quality in Experimental Fishponds

Authors: T. Kosáros, D. Gál, F. Pekár, Gy. Lakatos

Abstract:

Periphyton development and composition were studied in three different treatments: (i) two fishpond units of wetland-type wastewater treatment pond systems, (ii) two fishponds in combined intensive-extensive fish farming systems and (iii) three traditional polyculture fishponds. Results showed that amounts of periphyton developed in traditional polyculture fishponds (iii) were different compared to the other treatments (i and ii), where the main function of ponds was stated wastewater treatment. Negative correlation was also observable between water quality parameters and periphyton production. The lower trophity, halobity and saprobity level of ponds indicated higher amount of periphyton. The dry matter content of periphyton was significantly higher in the samples, which were developed in traditional polyculture fishponds (2.84±3.02 g m-2 day-1, whereby the ash content in dry matter 74%), than samples taken from (i) (1.60±2.32 g m-2 day-1, 61%) and (ii) fishponds (0.65±0.45 g m-2 day-1, 81%).

Keywords: Artificial substrate, fishpond, periphyton, waterquality

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1410
2221 Flight Control of a Trirotor Mini-UAV for Enhanced Situational Awareness

Authors: Igor Astrov, Andrus Pedai

Abstract:

This paper focuses on a critical component of the situational awareness (SA), the control of autonomous vertical flight for an unmanned aerial vehicle (UAV). Autonomous vertical flight is a challenging but important task for tactical UAVs to achieve high level of autonomy under adverse conditions. With the SA strategy, we proposed a two stage flight control procedure using two autonomous control subsystems to address the dynamics variation and performance requirement difference in initial and final stages of flight trajectory for a nontrivial nonlinear trirotor mini-UAV model. This control strategy for chosen mini-UAV model has been verified by simulation of hovering maneuvers using software package Simulink and demonstrated good performance for fast SA in realtime search-and-rescue operations.

Keywords: Flight control, trirotor aircraft, situational awareness, unmanned aerial vehicle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2122
2220 Performance of Phytogreen Zone for BOD5 and SS Removal for Refurbishment Conventional Oxidation Pond in an Integrated Phytogreen System

Authors: A. R. Abdul Syukor, A. W. Zularisam, Z. Ideris, M. S. Mohd Ismid, H. M. Nakmal, S. Sulaiman, A. H. Hasmanie, M. R. Siti Norsita, M. Nasrullah

Abstract:

In this study, the effectiveness of an integrated aquatic plants in phytogreen zone was studied and statistical analysis for the promotional integrated phytogreen system approached was discussed. It was found that's the effectiveness of using aquatic plant such as Typha angustifolia sp., Lepironia articulata sp., Limnocharis flava sp., Monochoria vaginalis sp., Pistia stratiotes sp., and Eichhornia crassipes sp., in the conventional oxidation pond process in order to comply the standard A according to Malaysia Environmental Quality Act 1974 (Act 127); Environmental Quality (Sewage) Regulation 2009 for effluent discharge into inland water near the residential area was successfully shown. It was concluded that the integrated phtogreen system developed in this study has great potential for refurbishment wastewater in conventional oxidation pond.

Keywords: Phytoremediation, integrated phytogreen system, sewage treatment plant, oxidation pond, aquatic plants.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2122
2219 Application of Genetic Engineering for Chromium Removal from Industrial Wastewater

Authors: N. K. Srivastava, M. K. Jha, I. D. Mall, Davinder Singh

Abstract:

The treatment of the industrial wastewater can be particularly difficult in the presence of toxic compounds. Excessive concentration of Chromium in soluble form is toxic to a wide variety of living organisms. Biological removal of heavy metals using natural and genetically engineered microorganisms has aroused great interest because of its lower impact on the environment. Ralston metallidurans, formerly known as Alcaligenes eutrophus is a LProteobacterium colonizing industrial wastewater with a high content of heavy metals. Tris-buffered mineral salt medium was used for growing Alcaligenes eutrophus AE104 (pEBZ141). The cells were cultivated for 18 h at 30 oC in Tris-buffered mineral salt medium containing 3 mM disodium sulphate and 46 mM sodium gluconate as the carbon source. The cells were harvested by centrifugation, washed, and suspended in 10 mM Tris HCl, pH 7.0, containing 46 mM sodium gluconate, and 5 mM Chromium. Interaction among induction of chr resistance determinant, and chromate reduction have been demonstrated. Results of this study show that the above bacteria can be very useful for bioremediation of chromium from industrial wastewater.

