Search results for: microbial nitrogen
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 462

Search results for: microbial nitrogen

372 Unraveling Biostimulation of Decolorized Mediators for Microbial Fuel Cell-Aided Textile Dye Decontamination

Authors: Pei-Lin Yueh, Bor-Yann Chen, Chuan-Chung Hsueh

Abstract:

This first-attempt study revealed that decolorized intermediates of azo dyes could act as redox mediators to assist wastewater (WW) decolorization due to enhancement of electron-transport phenomena. Electrochemical impedance spectra indicated that hydroxyl and amino-substituent(s) were functional group(s) as redox-mediator(s). As azo dyes are usually multiple benzene-rings structured, their derived decolorized intermediates are likely to play roles of electron shuttles due to lower barrier of energy gap for electron shuttling. According to cyclic voltammetric profiles, redox mediating characteristics of decolorized intermediates of azo dyes (e.g., RBu171, RR198, RR141, RBk5) were clearly disclosed. With supplementation of biodecolorized metabolites of RR141 and 198, decolorization performance of could be evidently augmented. This study also suggested the optimal modes of microbial fuel cell (MFC)-assisted WW decolorization would be plug-flow or batch mode of operation with no mix. Single chamber-MFCs would be more favourable than double chamber MFCs due to non-mixing contacting reactor scheme for operation.

Keywords: Redox mediators, dye decolorization, bioelectricity generation, microbial fuel cells.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2207
371 The Use of Acid-Aluminium Tolerant Bradyrhizobium japonicum Formula for

Authors: Nisa Rachmania Mubarik, Tedja Imas, Aris Tri Wahyudi , Triadiati , Suharyanto, Happy Widiastuti

Abstract:

Land with low pH soil spread widely in Indonesia can be used for soybean (Glycine max) cultivation, however the production is low. The use of acid tolerant soybean and acidaluminium tolerant nitrogen-fixing bacteria formula was an alternative way to increase soybean productivity on acid soils. Bradyrhizobium japonicum is one of the nitrogen fixing bacteria which can symbiose with soybean plants through root nodule formation. Most of the nitrogen source required by soybean plants can be provided by this symbiosis. This research was conducted to study the influence of acid-aluminium tolerant B. japonicum strain BJ 11 formula using peat as carrier on growth of Tanggamus and Anjasmoro cultivar soybean planted on acid soil fields (pH 5.0- 5.5). The results showed that the inoculant was able to increase the growth and production of soybean which were grown on fields acid soil at Sukadana (Lampung) and Tanah Laut (South Kalimantan), Indonesia.

Keywords: Bradyrhizobium japonicum, acid-aluminium tolerant mutant, Tanggamus cultivar soybean, acid soils

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2002
370 Production of WGHs and AFPHs using Protease Combinations at High and Ambient Pressure

Authors: Namsoo Kim, So-Hee Son, Jin-Soo Maeng, Yong-Jin Cho, Chul-Jin Kim, Chong-Tai Kim

Abstract:

Wheat gluten hydrolyzates (WGHs) and anchovy fine powder hydrolyzates (AFPHs) were produced at 300 MPa using combinations of Flavourzyme 500MG (F), Alcalase 2.4L (A), Marugoto E (M) and Protamex (P), and then were compared to those produced at ambient pressure concerning the contents of soluble solid (SS), soluble nitrogen and electrophoretic profiles. The contents of SS in the WGHs and AFPHs increased up to 87.2% according to the increase in enzyme number both at high and ambient pressure. Based on SS content, the optimum enzyme combinations for one-, two-, three- and four-enzyme hydrolysis were determined as F, FA, FAM and FAMP, respectively. Similar trends were found for the contents of total soluble nitrogen (TSN) and TCA-soluble nitrogen (TCASN). The contents of SS, TSN and TCASN in the hydrolyzates together with electrophoretic mobility maps indicates that the high-pressure treatment of this study accelerated protein hydrolysis compared to ambient-pressure treatment.

Keywords: Production, Wheat gluten hydrolyzates, Anchovy fine powder hydrolyzates, Protease combinations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1785
369 Cellulolytic Microbial Activator Influence on Decomposition of Rubber Factory Waste Composting

Authors: Thaniya Kaosol, Sirinthrar Wandee

Abstract:

In this research, an aerobic composting method is studied to reuse organic waste from rubber factory waste as soil fertilizer and to study the effect of cellulolytic microbial activator (CMA) as the activator in the rubber factory waste composting. The performance of the composting process was monitored as a function of carbon and organic matter decomposition rate, temperature and moisture content. The results indicate that the rubber factory waste is best composted with water hyacinth and sludge than composted alone. In addition, the CMA is more affective when mixed with the rubber factory waste, water hyacinth and sludge since a good fertilizer is achieved. When adding CMA into the rubber factory waste composted alone, the finished product does not achieve a standard of fertilizer, especially the C/N ratio. Finally, the finished products of composting rubber factory waste and water hyacinth and sludge (both CMA and without CMA), can be an environmental friendly alternative to solve the disposal problems of rubber factory waste. Since the C/N ratio, pH, moisture content, temperature, and nutrients of the finished products are acceptable for agriculture use.

