{"title":"Flat Miniature Heat Pipes for Electronics Cooling: State of the Art, Experimental and Theoretical Analysis","authors":"M.C. Zaghdoudi, S. Maalej, J. Mansouri, M.B.H. Sassi","volume":51,"journal":"International Journal of Mechanical and Mechatronics Engineering","pagesStart":714,"pagesEnd":738,"ISSN":"1307-6892","URL":"https:\/\/publications.waset.org\/pdf\/10387","abstract":"An experimental study is realized in order to verify the\r\nMini Heat Pipe (MHP) concept for cooling high power dissipation\r\nelectronic components and determines the potential advantages of\r\nconstructing mini channels as an integrated part of a flat heat pipe. A\r\nFlat Mini Heat Pipe (FMHP) prototype including a capillary structure\r\ncomposed of parallel rectangular microchannels is manufactured and\r\na filling apparatus is developed in order to charge the FMHP. The\r\nheat transfer improvement obtained by comparing the heat pipe\r\nthermal resistance to the heat conduction thermal resistance of a\r\ncopper plate having the same dimensions as the tested FMHP is\r\ndemonstrated for different heat input flux rates. Moreover, the heat\r\ntransfer in the evaporator and condenser sections are analyzed, and\r\nheat transfer laws are proposed. In the theoretical part of this work, a\r\ndetailed mathematical model of a FMHP with axial microchannels is\r\ndeveloped in which the fluid flow is considered along with the heat\r\nand mass transfer processes during evaporation and condensation.\r\nThe model is based on the equations for the mass, momentum and\r\nenergy conservation, which are written for the evaporator, adiabatic,\r\nand condenser zones. The model, which permits to simulate several\r\nshapes of microchannels, can predict the maximum heat transfer\r\ncapacity of FMHP, the optimal fluid mass, and the flow and thermal\r\nparameters along the FMHP. The comparison between experimental\r\nand model results shows the good ability of the numerical model to\r\npredict the axial temperature distribution along the FMHP.","references":"[1] M. Groll, M. Schneider, V. Sartre, M.C. Zaghdoudi, and M. Lallemand,\r\n\"Thermal Control of electronic equipment by heat pipes,\" Revue\r\nG\u00e9n\u00e9rale de Thermique, vol. 37, no. 5, 1998, pp. 323-352.\r\n[2] T.P. Cotter, \"Principles and Prospects of Micro Heat Pipes,\" 5th\r\nInternational Heat Pipe Conference, Tsukuba, Japan, May 14-18, 1984,\r\npp. 328-335.\r\n[3] A. Itoh, and F. Polasek, \"Development and Application of Micro Heat\r\npipes,\" 7th International Heat Pipe Conference, Minsk, Russia, May 21-\r\n25, 1990.\r\n[4] Z. Ji, W. Caiyou, Y. Xiuqin, and Z. Zeqing, \"Experimental Investigation\r\nof the Heat Transfer Characteristics of the Micro Heat Pipes,\" 8th\r\nInternational Heat Pipe Conference, Bejing, China, September 14-18,\r\n1992, pp. 416-420.\r\n[5] B.R. Babin, G.P. Peterson, and D. Wu, \"Analysis and Testing of a\r\nMicro Heat Pipe During Steady-State,\" ASME\/AIchE National Heat\r\nTransfer Conference, Paper No. 89-HT-17, Philadelphia, Pennsyvania,\r\nUSA, August 5-8, 1989, 10p.\r\n[6] B.R. Babin, G.P. Peterson, and D. Wu, \"Steady-State Modeling and\r\nTesting of Micro Heat Pipe,\" Journal of Heat Transfer, vol. 112, 1990,\r\npp. 595-601.\r\n[7] D. Wu, and G.P. Peterson, \"Investigation of the Transient\r\nCharacteristics of a Micro Heat Pipe,\" Journal of Thermophysics and\r\nHeat Transfer, vol. 5, no. 2, 1991, pp. 129-134.\r\n[8] D. Wu, G.P. Peterson, and W.S. Chang, \"Transient Experimental\r\nInvestigation of Micro Heat pipes,\" Journal of Thermophysics and Heat\r\nTransfer, vol. 5, no. 4, 1991, pp. 539-545.