Keywords: Chromium, Genetic Engineering, IndustrialWastewater, Plasmid

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2295
2218 Effects of Wastewater Strength and Salt Stress on Microalgal Biomass Production and Lipid Accumulation

Authors: Praepilas Dujjanutat, Pakawadee Kaewkannetra

Abstract:

This work aims to investigate a potential of microalgae for utilizing industrial wastewater as a cheap nutrient for their growth and oil accumulation. Wastewater was collected from the effluent ponds of agro-industrial factories (cassava and ethanol production plants). Only 2 microalgal strains were isolated and identified as Scenedesmus quadricauda and Chlorella sp.. However, only S. quadricauda was selected to cultivate in various wastewater concentrations (10%, 20%, 40%, 60%, 80% and 100%). The highest biomass obtained at 6.6×106 and 6.27×106 cells/ml when 60% wastewater was used in flask and photo-bioreactor. The cultures gave the highest lipid content at 18.58 % and 42.86% in cases of S. quadricauda and S. obliquus. In addition, under salt stress (1.0 M NaCl), S. obliquus demonstrated the highest lipid content at 50% which was much more than the case of no NaCl adding. However, the concentration of NaCl does not affect on lipid accumulation in case of S. quadricauda.

Keywords: Cassava wastewater, cultivation, lipid accumulation, microalgae

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2252
2217 Pollutants Removal from Synthetic Wastewater by the Combined Electrochemical Sequencing Batch Reactor

Authors: Amin Mojiri, Akiyoshi Ohashi, Tomonori Kindaichi

Abstract:

Synthetic domestic wastewater was treated via combining treatment methods, including electrochemical oxidation, adsorption, and sequencing batch reactor (SBR). In the upper part of the reactor, an anode and a cathode (Ti/RuO2-IrO2) were organized in parallel for the electrochemical oxidation procedure. Sodium sulfate (Na2SO4) with a concentration of 2.5 g/L was applied as the electrolyte. The voltage and current were fixed on 7.50 V and 0.40 A, respectively. Then, 15% working value of the reactor was filled by activated sludge, and 85% working value of the reactor was added with synthetic wastewater. Powdered cockleshell, 1.5 g/L, was added in the reactor to do ion-exchange. Response surface methodology was employed for statistical analysis. Reaction time (h) and pH were considered as independent factors. A total of 97.0% biochemical oxygen demand, 99.9% phosphorous and 88.6% cadmium were eliminated at the optimum reaction time (80.0 min) and pH (6.4).

Keywords: Adsorption, electrochemical oxidation, metals, sequencing batch reactor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 750
2216 Edible Oil Industry Wastewater Treatment by Microfiltration with Ceramic Membrane

Authors: Zita Šereš, Dragana Šoronja Simović, Ljubica Dokić, Lidietta Giorno, Biljana Pajin, Cecilia Hodur, Nikola Maravić

Abstract:

Membrane technology is convenient for separation of suspended solids, colloids and high molecular weight materials that are present. The idea is that the waste stream from edible oil industry, after the separation of oil by using skimmers is subjected to microfiltration and the obtained permeate can be used again in the production process. The wastewater from edible oil industry was used for the microfiltration. For the microfiltration of this effluent a tubular membrane was used with a pore size of 200 nm at transmembrane pressure in range up to 3 bar and in range of flow rate up to 300 L/h. Box–Behnken design was selected for the experimental work and the responses considered were permeate flux and chemical oxygen demand (COD) reduction. The reduction of the permeate COD was in the range 40-60% according to the feed. The highest permeate flux achieved during the process of microfiltration was 160 L/m2h.