Keywords: composting, rubber waste, C/N ratio, sludge, cellulolytic microbial activator

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2096
368 The Effect of Compost Addition on Chemical and Nitrogen Characteristics, Respiration Activity and Biomass Production in Prepared Reclamation Substrates

Authors: L. Plošek, F. Nsanganwimana, B. Pourrut, J. Elbl, J. Hynšt, A. Kintl, D. Kubná, J. Záhora

Abstract:

Land degradation is of concern in many countries. People more and more must address the problems associated with the degradation of soil properties due to man. Increasingly, organic soil amendments, such as compost are being examined for their potential use in soil restoration and for preventing soil erosion. In the Czech Republic, compost is the most used to improve soil structure and increase the content of soil organic matter. Land reclamation / restoration is one of the ways to evaluate industrially produced compost because Czech farmers are not willing to use compost as organic fertilizer. The most common use of reclamation substrates in the Czech Republic is for the rehabilitation of landfills and contaminated sites.

This paper deals with the influence of reclamation substrates (RS) with different proportions of compost and sand on selected soil properties–chemical characteristics, nitrogen bioavailability, leaching of mineral nitrogen, respiration activity and plant biomass production. Chemical properties vary proportionally with addition of compost and sand to the control variant (topsoil). The highest differences between the variants were recorded in leaching of mineral nitrogen (varies from 1.36mg dm-3 in C to 9.09mg dm-3). Addition of compost to soil improves conditions for plant growth in comparison with soil alone. However, too high addition of compost may have adverse effects on plant growth. In addition, high proportion of compost increases leaching of mineral N. Therefore, mixture of 70% of soil with 10% of compost and 20% of sand may be recommended as optimal composition of RS.

Keywords: Biomass, Compost, Reclamation, Respiration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2273
367 Nanocharacterization of PIII Treated 7075 Aluminum Alloy

Authors: Bruno Bacci Fernandes, Stephan Mändl, Ataíde Ribeiro da Silva Junior, José Osvaldo Rossi, Mário Ueda

Abstract:

Nitrogen implantation in aluminum and its alloys is acquainted for the difficulties in obtaining modified layers deeper than 200 nm. The present work addresses a new method to overcome such a problem; although, the coating with nitrogen and oxygen obtained by plasma immersion ion implantation (PIII) into a 7075 aluminum alloy surface was too shallow. This alloy is commonly used for structural parts in aerospace applications. Such a layer was characterized by secondary ion mass spectroscopy, electron microscopy, and nanoindentation experiments reciprocating wear tests. From the results, one can assume that the wear of this aluminum alloy starts presenting severe abrasive wear followed by an additional adhesive mechanism. PIII produced a slight difference, as shown in all characterizations carried out in this work. The results shown here can be used as the scientific basis for further nitrogen PIII experiments in aluminum alloys which have the goal to produce thicker modified layers or to improve their surface properties.

Keywords: Aluminum alloys, plasma immersion ion implantation, tribological properties, hardness, nanofatigue.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 971
366 Radio-Frequency Plasma Discharge Equipment for Conservation Treatments of Paper Supports

Authors: Emil G. Ioanid, Viorica Frunză, Dorina Rusu, Ana Maria Vlad, Catalin Tanase, Simona Dunca

Abstract:

The application of cold Radio-Frequency (RF) plasma in the conservation of cultural heritage became important in the last decades due to the positive results obtained in decontamination treatments. This paper presents an equipment especially designed for cold RF plasma application on paper documents, developed within a research project. The equipment consists in two modules: the first one is designed for decontamination and cleaning treatments of any type of paper supports, while the second one can be used for coating friable papers with adequate polymers, for protection purposes. All these operations are carried out in cold radio-frequency plasma, working in gaseous nitrogen, at low pressure. In order to optimize the equipment parameters ancient paper samples infested with microorganisms have been treated in nitrogen plasma and the decontamination effects, as well as changes in surface properties (color, pH) were assessed. The microbiological analysis revealed complete decontamination at 6 minutes treatment duration; only minor modifications of the surface pH were found and the colorimetric analysis showed a slight yellowing of the support.

Keywords: Cultural heritage, nitrogen plasma, paper support.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2555
365 Biodegradation of Carbazole By a Promising Gram-Negative Bacterium

Authors: G. B. Singh, S. Srivastava, N. Gupta

Abstract:

In the present work we report a gram negative bacterial isolate, from soil of a dye industry, with promising biorefining and bioremediation potential. This isolate (GBS.5) could utilize carbazole (nitrogen containing polycyclic aromatic hydrocarbon) as the sole source of nitrogen and carbon and utilize almost 98% of 3mM carbazole in 100 hours. The specific activity of our GBS.5 isolate for carbazole degradation at 30°C and pH 7.0 was found to be 11.36 μmol/min/g dry cell weight as compared to 10.4 μmol/min/g dry cell weight, the highest reported specific activity till date. The presence of car genes (the genes involved in denitrogenation of carbazole) was confirmed through PCR amplification.