\r\n[9] S.H. Moon, C.J. Kim, B.H. Kim, S.E. Hong, and J.S. Lee, \"An\r\nExperimental Study on the Performance Limitation of a Micro Heat Pipe\r\nwith Triangular Cross-Section,\" 10th International Heat Pipe\r\nConference, Tokyo, Japan, September 22-26, 1999, pp. 15-19.\r\n[10] G.P. Peterson, \"Heat Pipes in the Thermal Control of Electronic\r\nComponents,\" 3rd International Heat Pipe Symposium, September 12-\r\n14, Tsukuba, Japan, 1988, pp. 2-12.\r\n[11] G.P. Peterson, A.B. Duncan, A.S. Ahmed, A.K. Mallik, and M.H.\r\nWeichold, \"Experimental Investigation of Micro Heat Pipes in Silicon\r\nWafers,\" Micromechanical Sensors, Actuators, and Systems, DSC-Vol.\r\n32, 1991, pp. 341-348.\r\n[12] F.M. Gerner, \"Micro Heat Pipes,\" AFSOR Final Report, No.S-210-\r\n10MG-066, Wright-Patterson AFB, Dayton, OH, USA, 1990.\r\n[13] A.K. Mallik, and G.P. Peterson, \"On the Use of Micro Heat Pipes as an\r\nIntegral Part of Semiconductors,\" 3rd ASME-JSME Thermal\r\nEngineering Joint Conference Proceeding, vol. 2, Reno, NV, USA,\r\nMarch 17-22, 1991, pp. 394-401.\r\n[14] F.M. Gerner, B. Badran, J.P. Longtin, P. Ramadas, T.H. Henderson, and\r\nW.S. Chang, \"Flow and Heat Transfer Limitations in Micro Heat Pipes,\"\r\n28th National Heat Transfer Conference, August 9-12, San Diego, CA,\r\nUSA, 1992, pp. 99-104.\r\n[15] G.P. Peterson, A.B. Duncan, and M.H. Weichold, \"Experimental\r\nInvestigation of Micro Heat Pipes Fabricated in Silicon Wafers,\"\r\nJournal of Heat Transfer, vol. 115, 1993, pp. 751-756.\r\n[16] F.M. Gerner, B. Badran, H.T. Henderson, and P. Ramadas, \"Silicon-\r\nWater Micro Heat Pipes,\" Thermal Science Engineering, vol. 2, no.1,\r\n1994, pp. 90-97.\r\n[17] D. Shen, R. Mitchell, D. Dobranich, D. Adkins, and M. Tuck, \"Micro\r\nHeat Spreader Enhanced Heat Transfer in MCMs,\" IEEE Multi-Chip-\r\nModule Conference, Santa Cruz, California, USA, January 31-February\r\n2, 1995, pp. 189-194.\r\n[18] D.A. Benson, D.R. Adkins, G.P. Peterson, R.T. Mitchell, M.R. Tuck,\r\nand D.W. Palmer, \"Turning Silicon Substrates into Diamond: Micro\r\nMachining Heat Pipes,\" Advances in Design, Materials and Processes\r\nfor Thermal Spreaders and Heat Sinks Workshop, Vail, CO, USA, April\r\n19-21, 1996, pp. 19-21.\r\n[19] D.A. Benson, D.R. Adkins, G.P. Peterson, R.T. Mitchell, M.R. Tuck,\r\nand D.W. Palmer, \"Micro Machined Heat Pipes in Silicon MCM\r\nSubstrates,\" Proceeding of IEEE Multichip Module Conference, Santa\r\nCruz, CA, USA, November 6-7, 1996, pp. 127-129.\r\n[20] D.A. Benson, R.T. Mitchell, M.R. Tuck, D.W. Palmer, and G.P.\r\nPeterson, \"Ultrahigh-Capacity Micromachined Heat Spreaders,\"\r\nMicroscale Thermophysical Engineering, vol. 2, no.1, 1998, pp. 21-30.\r\n[21] B. Badran, F.M. Gerner, P. Ramadas, T. Henderson, and K.W. Baker,\r\n\"Experimental Results for Low-temperature Silicon Micromachined\r\nMicro Heat Pipe Arrays Using Water and Methanol as Working Fluids,\"\r\nExperimental Heat Transfer, vol. 10, no. 4, 1997, pp. 253-272.\r\n[22] B. Gromoll, \"Micro cooling systems for high density packaging,\" Revue\r\nG\u00e9n\u00e9rale de la Thermique, vol. 37, 1998, pp. 781-787.\r\n[23] Y. Avenas, B. Mallet, C. Gillot, A. Bricard, C. Schaeffer, G. Poupon,\r\nand E. Fournier, \"Thermal Spreaders for High Heat Flux Power\r\nDevices,\" 7th THERMINIC Workshop, Paris, France, September 24-27,\r\n2001, pp. 59-631.\r\n[24] Y. Avenas, M. Ivanova, N. Popova, C. Schaeffer, J.L. Schanen, and A.