Keywords: Ceramic membrane, edible oil, microfiltration, wastewater.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1586
2215 Hexavalent Chromium Pollution Abatement by use of Scrap Iron

Authors: Marius Gheju, Laura Cocheci

Abstract:

In this study, the reduction of Cr(VI) by use of scrap iron, a cheap and locally available industrial waste, was investigated in continuous system. The greater scrap iron efficiency observed for the first two sections of the column filling indicate that most of the reduction process was carried out in the bottom half of the column filling. This was ascribed to a constant decrease of Cr(VI) concentration inside the filling, as the water front passes from the bottom to the top end of the column. While the bottom section of the column filling was heavily passivated with secondary mineral phases, the top section was less affected by the passivation process; therefore the column filling would likely ensure the reduction of Cr(VI) for time periods longer than 216 hours. The experimental results indicate that fixed beds columns packed with scrap iron could be successfully used for the first step of Cr(VI) polluted wastewater treatment. However, the mass of scrap iron filling should be carefully estimated since it significantly affects the Cr(VI) reduction efficiency.

Keywords: hexavalent chromium, heavy metals, scrap iron, reduction capacity, wastewater treatment

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1794
2214 The Evaluation of Costs and Greenhouse Gas Reduction Using Technologies for Energy from Sewage Sludge

Authors: Futoshi Kakuta, Takashi Ishida

Abstract:

Sewage sludge is a biomass resource that can create a solid fuel and electricity. Utilizing sewage sludge as a renewable energy can contribute to the reduction of greenhouse gases. In Japan, the "National Plan for the Promotion of Biomass Utilization" and the “Priority Plan for Social Infrastructure Development" were approved at cabinet meetings in December 2010 and August 2012, respectively, to promote the energy utilization of sewage sludge. This study investigated costs and greenhouse gas emission in different sewage sludge treatments with technologies for energy from sewage sludge. Expenses were estimated based on capital costs and O&M costs including energy consumption of solid fuel plants and biogas power generation plants for sewage sludge. Results showed that the cost of sludge digestion treatment with solid fuel technologies was 8% lower than landfill disposal. The greenhouse gas emission of sludge digestion treatment with solid fuel technologies was also 6,390t as CO2 smaller than landfill disposal. Biogas power generation reduced the electricity of a wastewater treatment plant by 30% and the cost by 5%.

Keywords: Global warming counter measure, energy technology, solid fuel production, biogas.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1683
2213 Effect of Domestic Treated Wastewater use on Three Varieties of Amaranth (Amaranthus spp.) under Semi Arid Conditions

Authors: El Youssfi L., Choukr-Allah R., Zaafrani M., Mediouni T., Sarr F, Hirich A.

Abstract:

An experiment was implemented in a filed in the south of Morocco to evaluate the effects of domestic treated wastewater use for irrigation of amaranth crop under semi-arid conditions. Three varieties (A0020, A0057 & A211) were tested and irrigated using domestic treated wastewater EC1 (0,92 dS/m) as control, EC3 (3dS/m) and EC6 (6dS/m) obtained by adding sea water. In term of growth, an increase of the EC level of applied irrigation water reduced significantly the plant-s height, leaf area, fresh and dry weight measured at vegetative, flowering and maturity stage for all varieties. Even with the application of the EC6, yields were relatively higher in comparison with the once obtained in normal cultivation conditions. A significant accumulation of nitrate, chloride and sodium in soil layers during the crop cycle was noted. The use of treated waste water for its irrigation is proved to be possible. The variety A211 had showed to be less sensitive to salinity stress and it could be more promising its introduction to study area.

Keywords: Amaranth, salinity, semi-arid, treated waste water.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1973
2212 Thermal Analysis on Heat Transfer Enhancement and Fluid Flow for Al2O3 Water-Ethylene Glycol Nanofluid in Single PEMFC Mini Channel

Authors: Irnie Zakaria, W. A. N. W Mohamed, W. H. Azmi

Abstract:

Thermal enhancement of a single mini channel in Proton Exchange Membrane Fuel Cell (PEMFC) cooling plate is numerically investigated. In this study, low concentration of Al2O3 in Water - Ethylene Glycol mixtures is used as coolant in single channel of carbon graphite plate to mimic the mini channels in PEMFC cooling plate. A steady and incompressible flow with constant heat flux is assumed in the channel of 1mm x 5mm x 100mm. Nano particle of Al2O3 used ranges from 0.1, 0.3 and 0.5 vol % concentration and then dispersed in 60:40 (water: Ethylene Glycol) mixture. The effect of different flow rates to fluid flow and heat transfer enhancement in Re number range of 20 to 140 was observed. The result showed that heat transfer coefficient was improved by 18.11%, 9.86% and 5.37% for 0.5, 0.3 and 0.1 vol. % Al2O3 in 60:40 (water: EG) as compared to base fluid of 60:40 (water: EG). It is also showed that the higher vol. % concentration of Al2O3 performed better in term of thermal enhancement but at the expense of higher pumping power required due to increase in pressure drop experienced. Maximum additional pumping power of 0.0012W was required for 0.5 vol % Al2O3 in 60:40 (water: EG) at Re number 140.