Keywords: Biodenitrogenation, Biorefining, Carbazoledegradation, Crude oil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1906
364 The Effects of Organic or Inorganic Zinc and Microbial Phytase, Alone or in Combination, on the Performance, Biochemical Parameters and Nutrient Utilization of Broilers Fed a Diet Low in Available Phosphorus

Authors: Mustafa Midilli, Mustafa Salman, Omer Hakan Muglali, Tülay Ögretmen, Sena Cenesiz, Neslihan Ormanci

Abstract:

This study examined the effects of zinc (Zn) from different sources and microbial phytase on the broiler performance, biochemical parameters and digestibility of nutrients when they were added to broiler diets containing low available phosphorus. A total of 875, 1-day-old male broilers of the Ross 308 strain were randomly separated into two control groups (positive and negative) and five treatment groups each containing 125 birds; each group was divided into 5 replicates of 25 birds. The positive control (PC) group was fed a diet containing adequate concentration (0.45%) of available phosphorus due to mineral premix (except zinc) and feeds. The negative control (NC) group was fed a basal diet including low concentration (0.30%) of available phosphorus due to mineral premix (except zinc) and feeds. The basal diet was supplemented with 0.30% phosphorus and 500 FTU phytase (PH); 0.30% phosphorus and organic zinc (OZ; 75mg/kg of Zn from Zn-proteinate); 0.30% phosphorus and inorganic zinc (IZ; 75 mg/kg of Zn from ZnSO4); 0.30% phosphorus, organic zinc and 500 FTU phytase (OZ + PH); and 0.30% phosphorus, inorganic zinc and 500 FTU phytase (IZ + PH) in the treatment groups 1, 2, 3, 4 and 5, respectively. The lowest value for mean body weight was in the negative control group on a diet containing low available phosphorus. The use of supplementation with organic and inorganic zinc alone or in combination with microbial phytase significantly (P<0.05) increased the digestibility of Zn in the male broilers. Supplementation of those diets with OZ + PH or IZ + PH was very effective for increasing the body weight, body weight gain and the feed conversion ratio. In conclusion, the effects on broilers of diets with low phosphorus levels may be overcome by the addition of inorganic or organic zinc compounds in combination with microbial phytase.

Keywords: Broiler, Performance, Phytase, Phosphorus, Zinc.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2762
363 Anaerobic Digestion of Coffee Wastewater from a Fast Inoculum Adaptation Stage: Replacement of Complex Substrate

Authors: D. Lepe-Cervantes, E. Leon-Becerril, J. Gomez-Romero, O. Garcia-Depraect, A. Lopez-Lopez

Abstract:

In this study, raw coffee wastewater (CWW) was used as a complex substrate for anaerobic digestion. The inoculum adaptation stage, microbial diversity analysis and biomethane potential (BMP) tests were performed. A fast inoculum adaptation stage was used by the replacement of vinasse to CWW in an anaerobic sequential batch reactor (AnSBR) operated at mesophilic conditions. Illumina MiSeq sequencing was used to analyze the microbial diversity. While, BMP tests using inoculum adapted to CWW were carried out at different inoculum to substrate (I/S) ratios (2:1, 3:1 and 4:1, on a VS basis). Results show that the adaptability percentage was increased gradually until it reaches the highest theoretical value in a short time of 10 d; with a methane yield of 359.10 NmL CH4/g COD-removed; Methanobacterium beijingense was the most abundant microbial (75%) and the greatest specific methane production was achieved at I/S ratio 4:1, whereas the lowest was obtained at 2:1, with BMP values of 320 NmL CH4/g VS and 151 NmL CH4/g VS, respectively. In conclusion, gradual replacement of substrate was a feasible method to adapt the inoculum in a short time even using complex raw substrates, whereas in the BMP tests, the specific methane production was proportional to the initial amount of inoculum.

Keywords: Fast inoculum adaptation, coffee wastewater, biomethane potential test, anaerobic digestion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 912
362 Toxicity Depletion Rates of Water Lettuce (Pistia stratoites) in an Aquaculture Effluent Hydroponic System

Authors: E. A. Kiridi, A. O. Ogunlela

Abstract:

The control of ammonia build-up and its by-product is a limiting factor for a successful commercial aquaculture in a developing country like Nigeria. The technology for an advanced treatment of fish tank effluent is uneconomical to local fish farmers which have led to indiscriminate disposal of aquaculture wastewater, thereby increasing the concentrations of these nitrogenous compound and other contaminants in surface and groundwater above the permissible level. Phytoremediation using water lettuce could offer cheaper and sustainable alternative. On the first day of experimentation, approximately 100 g of water lettuce were replicated in four hydroponic units containing aquaculture effluents. The water quality parameters measured were concentration of ammonium–nitrogen (NH4+-N), nitrite-nitrogen (NO2--N), nitrate-nitrogen (NO3--N), and phosphate–phosphorus (PO43--P). Others were total suspended solids (TSS), pH, electrical conductivity (EC), and biomass value. At phytoremediation intervals of 7, 14, 21 and 28 days, the biomass recorded were 361.2 g, 498.7 g, 561.2 g, and 623.7 g. Water lettuce was able to reduce the pollutant concentration of all the selected parameter. The percentage reduction of pH ranged from 3.9% to 14.4%, EC from 49.8% to 96.2%, TDS from 50.4% to 96.2%, TSS from 38.3% to 81.7%, NH4+-N from 38.9% to 90.7%, NO2--N from 0% to 74.9%, NO3--N from 63.2% to 95.9% and PO43--P from 0% to 76.3%. At 95% confidence level, the analysis of variance shows that F(critical) is less than F(cal) and p < 0.05; therefore, it can be concluded statistically that the inequality between the pre-treatment and post-treatment values are significant. This suggests the potency of water lettuce for remediation of aquaculture effluent.

Keywords: Aquaculture effluent, nitrification, phytoremediation, water lettuce.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1084
361 Integrated Cultivation Technique for Microbial Lipid Production by Photosynthetic Microalgae and Locally Oleaginous Yeast

Authors: Mutiyaporn Puangbut, Ratanaporn Leesing

Abstract:

The objective of this research is to study of microbial lipid production by locally photosynthetic microalgae and oleaginous yeast via integrated cultivation technique using CO2 emissions from yeast fermentation. A maximum specific growth rate of Chlorella sp. KKU-S2 of 0.284 (1/d) was obtained under an integrated cultivation and a maximum lipid yield of 1.339g/L was found after cultivation for 5 days, while 0.969g/L of lipid yield was obtained after day 6 of cultivation time by using CO2 from air. A high value of volumetric lipid production rate (QP, 0.223 g/L/d), specific product yield (YP/X, 0.194), volumetric cell mass production rate (QX, 1.153 g/L/d) were found by using ambient air CO2 coupled with CO2 emissions from yeast fermentation. Overall lipid yield of 8.33 g/L was obtained (1.339 g/L of Chlorella sp. KKU-S2 and 7.06g/L of T. maleeae Y30) while low lipid yield of 0.969g/L was found using non-integrated cultivation technique. To our knowledge this is the unique report about the lipid production from locally microalgae Chlorella sp. KKU-S2 and yeast T. maleeae Y30 in an integrated technique to improve the biomass and lipid yield by using CO2 emissions from yeast fermentation.

Keywords: Microbial lipid, Chlorella sp. KKU-S2, Torulaspora maleeae Y30, oleaginous yeast, biodiesel, CO2 emissions

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2209
360 Effects of Dual Inoculation of Azotobacter and Mycorrhiza with Nitrogen and Phosphorus Fertilizer Rates on Grain Yield and Some of Characteristics of Spring Safflower

Authors: M.Mirzakhani, M.R.Ardakani , A.Aeene Band , A.H. Shirani Rad, F.Rejali

Abstract:

In order to evaluate the Effects of dual inoculation of Azotobacter and Mycorrhiza with Nitrogen and Phosphorus levels on yield and yield components of spring safflower, this study was carried out in field of Farahan university in Markazi province in 2007. A factorial in a randomized complete block design with three replications was used inoculation of Azotobacter (with inoculation and without inoculation) and Mycorrhiza (with inoculation and without inoculation ) with Nitrogen and Phosphorus levels [F0= N0+ P0 (kg.ha-1), F1= N50+ P25(kg.ha-1), F2= N100+ P50(kg.ha-1) and F3= N150+ P75 (kg.ha-1)] on spring safflower (cultivar IL-111). In this study characteristics such as: Harvest index, Hectolitre weight, Root dry weight, Seed yield, Mycorrhizal Colonization Root, Number of days to maturity were assessed. Results indicated that treatment (A0M1F3) with grain yield (1556 kg.ha-1) and treatment (A0M1F0) with grain yield (918 kg.ha-1) were significantly superior to the other treatments and according to calculated, inoculation seeds in plantig date with Azotobacter and Mycorrhiza to cause increase grain yield about 5/38 percentage. we can by inoculation safflower seeds with Azotobacter and Mycorrhiza too easily at the time sowing date. The purpose of this research, study and evaluation the role of biological fixation N and P, to provide for feeds plants.