\r\nBricard, \"Thermal Analysis of Thermal Spreaders Used in Power\r\nElectronics Cooling,\" 37th Annual Meeting of the Industry-Applications-\r\nSociety, Conference Record of the 2002 IEEE Industry Applications\r\nConference, Pittsburgh, PA, USA, October 12-18, 2002, pp. 216-221.\r\n[25] C. Gillot, Y. Avenas, N. Cezac, G. Poupon, C. Schaeffer, and E.\r\nFournier, \"Silicon Heat Pipes Used as Thermal Spreaders,\" 8th\r\nIntersociety Conference on Thermal and Thermomechanical\r\nPhenomena in Electronic Systems (ITHERM 2002), San Diego, USA,\r\nMay 30- June 01, 2002, pp. 1052-1057.\r\n[26] C. Gillot, Y. Avenas, N. Cezac, G. Poupon, C. Schaeffer, and E.\r\nFournier, \"Silicon Heat Pipes Used as Thermal Spreaders,\" IEEE\r\nTransactions on Components and Packaging Technologies, vol. 26, no.\r\n2, 2003, pp. 332-339.\r\n[27] C. Gillot, G. Poupon, Y. Avenas, C. Schaeffer, and E. Fournier, E.,\r\n\"Design and Fabrication of Flat Silicon Heat Pipes with Micro Capillary\r\nGrooves,\" Houille Blanche-Revue Internationale de l-Eau, no. 4, 2003,\r\npp. 62-66.\r\n[28] C. Gillot, A. La\u00ef, M. Ivanova, Y. Avenas, C. Schaeffer, and E. Fournier,\r\n\"Experimental Study of a Flat Silicon Heat Pipe with Microcapillary\r\nGrooves,\" 9th Intersociety Conference on Thermal and\r\nThermomechanical Phenomena in Electronic Systems (ITHERM 2004),\r\nvol. 2, Las Vegas, NV, USA, June 1-4, 2004, pp. 47-51.\r\n[29] M. Ivanova, C. Schaeffer, Y. Avenas, A. La\u00ef, and C. Gillot, \"Realization\r\nand Thermal Analysis of Silicon Thermal Spreaders used in power\r\nelectronics cooling,\" IEEE International Conference on Industrial\r\nTechnology, vol. 1-2, Maribor, Slovenia, December 10-12, 2003 pp.\r\n1124-1129.\r\n[30] M. Lee, M. Wong, and Y. Zohar, \"Characterization of an Integrated\r\nMicro Heat pipe,\" Journal of Micromechanics and Microengineering,\r\nVol.13, 2003, pp. 58-64.\r\n[31] M. Lee, M. Wong, and Y. Zohar, \"Integrated Micro Heat Pipe\r\nFabrication Technology,\" Journal of Microelectromechanical Systems,\r\nvol. 12, no. 2, 2003, pp. 138-146.\r\n[32] A. La\u00ef, C. Gillot, M. Ivanova, Y. Avenas, C. Louis, C. Schaeffer, and E.\r\nFournier, \"Thermal Characterization of Flat Silicon Heat Pipes,\" 20th\r\nAnnual IEEE Semiconductor Thermal Measurement and Management\r\nSymposium, San Jose, CA, USA, 9-11 March, 2004, pp. 21-25.\r\n[33] A.K. Mallik, G.P. Peterson, and W. Weichold, \"Construction Processes\r\nfor Vapor Deposited Micro Heat Pipes,\" 10th Symposium on Electronic\r\nMaterials Processing and Characteristics, Richardson, TX, USA, June\r\n3-4, 1991.\r\n[34] A.K. Mallik, G.P. Peterson, and M.H. Weichold, \"On the Use of Micro\r\nHeat Pipes as an Integral Part of Semiconductor Devices,\" Journal of\r\nElectronic Packaging, vol. 114, 1992, pp. 436-442.\r\n[35] M.H. Weichold, G.P. Peterson, and A. Mallik, \"Vapor Deposited Micro\r\nHeat Pipes,\" U.S. Patent 5,179,043, 1993.\r\n[36] G.P. Peterson, and A.K. Mallik, \"Steady-State Investigation of Vapor\r\nDeposited Micro Heat Pipe Arrays,\" Journal of Electronic Packaging,\r\nvol. 117, no. 1, 1995, pp. 75-81.\r\n[37] G.P. Peterson, and A.K. Mallik, \"Transient Response of Vapor\r\nDeposited Micro Heat Pipe Arrays,\" Journal of Electronic Packaging,\r\nvol. 117, no. 1, 1995, pp. 82-87.\r\n[38] D.R. Adkins, D.S. Shen, D.W. Palmer, and M.R. Tuck, \"Silicon Heat\r\nPipes for Cooling Electronics,\" Proceeding of 1st Annual Spacecraft\r\nThermal Control Symposium, Albuquerque, NM, USA, November 16-\r\n18, 1994, 11p.