Keywords: Heat transfer, mini channel, nanofluid, PEMFC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2096
2211 Comparison of the Effects of Continuous Flow Microwave Pre-treatment with Different Intensities on the Anaerobic Digestion of Sewage Sludge for Sustainable Energy Recovery from Sewage Treatment Plant

Authors: D. Hephzibah, P. Kumaran, N. M. Saifuddin

Abstract:

Anaerobic digestion is a well-known technique for sustainable energy recovery from sewage sludge. However, sewage sludge digestion is restricted due to certain factors. Pre-treatment methods have been established in various publications as a promising technique to improve the digestibility of the sewage sludge and to enhance the biogas generated which can be used for energy recovery. In this study, continuous flow microwave (MW) pre-treatment with different intensities were compared by using 5 L semi-continuous digesters at a hydraulic retention time of 27 days. We focused on the effects of MW at different intensities on the sludge solubilization, sludge digestibility, and biogas production of the untreated and MW pre-treated sludge. The MW pre-treatment demonstrated an increase in the ratio of soluble chemical oxygen demand to total chemical oxygen demand (sCOD/tCOD) and volatile fatty acid (VFA) concentration. Besides that, the total volatile solid (TVS) removal efficiency and tCOD removal efficiency also increased during the digestion of the MW pre-treated sewage sludge compared to the untreated sewage sludge. Furthermore, the biogas yield also subsequently increases due to the pre-treatment effect. A higher MW power level and irradiation time generally enhanced the biogas generation which has potential for sustainable energy recovery from sewage treatment plant. However, the net energy balance tabulation shows that the MW pre-treatment leads to negative net energy production.

Keywords: Anaerobic digestion, biogas, microwave pre-treatment, sewage sludge.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2107
2210 Role of Lemna minor Lin. in Treating the Textile Industry Wastewater

Authors: D. Sivakumar

Abstract:

Textile industry processes are among the most environmentally unfriendly industrial processes; because, they produce color wastewater that is heavily polluted the environment. Therefore, textile industry wastewater has to be treated before being discharged into the environment. In this study, experiments were conducted for different process parameters like nutrient dosage and dilution ratio against the pH and contact time to remove COD and color in a textile industrial wastewater using aquatic macrophytes Lemna minor L. The experimental results showed that the maximum percentage reduction of COD and color in a textile industry wastewater by Lemna minor L. was obtained at an optimum nutrient dosage of 50g, dilution ratio of 8, pH of 8 and contact time of 4 days. Similarly, the results of validation experiments showed that the experiments were able to reproduce the obtained optimum process parameters. The maximum removal percentage of color in an aqueous solution (86.35%) is higher than the removal of color in a textile industry wastewater (82.85). Further, the first order kinetic model was fitted well with the experimental data of this present study. Finally, this study concluded that Lemna minor L. may be used for removing all types of parameters in any type of textile industry wastewater.

Keywords: Aquatic Macrophyte, Process Parameters, Textile Industry Wastewater.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2564
2209 Flat Miniature Heat Pipes for Electronics Cooling: State of the Art, Experimental and Theoretical Analysis

Authors: M.C. Zaghdoudi, S. Maalej, J. Mansouri, M.B.H. Sassi

Abstract:

An experimental study is realized in order to verify the Mini Heat Pipe (MHP) concept for cooling high power dissipation electronic components and determines the potential advantages of constructing mini channels as an integrated part of a flat heat pipe. A Flat Mini Heat Pipe (FMHP) prototype including a capillary structure composed of parallel rectangular microchannels is manufactured and a filling apparatus is developed in order to charge the FMHP. The heat transfer improvement obtained by comparing the heat pipe thermal resistance to the heat conduction thermal resistance of a copper plate having the same dimensions as the tested FMHP is demonstrated for different heat input flux rates. Moreover, the heat transfer in the evaporator and condenser sections are analyzed, and heat transfer laws are proposed. In the theoretical part of this work, a detailed mathematical model of a FMHP with axial microchannels is developed in which the fluid flow is considered along with the heat and mass transfer processes during evaporation and condensation. The model is based on the equations for the mass, momentum and energy conservation, which are written for the evaporator, adiabatic, and condenser zones. The model, which permits to simulate several shapes of microchannels, can predict the maximum heat transfer capacity of FMHP, the optimal fluid mass, and the flow and thermal parameters along the FMHP. The comparison between experimental and model results shows the good ability of the numerical model to predict the axial temperature distribution along the FMHP.