Keywords: Spring safflower, grain yield, inoculation, Azotobacter and Mycorrhiza.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1814
359 Antimicrobial, Antioxidant and Free Radical Scavenging Activities of Essential Oils Extracted from Six Eucalyptus Species

Authors: Sanaa K. Bardaweel, Mohammad M. Hudaib, Khaled A. Tawaha, Rasha M. Bashatwah

Abstract:

Eucalyptus species are well reputed for their traditional use in Asia as well as in other parts of the world; therefore, the present study was designed to investigate the antimicrobial and antioxidant activities associated with essential oils from different Eucalyptus species. Essential oils from the leaves of six Eucalyptus species, including: Eucalyptus woodwardi, Eucalyptus stricklandii, Eucalyptus salubris, Eucalyptus sargentii, Eucalyptus torquata and Eucalyptus wandoo were separated by hydrodistillation and dried over anhydrous sodium sulphate. DPPH, ferric reducing antioxidant power, and hydroxyl radical scavenging activity assays were carried out to evaluate the antioxidant potential of the oils. The results indicate that examined oils exhibit substantial antioxidant activities relative to ascorbic acid. Previously, these oils were evaluated for their antimicrobial activities, against wide range of bacterial and fungal strains, and they were shown to possess significant antimicrobial activities. In this study, further investigation into the growth kinetics of oil-treated microbial cultures was conducted. The results clearly demonstrate that the microbial growth was markedly inhibited when treated with sub-MIC concentrations of the oils. Taken together, the results obtained indicate a high potential of the examined essential oils as bioactive oils, for nutraceutical and medical applications, possessing significant antioxidant and anti microbial activities.

Keywords: Antimicrobial, antioxidants, essential (volatile) oil, Eucalyptus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2249
358 Simulation of “Net” Nutrients Removal by Green Mussel (Perna viridis) in Estuarine and Coastal Areas

Authors: Chayarat Tantanasarit, Sandhya Babel

Abstract:

Green mussels (Perna viridis) can effectively remove  nutrients from seawater through their filtration process. This study  aims to estimate “net” nutrient removal rate by green mussel through  calculation of nutrient uptake and release. Nutrients (carbon, nitrogen  and phosphorus) uptake was calculated based on the mussel filtration  rate. Nutrient release was evaluated from carbon, nitrogen and  phosphorus released as mussel faeces. By subtracting nutrient release  from nutrient uptake, net nutrient removal by green mussel can be  found as 3302, 380 and 124 mg/year/indv. Mass balance model was  employed to simulate nutrient removal in actual green mussel  farming conditions. Mussels farm area, seawater flow rate, and  amount of mussels were considered in the model. Results show that  although larger quantity of green mussel farms lead to higher nutrient  removal rate, the maximum green mussel cultivation should be taken  into consideration as nutrients released through mussel excretion can  strongly affect marine ecosystem.

 

Keywords: Carbon, Excretion, Filtration, Nitrogen, Phosphorus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2290
357 Optimization of Conditions for Xanthan Gum Production from Waste Date in Submerged Fermantation

Authors: S. Moshaf, Z. Hamidi-Esfahani, M. H. Azizi

Abstract:

Xanthan gum is one of the major commercial biopolymers. Due to its excellent rheological properties xanthan gum is used in many applications, mainly in food industry. Commercial production of xanthan gum uses glucose as the carbon substrate; consequently the price of xanthan production is high. One of the ways to decrease xanthan price, is using cheaper substrate like agricultural wastes. Iran is one of the biggest date producer countries. However approximately 50% of date production is wasted annually. The goal of this study is to produce xanthan gum from waste date using Xanthomonas campestris PTCC1473 by submerged fermentation. In this study the effect of three variables including phosphor and nitrogen amount and agitation rate in three levels using response surface methodology (RSM) has been studied. Results achieved from statistical analysis Design Expert 7.0.0 software showed that xanthan increased with increasing level of phosphor. Low level of nitrogen leaded to higher xanthan production. Xanthan amount, increasing agitation had positive influence. The statistical model identified the optimum conditions nitrogen amount=3.15g/l, phosphor amount=5.03 g/l and agitation=394.8 rpm for xanthan. To model validation, experiments in optimum conditions for xanthan gum were carried out. The mean of result for xanthan was 6.72±0.26. The result was closed to the predicted value by using RSM.

Keywords: Optimization, RSM, Waste date, Xanthan gum, Xanthomonas Campestris

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2572
356 Phosphorus Supplementation of Ammoniated Rice Straw on Rumen Fermentability, Syntesised Microbial Protein and Degradabilityin Vitro

Authors: Mardiati Zain, N. Jamarun, A. S. Tjakradidjaja

Abstract:

The effect of phosphorus supplementation of ammoniated rice straw was studied. The in vitro experiment was carried out following the first stage of Tilley and Terry method. The treatments consisting of four diets were A = 50% ammoniated rice straw + 50% concentrate (control), B = A + 0.2% Phosphor (P) supplement, C = A + 0.4% Phosphor (P) supplement, and D = A + 0.6% Phosphor (P) supplement of dry matter. Completely randomized design was used as the experimental design with differences among treatment means were examined using Duncan multiple range test. Variables measured were total bacterial and cellulolytic bacterial population, cellulolytic enzyme activity, ammonia (NH3) and volatile fatty acid (VFA) concentrations, as fermentability indicators and synthesized microbial protein, as well as degradability indicators including dry matter (DM), organic matter (OM), neutral detergent fibre (NDF), acid detergent fibre (ADF) and cellulose. The results indicated that fermentability and degradability of diets consisting ammoniated rice straw with P supplementation were significantly higher than the control diet (P< 0.05). It is concluded that P supplementation is important to improve fermentability and degradability of rations containing ammoniated RS and concentrate. In terms of the most effective level of P supplementation occurred at a supplementation rate of 0.4% of dry matter.