\r\n[39] M. Le Berre, S. Launay, V. Sartre, and M. Lallemand, \"Fabrication and\r\nExperimental Investigation of Silicon Micro Heat Pipes for Cooling\r\nElectronics,\" Journal of Micromechanics and Microengineering, vol.\r\n13, no. 3, 2003, pp. 436-441.\r\n[40] S. Launay, M. Le Berre, V. Sartre, P. Morfouli, J. Boussey, D. Barbier,\r\nand M. Lallemand, \"Fabrication of Silicon Micro Heat Pipes for Cooling\r\nElectronics,\" Houille Blanche-Revue Internationale de l-Eau, no. 4,\r\n2003, pp. 82-87.\r\n[41] S. Launay, V. Sartre, and M. Lallemand, \"Experimental Study on\r\nSilicon Micro Heat Pipe Arrays,\" Applied Thermal Engineering, vol.\r\n24, 2004, pp. 233-243.\r\n[42] M. Le Berre, G. Pandraud, and P. Morfouli, \"The performance of Micro\r\nHeat Pipes Measured by Integrated Sensors,\" Journal of\r\nMicromechanical Microengineering, vol. 16, no. 5, 2006, pp. 1047-\r\n1050.\r\n[43] G. Pandraud, M. Le Berre, P. Morfouli, and M. Lallemand, \"Influence of\r\nthe fluid on the experimental performances of triangular silicon micro\r\nheat pipes,\" Journal of Electronic Packaging, vol. 128, no. 3, 2006, pp.\r\n294-296.\r\n[44] D.K. Harris, A. Palkar, G. Woncott, R. Dean, and F. Simionescu, \"An\r\nExperimental Investigation in the Performance of Water-filled Silicon\r\nMicroheat Pipe Arrays,\" Journal of Electronic Packaging, vol. 132, no.\r\n2, paper No.021005, 2010, 8p.\r\n[45] S. Kalahasti, and Y. Joshi, \"Performance Characterization of a Novel\r\nFlat Plate Micro Heat Pipe Spreader,\" IEEE Transactions on\r\nComponents and Packaging Technologies, vol. 25, no. 4, 2002, pp.\r\n554-560.\r\n[46] S.W. Kang, S.H. Tsai, and H.C. Chen, \"Fabrication and Test of Radial\r\nGrooved Micro Heat Pipes,\" Applied Thermal Engineering, vol. 22, no.\r\n14, 2002, pp. 1559-1568.\r\n[47] S.W. Kang, and D. Huang, \"Fabrication of Star Grooves and Rhombus\r\nGrooves Micro Heat Pipe,\" Journal of Micromechanics and\r\nMicroengineering, vol. 12, 2002, pp. 525-531.\r\n[48] J.A. Kang, X. Fu, W.T. Liu, and P. Dario, \"Investigation on Microheat\r\nPipe Array with Arteries,\" Journal of Thermophysics and Heat\r\nTransfer, vol. 24, no. 4, 2010, pp. 803-810.\r\n[49] C. Perret, Y. Avenas, Ch. Gillot, J. Boussey, and C. Schaeffer,\r\n\"Integrated Cooling Devices in Silicon Technology,\" The European\r\nPhysical Journal Applied Physics, vol. 18, no. 2, 2002, pp. 115-123\r\n[50] M. Ivanova, A. La\u00ef, C. Gillot, N. Sillon, C. Schaeffer, F. Lef\u00e8vre, M.\r\nLallemand, and E. Fournier, \"Design, Fabrication and Test of Silicon\r\nHeat Pipes With Radial Microcapillary Grooves,\" 10th Intersociety\r\nConference on Thermal and Thermomechanical Phenomena in\r\nElectronic Systems (ITHERM 2006), vol. 1-2, San Diago, USA, 30 May\r\n- 2 June, 2006, pp. 545-551.\r\n[51] S. Murthy, Y. Joshi & W. Nakayama, \"Orientation Independent Twophase\r\nHeat Spreaders for Space Constrained Applications,\"\r\nMicroelectronics Journal, vol. 34, 2003, pp. 1187-1193.\r\n[52] S. Murthy, Y. Joshi, and W. Nakayama, \"Two-phase Heat Spreaders\r\nUtilizing Microfabricated Boiling Enhancement Structures,\" Heat\r\nTransfer Engineering, vol. 25, no. 1, 2004, pp. 25-36.\r\n[53] R. Hopkins, A. Faghri, and D. Khrustalev, \"Flat Miniature Heat Pipes\r\nwith Micro Capillary Grooves,\" Journal of Heat Transfer, vol. 121,\r\n1999, pp. 102-109.\r\n[54] Y. Cao, M. Gao, J.E. Beam, and B. Donovan, \"Experiments and\r\nAnalyses of Flat Miniature Heat Pipes,\" Journal of Thermophysics and\r\nHeat Transfer, vol. 11, no. 2, 1997, pp. 158-164.