Keywords: Electronics Cooling, Micro Heat Pipe, Mini Heat Pipe, Mini Heat Spreader, Capillary grooves.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3861
2208 Biological and Chemical Filter Treatment for Wastewater Reuse

Authors: M. J. Go, H. S. Shin, D. W. Kim, D. Chang, S. B. Han, J. M. Hur, B. R. Chung, J. K. Choi, J. Fan

Abstract:

This study developed a high efficient and combined biological and chemical filter treatment process. This process used PAC (Powder Activated Carbon), Alum and attached growth treatment process. The system removals of total nitrogen and total phosphorus ratio of two were as high as 70% and 73%, moreover, the effluent water was suitable to urban and agricultural water. Also the advantages of this process are not only occupies small place but is simple, economic and easy operating. Besides, our developed process can keep stable process efficiency even in relative low load level. Therefore, this study judges that use of the high efficient and combined biological and chemical filter treatment process, it is expected that the effluent water in this system can be reused as urban and agricultural water.

Keywords: biological and chemical filter treatment, wastewaterreuse, PAC, Alum

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1331
2207 Effect of Anionic and Non-ionic Surfactants on Activated Sludge Oxygen Uptake Rate and Nitrification

Authors: Maazuza Z. Othman, Liqiang Ding, Yi Jiao

Abstract:

A local wastewater treatment plant (WWTP) experiencing poor nitrification tracked down high level of surfactants in the plant-s influent and effluent. The aims of this project were to assess the potential inhibitory effect of surfactants on activated sludge processes. The effect of the presence of TergitolNP-9, TrigetolNP-7, Trigetol15-S-9, dodecylbenzene sulphonate (SDBS) and sodium dodecyl sulfate (SDS) on activated sludge oxygen uptake rate (OUR) and nitrification were assessed. The average concentration of non-ionic and anionic surfactants in the influent to the local WWTP were 7 and 8.7 mg/L, respectively. Removal of 67% to 90% of the non-ionic and 93-99% of the anionic surfactants tested were measured. All surfactants tested showed inhibitory effects both on OUR and nitrification. SDS incurred the lowest inhibition whereas SDBS and NP-9 caused severe inhibition to OUR and Nitrification. Activated sludge flocs sizes slightly decreased after 3 hours contact with the surfactant present in the test. The results obtained indicated that high concentrations of surfactants are likely to have an adverse effect on the performance of WWTPs utilizing activated sludge processes.

Keywords: surfactants, activated sludge oxygen uptake rate (OUR), nitrification, anionic surfactants, non-ionic surfactants

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3449
2206 Numerical Analysis of Roughness Effect on Mini and Microchannels: Hydrodynamics and Heat Transfer

Authors: El-Ghalia Filali, Cherif Gadouche, Mohamed Tahar

Abstract:

A three-dimensional numerical simulation of flow through mini and microchannels with designed roughness is conducted here. The effect of the roughness height (surface roughness), geometry, Reynolds number on the friction factor, and Nusselt number is investigated. The study is carried out by employing CFD software, CFX. Our work focuses on a water flow inside a circular mini-channel of 1 mm and microchannels of 500 and 100 m in diameter. The speed entry varies from 0.1 m/s to 20 m/s. The general trend can be observed that bigger sizes of roughness element lead to higher flow resistance. It is found that the friction factor increases in a nonlinear fashion with the increase in obstruction height. Particularly, the effect of roughness can no longer be ignored at relative roughness height higher than 3%. A significant increase in Poiseuille number is detected for all configurations considered. The same observation can be done for Nusselt number. The transition zone between laminar and turbulent flow depends on the channel diameter.