Keywords: Ammoniated rice straw, phosphorus, fermentability, degradability and synthesized microbial protein.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1717
355 Gas-Solid Nitrocarburizing of Steels: Kinetic Modeling and Experimental Validation

Authors: L. Torchane

Abstract:

The study is devoted to define the optimal conditions for the nitriding of pure iron at atmospheric pressure by using NH3- Ar-C3H8 gas mixtures. After studying the mechanisms of phase formation and mass transfer at the gas-solid interface, a mathematical model is developed in order to predict the nitrogen transfer rate in the solid, the ε-carbonitride layer growth rate and the nitrogen and carbon concentration profiles. In order to validate the model and to show its possibilities, it is compared with thermogravimetric experiments, analyses and metallurgical observations (X-ray diffraction, optical microscopy and electron microprobe analysis). Results obtained allow us to demonstrate the sound correlation between the experimental results and the theoretical predictions.

Keywords: Gaseous Nitrocarburizing, Kinetic Model, Diffusion, Layer Growth Kinetic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2135
354 Potential of Selected Microbial Strains to Degrade the Gasoil of Hydrocarbon Polluted Soil

Authors: Ali Zazoua, Anis Zazoua, Ahcen Taleb, Nicole Jaffrezic-Renault

Abstract:

Although oil-based drilling fluids are of paramount practical and economical interest, they represent a serious source of pollution, once released into the environment as drill cuttings. The aim of this study is to assess the capability of isolated microorganisms to degrade gasoil fuel. The commonly used physicochemical and biodegradation remediation techniques of petroleum contaminated soil were both investigated. The study revealed that natural biodegradation is favorable. Even though, the presence of heavy metals, the moisture level of (8.55%) and nutrient deficiencies put severe constrains on microorganisms- survival ranges inhibiting the biodegradation process. The selected strains were able to degrade the diesel fuel at significantly high rates (around 98%).

Keywords: Biodegradation, Gasoil, Pollution, Microbial strains, Hydrocarbon, soil pollution

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1720
353 Utilization of Wheat Bran as Bed Material in Solid State Bacterial Production of Lactic Acid with Various Nitrogen Sources

Authors: U.K.Ghosh, M.K.Ghosh

Abstract:

The present experimental investigation brings about a comparative study of lactic acid production by pure strains of Lactobacilli (1) L. delbreuckii (NCIM2025), (2) L. pentosus (NCIM 2912), (3) Lactobacillus sp.(NCIM 2734, (4) Lactobacillus sp. (NCIM2084) and coculture of strain-1 and Stain-2 in solid bed of wheat bran, under the influence of different nitrogen sources such as baker-s yeast, meat extract and proteose peptone. Among the pure cultures, strain-3 attained lowest pH value of 3.44, hence highest acid formation 46.41 g/L, while the coculture attained an overall maximum value 47.56 g/L lactic acid (pH 3.38) at 15 g/L and 20 g/L level of baker-s yeast, respectively.

Keywords: Eco-friendly, lactic acid, lactobacilli, wheat bran

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2024
352 Effect of Different Fertilization Methods on Soil Biological Indexes

Authors: Khosro Mohammadi

Abstract:

Fertilization plays an important role in crop growth and soil improvement. This study was conducted to determine the best fertilization system for wheat production. Experiments were arranged in a complete block design with three replications in two years. Main plots consisted of six methods of fertilization including (N1): farmyard manure; (N2): compost; (N3): chemical fertilizers; (N4): farmyard manure + compost; (N5): farmyard manure + compost + chemical fertilizers and (N6): control were arranged in sub plots. The addition of compost or farm yard manure significantly increased the soil microbial biomass carbon in comparison to the chemical fertilizer. The dehydrogenase, phosphatase and urease activities in the N3 treatment were significantly lower than in the farm yard manure and compost treatments.

Keywords: Enzyme activity, fertilization, microbial biomasscarbon, wheat.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2616
351 Effect of Different Microbial Strains on Biological Pretreatment of Sugarcane Bagasse for Enzymatic Hydrolysis

Authors: Achiraya Jiraprasertwong, Erdogan Gulari, Sumaeth Chavadej

Abstract:

Among agricultural residues, sugarcane bagasse is one of the most convincing raw materials for the production of bioethanol due to its availability, and low cost through enzymatic hydrolysis and yeast fermentation. A pretreatment step is needed to enhance the enzymatic step. In this study, sugarcane bagasse (SCB), one of the most abundant agricultural residues in Thailand, was pretreated biologically with various microorganisms of white-rot fungus—Phanerochaete sordid (SK 7), Cellulomonas sp. (TISTR 784), and strain A 002 (Bacillus subtilis isolated from Thai higher termites). All samples with various microbial pretreatments were further hydrolyzed enzymatically by a commercial enzyme obtained from Aspergillus niger. The results showed that the pretreatment with the white-rot fungus gave the highest glucose concentration around two-fold higher when compared with the others.