\r\n[55] Y. Cao, and M. Gao, \"Wickless Network Heat Pipes for High Heat Flux\r\nSpreading Applications,\" International Journal of Heat and Mass\r\nTransfer, vol.45, 2002, pp. 2539-2547.\r\n[56] L. Lin, R. Ponnappan, and J. Leland, \"High Performance Miniature Heat\r\nPipe,\" International Journal of Heat and Mass Transfer, vol. 45, 2002,\r\npp. 3131-3142.\r\n[57] M. Gao, and Y. Cao, \"Flat and U-shaped Heat Spreaders for High-\r\nPower Electronics,\" Heat Transfer Engineering, vol. 24, 2003, pp. 57-\r\n65.\r\n[58] J.C. Lin, J.C. Wu, C.T. Yeh, and C.Y. Yang, C.Y., \"Fabrication and\r\nPerformance Analysis of Metallic Micro Heat Spreader for CPU,\" 13th\r\nInternational Heat Pipe Conference, Shangai, China, September 21-25,\r\n2004, pp. 151-155.\r\n[59] M.C. Zaghdoudi, C. Tantolin, C. Godet, \"Experimental and Theoretical\r\nAnalysis of Enhanced Flat Miniature Heat Pipes,\" Journal of\r\nThermophysics and Heat Transfer, vol. 18, no. 4, 2004, pp. 430-447.\r\n[60] F. Lef\u00e8vre, R. Rulli\u00e8re, G. Pandraud, and M. Lallemand, \"Prediction of\r\nthe Maximum Heat Transfer Capability of Two-Phase Heat Spreaders-\r\nExperimental Validation,\" International Journal of Heat and Mass\r\nTransfer, vol. 51, no. 15-16, 2008, pp. 4083-4094.\r\n[61] S.H. Moon, G. Hwang, S.C. Ko, and Y.T. Kim, \"Operating Performance\r\nof Micro Heat Pipe for Thin Electronic Packaging,\" 7th International\r\nHeat Pipe Symposium, Jeju Island, South Korea, October 12-16, 2003,\r\npp. 109-114.\r\n[62] S.H. Moon, G. Hwang, S.C. Ko, & Y.T. Kim, \"Experimental Study on\r\nthe Thermal Performance of Micro-Heat Pipe with Cross-section of\r\nPolygon,\" Microelectronics Reliability, vol. 44, 2004, pp. 315-321.\r\n[63] C. Romestant, G. Burban, and A. Alexandre, \"Heat Pipe Application in\r\nThermal-Engine Car Air Conditioning,\" 13th International Heat Pipe\r\nConference, Shanghai, China, September 21-25, 2004, pp. 196-201.\r\n[64] W. Xiaowu, T. Yong, and C. Ping, \"Investigation into Performance of a\r\nHeat Pipe with Micro Grooves Fabricated by Extrusion-Ploughing\r\nProcess,\" Energy Conversion and Management, vol. 50, 2009, pp.\r\n1384-1388.\r\n[65] M. Schneider, M. Yoshida, and M. Groll, M., \"Investigation of\r\nInterconnected Mini Heat Pipe Arrays For Micro Electronics Cooling,\"\r\n11th International Heat Pipe conference, Musachinoshi-Tokyo, Japan,\r\nSeptember 12-16, 1999, 6p.\r\n[66] M. Schneider, M. Yoshida, and M. Groll, \"Optical Investigation of Mini\r\nHeat Pipe Arrays With Sharp Angled Triangular Grooves,\" Advances in\r\nElectronic Packaging, EEP-Vol. 26-1 and 26-2, 1999, pp. 1965-1969.\r\n[67] M. Schneider, M. Yoshida, and M. Groll, \"Cooling of Electronic\r\nComponents By Mini Heat Pipe Arrays,\" 15th National Heat and Mass\r\ntransfer Conference and 4th ISHMT\/ASME Heat and Mass Transfer\r\nConference, Pune, India, January 12-14, 2000, 8p.\r\n[68] H.T. Chien, D.S. Lee, P.P. Ding, S.L. Chiu, and P.H. Chen, \"Diskshaped\r\nMiniature Heat Pipe (DMHP) with Radiating Micro Grooves for\r\na TO Can Laser Diode Package,\" IEEE Transactions on Components\r\nand Packaging Technologies, vol. 26, no. 3, 2003, pp. 569-574.\r\n[69] H.Z. Tao, H. Zhang, J. Zhuang, and J.W. Bowmans, \"Experimental\r\nStudy of Partially Flattened Axial Grooved Heat Pipes,\" Applied\r\nThermal Engineering, vol. 28, 2008, pp. 1699-1710.\r\n[70] H.T. Lim, S.H. Kim, H.D. Im, K.H. Oh, and S.H. Jeong, \"Fabrication\r\nand Evaluation of a Copper Flat Micro Heat Pipe Working under\r\nAdverse-Gravity Orientation,\" Journal of Micromechanical\r\nMicroengineering, vol. 18, 2008, 8p.