Keywords: Heat transfer, hydrodynamics, micro-channel, roughness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1722
2205 Decolorization of Reactive Black 5 and Reactive Red 198 using Nanoscale Zerovalent Iron

Authors: C. Chompuchan, T. Satapanajaru, P. Suntornchot, P. Pengthamkeerati

Abstract:

Residual dye contents in textile dyeing wastewater have complex aromatic structures that are resistant to degrade in biological wastewater treatment. The objectives of this study were to determine the effectiveness of nanoscale zerovalent iron (NZVI) to decolorize Reactive Black 5 (RB5) and Reactive Red 198 (RR198) in synthesized wastewater and to investigate the effects of the iron particle size, iron dosage and solution pHs on the destruction of RB5 and RR198. Synthesized NZVI was confirmed by transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The removal kinetic rates (kobs) of RB5 (0.0109 min-1) and RR198 (0.0111 min-1) by 0.5% NZVI were many times higher than those of microscale zerovalent iron (ZVI) (0.0007 min-1 and 0.0008 min-1, respectively). The iron dosage increment exponentially increased the removal efficiencies of both RB5 and RR198. Additionally, lowering pH from 9 to 5 increased the decolorization kinetic rates of both RB5 and RR198 by NZVI. The destruction of azo bond (N=N) in the chromophore of both reactive dyes led to decolorization of dye solutions.

Keywords: decolorization, nanoscale zerovalent iron, Reactive Black 5, Reactive Red 198.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2264
2204 Microbial Fuel Cells and Their Applications in Electricity Generating and Wastewater Treatment

Authors: Shima Fasahat

Abstract:

This research is an experimental research which was done about microbial fuel cells in order to study them for electricity generating and wastewater treatment. These days, it is very important to find new, clean and sustainable ways for energy supplying. Because of this reason there are many researchers around the world who are studying about new and sustainable energies. There are different ways to produce these kind of energies like: solar cells, wind turbines, geothermal energy, fuel cells and many other ways. Fuel cells have different types one of these types is microbial fuel cell. In this research, an MFC was built in order to study how it can be used for electricity generating and wastewater treatment. The microbial fuel cell which was used in this research is a reactor that has two tanks with a catalyst solution. The chemical reaction in microbial fuel cells is a redox reaction. The microbial fuel cell in this research is a two chamber MFC. Anode chamber is an anaerobic one (ABR reactor) and the other chamber is a cathode chamber. Anode chamber consists of stabilized sludge which is the source of microorganisms that do redox reaction. The main microorganisms here are: Propionibacterium and Clostridium. The electrodes of anode chamber are graphite pages. Cathode chamber consists of graphite page electrodes and catalysts like: O2, KMnO4 and C6N6FeK4. The membrane which separates the chambers is Nafion117. The reason of choosing this membrane is explained in the complete paper. The main goal of this research is to generate electricity and treating wastewater. It was found that when you use electron receptor compounds like: O2, MnO4, C6N6FeK4 the velocity of electron receiving speeds up and in a less time more current will be achieved. It was found that the best compounds for this purpose are compounds which have iron in their chemical formula. It is also important to pay attention to the amount of nutrients which enters to bacteria chamber. By adding extra nutrients in some cases the result will be reverse.  By using ABR the amount of chemical oxidation demand reduces per day till it arrives to a stable amount.

Keywords: Anaerobic baffled reactor, bioenergy, electrode, energy efficient, microbial fuel cell, renewable chemicals, sustainable.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1336
2203 A Study on the Introduction of Wastewater Reuse Facility in Military Barracks by Cost-Benefit Analysis

Authors: D. G. Jung, J. B. Lim, J. H. Kim, J. J. Kim

Abstract:

The international society focuses on the environment protection and natural energy sources control for the global cooperation against weather change and sustainable growth. The study presents the overview of the water shortage status and the necessity of wastewater reuse facility in military facilities and for the possibility of the introduction, compares the economics by means of cost-benefit analysis. The military features such as the number of users of military barracks and the water use were surveyed by the design principles by facility types, the application method of wastewater reuse facility was selected, the feed water, its application and the volume of reuse volume were defined and the expectation was estimated, confirming the possibility of introducing a wastewater reuse possibility by means of cost-benefit analysis.

Keywords: military barracks, wastewater reuse facility, cost-benefit analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1408