Keywords: Sugarcane bagasse, Microorganisms, Pretreatment, Enzymatic hydrolysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2531
350 Use of Plant Antimicrobials for Food Preservation

Authors: Oladotun A. Fatoki, Deborah A. Onifade

Abstract:

Spoilage occurs in plant produce due to the action of field and storage microorganisms. The conditions of storage can also cause physiological spoilage. Various methods exist to ensure that these food substances maintain their quality long after harvesting. However, many of these methods either fail to keep the plant for the required period or predispose the plant to other spoilage risks. The major shortcoming posed by the use of many antimicrobials is the chemical residues it deposits in the food substance. The use of plants in preservation has been in use for a long period, though little understood then, it served its purposes. A better understanding of the roles of these plant parts in increasing the shelf life of farm produce has helped in the creation of more effective and safer means of pest and microbial control. This can be extended to plants that have not been used for these purposes initially. Microbial sources should also be investigated as these have provided cheaper sources of secondary metabolites.

Keywords: Antimicrobials, Food preservation, Phytochemicals

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3973
349 Magnetoplasmadynamic Thruster Design and Characteristics

Authors: A. Almuwallad

Abstract:

The magnetoplasmadynamic (MPD) thruster is classified as an electric propulsion system and consists of two metal electrodes separated by an insulator. A high-current electric arc is driven between electrodes to ionize the injected propellant between electrodes for plasma creation. At the same time, a magnetic field is generated by the electric current returning to the power supply. This magnetic field interacts with the electric current flowing through the plasma to produce thrust. This paper compares the performance of MPD thrusters when using three different propellants (methane, nitrogen, and propane) at varying input mass flow rates. Methane provided the best performance, and nitrogen performed better than propane. In addition, when using the same parameters, the thruster with a divergent nozzle performed better than the thruster with a constant nozzle.

Keywords: Magnetoplasmadynamic thruster, electric propulsion, propellant, plasma.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 166
348 Wastewater Treatment and Bio-Electricity Generation via Microbial Fuel Cell Technology Operating with Starch Proton Exchange Membrane

Authors: Livinus A. Obasi, Augustine N. Ajah

Abstract:

Biotechnology in recent times has tried to develop a mechanism whereby sustainable electricity can be generated by the activity of microorganisms on waste and renewable biomass (often regarded as “negative value”) in a device called microbial fuel cell, MFC. In this paper, we established how the biocatalytic activities of bacteria on organic matter (substrates) produced some electrons with the associated removal of some water pollution parameters; Biochemical oxygen demand (BOD), chemical oxygen demand (COD) to the tune of 77.2% and 88.3% respectively from a petrochemical sanitary wastewater. The electricity generation was possible by conditioning the bacteria to operate anaerobically in one chamber referred to as the anode while the electrons are transferred to the fully aerated counter chamber containing the cathode. Power densities ranging from 12.83 mW/m2 to 966.66 mW/m2 were achieved using a dual-chamber starch membrane MFC experimental set-up. The maximum power density obtained in this research shows an improvement in the use of low cost MFC set up to achieve power production. Also, the level of organic matter removal from the sanitary waste water by the operation of this device clearly demonstrates its potential benefit in achieving an improved benign environment. The beauty of the MFCs is their potential utility in areas lacking electrical infrastructures like in most developing countries.

Keywords: Bioelectricity, chemical oxygen demand, microbial fuel cell, sanitary wastewater, wheat starch.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1246
347 Performance of Membrane Bioreactor (MBR) in High Phosphate Wastewater

Authors: Aida Isma M. I., Putri Razreena A. R., Rozita Omar, Azni Idris

Abstract:

This study presents the performance of membrane bioreactor in treating high phosphate wastewater. The laboratory scale MBR was operated at permeate flux of 25 L/m2.h with a hollow fiber membrane (polypropylene, approx. pore size 0.01 - 0.2 μm) at hydraulic retention time (HRT) of 12 hrs. Scanning electron microscopy (SEM) and energy diffusive X-ray (EDX) analyzer were used to characterize the membrane foulants. Results showed that the removal efficiencies of COD, TSS, NH3-N and PO4 3- were 93, 98, 80 and 30% respectively. On average 91% of influent soluble microbial products (SMP) were eliminated, with the eliminations of polysaccharides mostly above 80%. The main fouling resistance was cake resistance. It should be noted that SMP were found in major portions of mixed liquor that played a relatively significant role in membrane fouling. SEM and EDX analyses indicated that the foulants covering the membrane surfaces comprises not only organic substances but also inorganic elements including Mg, Ca, Al, K and P.