\r\n[71] M. Murakami, T. Ogushi, Y. Sakurai, H. Masumuto, M. Furukawa, and\r\nR. Imai, \"Heat Pipe Heat Sink,\" 6th International Heat Pipe Conference,\r\nGrenoble, France, May 25-29, 1987, pp. 257-261.\r\n[72] D. Plesh, W. Bier, and D. Seidel, \"Miniature Heat Pipes for Heat\r\nRemoval from Microelectronic Circuits,\" Micromechanical Sensors,\r\nActuators and Systems, vol. 32, 1991, pp. 303-313.\r\n[73] J.Y. Sun, and C.Y. Wang, \"The Development of Flat Heat Pipes for\r\nElectronic Cooling,\" 4th International Heat Pipe Symposium, Tsukuba,\r\nJapan, May 16-18, 1994, pp. 99-105.\r\n[74] T. Ogushi, and G. Yamanaka, \"Heat Transport Capability of Grooves\r\nHeat Pipes,\" 5th International Heat Pipe Conference, pp. 74-79,\r\nTsukuba, Japan, May 14-18, 1994, pp. 74-79.\r\n[75] P. Soo Yong, and B. Joon Hong, \"Thermal Performance of a Grooved\r\nFlat-Strip Heat Pipe with Multiple Source Locations,\" 7th International\r\nHeat Pipe Symposium, Jeju Island, South Korea, October 12-16, 2003,\r\npp. 157-162.\r\n[76] L. Zhang, T. Ma, Z.F. Zhang, and X. Ge, \"Experimental Investigation on\r\nThermal Performance of Flat Miniature Heat Pipes with Axial Grooves,\"\r\n13th International Heat Pipe Conference, Shangai, China, September\r\n21-25, 2004, pp. 206-210.\r\n[77] N. Popova, C. Schaeffer, C. Sarno, S. Parbaud, and G. Kapelski, G.,\r\n\"Thermal management for stacked 3D microelectronic packages,\" 36th\r\nAnnual IEEE Power Electronic Specialists Conference (PESC 2005),\r\nRecife, Brazil, June 12-16, 2005, pp. 1761-1766.\r\n[78] N. Popova, C. Schaeffer, Y. Avenas, G. Kapelski, \"Fabrication and\r\nExperimental Investigation of Innovative Sintered Very Thin Copper\r\nHeat Pipes for Electronics Applications, 37th IEEE Power Electronics\r\nSpecialists Conference (PESC 2006), vol. 1-7, Cheju Island, South\r\nKorea, June 18-22, 2006, pp. 1652-1656.\r\n[79] M. Zhang, Z. Liu, & G. Ma, \"The experimental and numerical\r\ninvestigation of a grooved vapo chamber,\" Applied Thermal\r\nEngineering, vol. 29, 2009, pp. 422-430.\r\n[80] M.C. Zaghdoudi, & C. Sarno, \"Investigation on The Effects of Body\r\nForce Environment on Flat Heat Pipes,\" Journal of Thermophysics and\r\nHeat Transfer, vol. 15, no. 4, 2001, pp. 384-394.\r\n[81] A. Faghri, Heat pipe science and technology (1st edition), Taylor &\r\nFrancis, ISBN 1-56032-383-3, United States of America, 1995.\r\n[82] G.P. Peterson, An introduction to heat pipes - Modelling, testing and\r\napplications (1st edition), John Wiley, United Stated of America, ISBM\r\n0-471-30512-X, 1994.\r\n[83] A.B. Duncan, and G.P. Peterson, \"Charge Optimization for a\r\nTriangular-Shaped Etched Micro Heat Pipe,\" Journal of Thermophysics,\r\nvol. 9, no. 2, 1994, pp. 365-368.\r\n[84] D. Khrustlev, A. Faghri, \"Thermal Analysis of a Micro Heat Pipe,\"\r\nJournal of Heat Transfer, vol. 116, 1994, pp. 189-198.\r\n[85] J.P. Longtin, B. Badran, and F.M. Gerner, \"A one-dimensional model of\r\na micro heat pipe during steady-state operation,\" Journal of Heat\r\nTransfer, vol. 116, 1994, pp. 709-715.\r\n[86] G.P. Peterson, and H.B. Ma, \"Theoretical Analysis of the Maximum\r\nHeat Transport in Triangular Grooves: a Study of Idealized Micro Heat\r\nPipes, Journal of Heat Transfer, vol. 118, 1996, pp. 731-739.\r\n[87] M.C. Zaghdoudi, V. Sartre, M. Lallemand, M., \"Theoretical\r\nInvestigation of Micro Heat Pipes,\" 10th International Heat Pipe\r\nConference, Stuttgart, Germany, September 22-26, 1997, 6p.