Keywords: Membrane bioreactor (MBR), membrane fouling, phosphates, soluble microbial products (SMP).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3321
346 Influence of Ammonium Concentration on the Performance of an Inorganic Biofilter Treating Methane

Authors: Marc Veillette, Antonio Avalos Ramirez, Michèle Heitz

Abstract:

Among the technologies available to reduce methane emitted from the pig industry, biofiltration seems to be an effective and inexpensive solution. In methane (CH4) biofiltration, nitrogen is an important macronutrient for the microorganisms growth. The objective of this research project was to study the effect of ammonium (NH4 +) on the performance, the biomass production and the nitrogen conversion of a biofilter treating methane. For NH4 + concentrations ranging from 0.05 to 0.5 gN-NH4 +/L, the CH4 removal efficiency and the dioxide carbon production rate decreased linearly from 68 to 11.8 % and from 7.1 to 0.5 g/(m3-h), respectively. The dry biomass content varied from 4.1 to 5.8 kg/(m3 filter bed). For the same range of concentrations, the ammonium conversion decreased while the specific nitrate production rate increased. The specific nitrate production rate presented negative values indicating denitrification in the biofilter.

Keywords: Methane, biofiltration, pig, ammonium, nitrification, denitrification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1652
345 Sous Vide Packaging Technology Application for Salad with Meat in Mayonnaise Shelf Life Extension

Authors: Vita Levkane, Sandra Muizniece-Brasava, Lija Dukalska

Abstract:

Experiments have been carried out at the Latvia University of Agriculture Department of Food Technology. The aim of this work was to assess the effect of sous vide packaging during the storage time of salad with meat in mayonnaise at different storage temperature. Samples were evaluated at 0, 1, 3, 7, 10, 15, 18, 25, 29, 42, and 52 storage days at the storage temperature of +4±0.5 ºC and +10±0.5 ºC. Experimentally the quality of the salad with meat in mayonnaise was characterized by measuring colour, pH and microbiological properties. The sous vide packaging was effective in protecting the product from physical, chemical, and microbial quality degradation. The sous vide packaging significantly reduces microbial growth at storage temperature of +4±0.5 ºC and +10±0.5 ºC. Moreover, it is possible to extend the product shelf life to 52 days even when stored at +10±0.5 ºC.

Keywords: salad with meat in mayonnaise, shelf life, sous videpackaging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2279
344 Modelling Phytoremediation Rates of Aquatic Macrophytes in Aquaculture Effluent

Authors: E. A. Kiridi, A. O. Ogunlela

Abstract:

Pollutants from aquacultural practices constitute environmental problems and phytoremediation could offer cheaper environmentally sustainable alternative since equipment using advanced treatment for fish tank effluent is expensive to import, install, operate and maintain, especially in developing countries. The main objective of this research was, therefore, to develop a mathematical model for phytoremediation by aquatic plants in aquaculture wastewater. Other objectives were to evaluate the retention times on phytoremediation rates using the model and to measure the nutrient level of the aquaculture effluent and phytoremediation rates of three aquatic macrophytes, namely; water hyacinth (Eichornia crassippes), water lettuce (Pistial stratoites) and morning glory (Ipomea asarifolia). A completely randomized experimental design was used in the study. Approximately 100 g of each macrophyte were introduced into the hydroponic units and phytoremediation indices monitored at 8 different intervals from the first to the 28th day. The water quality parameters measured were pH and electrical conductivity (EC). Others were concentration of ammonium–nitrogen (NH4+ -N), nitrite- nitrogen (NO2- -N), nitrate- nitrogen (NO3- -N), phosphate –phosphorus (PO43- -P), and biomass value. The biomass produced by water hyacinth was 438.2 g, 600.7 g, 688.2 g and 725.7 g at four 7–day intervals. The corresponding values for water lettuce were 361.2 g, 498.7 g, 561.2 g and 623.7 g and for morning glory were 417.0 g, 567.0 g, 642.0 g and 679.5g. Coefficient of determination was greater than 80% for EC, TDS, NO2- -N, NO3- -N and 70% for NH4+ -N using any of the macrophytes and the predicted values were within the 95% confidence interval of measured values. Therefore, the model is valuable in the design and operation of phytoremediation systems for aquaculture effluent.

Keywords: Phytoremediation, macrophytes, hydroponic unit, aquaculture effluent, mathematical model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1569
343 Study of the Cryogenically Cooled Electrode Shape in Electric Discharge Machining Process

Authors: Vineet Srivastava, Pulak M. Pandey

Abstract:

Electrical discharge machining (EDM) is well established machining technique mainly used to machine complex geometries on difficult-to-machine materials and high strength temperature resistant alloys. In the present research, the objective is to study the shape of the electrode and establish the application of liquid nitrogen in reducing distortion of the electrode during electrical discharge machining of M2 grade high speed steel using copper electrodes. Study of roundness was performed on the electrode to observe the shape of the electrode for both conventional EDM and EDM with cryogenically cooled electrode. Scanning Electron Microscope (SEM) has been used to study the shape of electrode tip. The effect of various parameters such as discharge current and pulse on time has been studied to understand the behavior of distortion of electrode. It has been concluded that the shape retention is better in case of liquid nitrogen cooled electrode.

Keywords: cryogenic cooling, EDM, electrode shape, out of roundness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2326