\r\n[88] J.M. Ha, and G.P. Peterson, \"The Heat Transport Capacity of Micro\r\nHeat Pipes,\" Journal of Heat Transfer, vol. 120, 1998, pp. 1064-1071.\r\n[89] H.B. Ma, & G.P. Peterson, G.P., \"The Minimum Meniscus Radius and\r\nCapillary Heat Transport Limit in Micro Heat Pipes,\" Journal of Heat\r\nTransfer, vol. 120, 1998, pp. 227-233.\r\n[90] C.B. Sobhan, H. Xiaoy Ang, and L.C. Yu, \"Investigations on transient\r\nand steady-state performance of a micro heat pipe,\" Journal of\r\nThermophysics and Heat Transfer, vol. 14, no. 1, 2000, pp. 161-169.\r\n[91] K.H. Do, S.J. Kim, and J.K. Seo, \"Mathematical Modeling and Thermal\r\nOptimization of a Micro Heat Pipe with Curved Triangular Grooves,\"\r\n7th International Heat Pipe Symposium, Jeju Island, South Korea,\r\nOctober 12-16, 2003, pp.325-331.\r\n[92] B. Suman, S. De, and S. DasGupta, \"A Model of the Capillary Limit of\r\na Micro Heat Pipe and Prediction of the Dry-out Length,\" International\r\nJournal of Heat and Fluid Flow, vol. 26, 2005, pp. 495-505.\r\n[93] B. Suman, and P. Kumar, \"An Analytical Model for Fluid Flow and\r\nHeat Transfer in a Micro-Heat Pipe of Polygonal Shape,\" International\r\nJournal of Heat and Mass Transfer, Vol.48, 2005, pp. 4498-4509.\r\n[94] Y.M. Hung, and Q. Seng, \"Effects of Geometric Design on Thermal\r\nPerformance of Star-groove Micro-Heat Pipes,\" International Journal of\r\nHeat and Mass Transfer, vol. 54, 2011, pp. 1198-1209.\r\n[95] P.C. Wayner, Y.K. Kao, and L.V. Lacroix, \"The Interline Heat Transfer\r\nCoefficient of an Evaporating Wetting Film,\" International Journal of\r\nHeat and Mass Transfer, vol.19, no.2, 1976, pp. 487-492.\r\n[96] Y. Kamotani, Y., \"Evaporator Film Coefficients of Grooved Heat\r\nPipes,\" 3rd International Heat Pipe Conference, Palo Alto, California,\r\nUSA, September 22-24, 1978, 3p.\r\n[97] F.W. Holm, and S.P. Goplen, \"Heat Transfer in the Meniscus Thin Film\r\nTransition Region,\" Journal of Heat Transfer, vol. 101, 1979, pp. 543-\r\n547.\r\n[98] P.C. Stephan, C.A. B\u251c\u255dsse, \"Analysis of the Heat Transfer Coefficient of\r\nGrooved Heat Pipe Evaporator Walls,\" International Journal of Heat\r\nand Mass Transfer, vol. 35, no. 2, 1992, pp. 383-391.\r\n[99] L.W. Swanson, and G.P. Peterson, \"Evaporating Extended Meniscus in\r\na V-shaped Channel,\" Journal of Thermophysics and Heat Transfer,\r\nvol. 8, no. 1, 1994, pp. 172-180.\r\n[100]D. Khrustlev, and A. Faghri, \"Thermal Characteristics of Conventional\r\nand Flat Miniature Axially Grooved Heat Pipes,\" Journal of Heat\r\nTransfer, vol. 117, 1995, pp. 1048-1054.\r\n[101]H.B. Ma, and G.P. Peterson, Temperature Variation and Heat Transfer\r\nin Triangular Grooves with an Evaporating Film, Journal of\r\nThermophysics and Heat Transfer, vol. 11, no.1, 1997, pp. 90-97.\r\n[102]A. Faghri, and D. Khrustalev, \"Advances in modeling of enhanced flat\r\nminiature heat pipes with capillary grooves,\" Journal of Enhanced Heat\r\nTransfer, vol. 4, no. 2, 1997, pp. 99-109.\r\n[103]D. Khrustlev, and A. Faghri, A., \"Coupled Liquid and Vapor Flow in\r\nMiniature Passages with Micro Grooves,\" Journal of Heat Transfer, vol.\r\n121, 1999, pp. 729-733.\r\n[104]F. Lef\u00e8vre, R. Revellin, and M. Lallemand, \"Theoretical Analysis of\r\nTwo-Phase Heat Spreaders with Different Cross-section Micro\r\nGrooves,\" 7th International Heat Pipe Symposium, Jeju Island, South\r\nKorea, October 12-16, 2003, pp. 97-102.\r\n[105]S. Launay, V. Sartre, and M. Lallemand, \"Hydrodynamic and Thermal\r\nStudy of a Water-Filled Micro Heat Pipe Array,\" Journal of\r\nThermophysics and Heat Transfer, vol. 18, no. 3, 2004, pp. 358-363.\r\n[106]S. Tzanova, M. Ivanova, Y. Avenas, and C. Schaeffer, \"Analytical\r\nInvestigation of Flat Silicon Micro Heat Spreaders,\" Industry\r\nApplications Conference, 39th IAS Annual Meeting Conference Record\r\nof the 2004 IEEE, vol. 4, October 3-7, 2004, pp. 2296-2302.\r\n[107]G. Angelov, S. Tzanova, Y. Avenas, M. Ivanova, T. Takov, C.\r\nSchaeffer, and L. Kamenova, \"Modeling of Heat Spreaders for Cooling\r\nPower and Mobile Electronic Devices,\" 36th Power Electronics\r\nSpecialists Conference (PESC 2005), Recife, Brazil, June 12-15, 2005,\r\npp. 1080-1086.\r\n[108]P.Z. Shi, K.M. Chua, S.C.K. Wong, and Y.M. Tan, \"Design and\r\nPerformance Optimization of Miniature Heat Pipe in LTCC,\" Journal of\r\nPhysics: Conference Series, vol. 34, 2006, pp. 142-147.\r\n[109]K.H. Do, S.J. Kim, and S.V. Garimella, \"A Mathematical Model for\r\nAnalyzing the Thermal Characteristics of a Flat Micro Heat Pipe with a\r\nGrooved Wick,\" International Journal Heat and Mass Transfer, vol.51,\r\nno.19-20, 2008, pp. 4637-4650.\r\n[110]K.H. Do, and S.P. Jang, \"Effect of Nanofluids on the Thermal\r\nPerformance of a Flat Micro Heat Pipe with a Rectangular Grooved\r\nWick,\" International Journal of Heat and Mass Transfer, vol.53, 2010,\r\npp. 2183-2192.\r\n[111]Y. Wang, and K. Vafai, \"Transient Characterization of Flat Plate Heat\r\nPipes During Startup and Shutdown operations,\" International journal\r\nof Heat and Mass Transfer, vol. 43, 2000, pp. 2641-2655.\r\n[112]U. Vadakkan, J.Y. Murthy, S.V. Garimella, \"Transport in Flat Heat\r\nPipes at High Fluxes from Multiple Discrete Sources,\" Journal of Heat\r\nTransfer, vol. 126, 2004, pp. 347-354.\r\n[113]L. Kamenova, Y. Avenas, S. Tzanova, N. Popova, and C. Schaeffer, \"2D\r\nNumerical Modeling of the Thermal and Hydraulic Performances of a\r\nVery Thin Sintered Powder Copper Flat Heat pipe,\" 37th IEEE Power\r\nElectronics Specialist Conference (PESC 2006), Cheju Island, South\r\nKorea, June 18-22, 2006, pp. 1130-1136.\r\n[114]F. Lef\u00e8vre, and M. Lallemand, \"Coupled Thermal Hydrodnamic Models\r\nof Flat Micro Heat Pipes for Cooling of Multiple Electronic\r\nComponents,\" International Journal of Heat and Mass Transfer, vol.\r\n49, 2006, pp. 1375-1383.\r\n[115]Y. Koito, H. Imura, M. Mochizuki, Y. Saito, & S. Torii, \"Numerical\r\nAnalysis and Experimental Verification on Thermal Fluid Phenomena in\r\na Vapor Chamber,\" Applied Thermal Engineering, vol. 26, 2006, pp.\r\n1669-1676.\r\n[116]M.S. El-Genk, H.H. Saber, and J.L. Parker, \"Efficient Spreaders for\r\nCooling High-Power Computer Chips,\" Applied Thermal Engineering,\r\nvol. 27, 2007, pp. 1072-1088.\r\n[117]R. Sonan, S. Harmand, J. Pelle, D. Leger, and M. Fakes, \"Transient\r\nThermal and hydrodynamic Model of Flat Heat Pipe for the Cooling of\r\nElectronics Components,\" International Journal of Heat and Mass\r\ntransfer, vol. 51, no. 25-26, 2008, pp. 6006-6017.\r\n[118]B. Xiao, & A. Faghri, \"A Three-Dimensional Thermal-Fluid Analysis of\r\nFlat Heat Pipes,\" International Journal Heat and Mass Transfer,\r\nVol.51, 2008, pp. 3113-3126.\r\n[119]R. Ranjan, J.Y. Murthy, S.V. Garimella, and U. Vadakkan, \"A\r\nNumerical Model for Transport in Flat Heat Pipes Considering Wick\r\nMicrostructure Effects,\" International Journal of Heat and Mass\r\nTransfer, vol. 54, 2011, pp. 153-168.","publisher":"World Academy of Science, Engineering and Technology","index":"Open Science Index 51, 2011"}