Search results for: finite difference modelling
3027 A Finite Difference Calculation Procedure for the Navier-Stokes Equations on a Staggered Curvilinear Grid
Authors: R. M. Barron, B. Zogheib
Abstract:
A new numerical method for solving the twodimensional, steady, incompressible, viscous flow equations on a Curvilinear staggered grid is presented in this paper. The proposed methodology is finite difference based, but essentially takes advantage of the best features of two well-established numerical formulations, the finite difference and finite volume methods. Some weaknesses of the finite difference approach are removed by exploiting the strengths of the finite volume method. In particular, the issue of velocity-pressure coupling is dealt with in the proposed finite difference formulation by developing a pressure correction equation in a manner similar to the SIMPLE approach commonly used in finite volume formulations. However, since this is purely a finite difference formulation, numerical approximation of fluxes is not required. Results obtained from the present method are based on the first-order upwind scheme for the convective terms, but the methodology can easily be modified to accommodate higher order differencing schemes.Keywords: Curvilinear, finite difference, finite volume, SIMPLE.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32033026 Applications of High-Order Compact Finite Difference Scheme to Nonlinear Goursat Problems
Authors: Mohd Agos Salim Nasir, Ahmad Izani Md. Ismail
Abstract:
Several numerical schemes utilizing central difference approximations have been developed to solve the Goursat problem. However, in a recent years compact discretization methods which leads to high-order finite difference schemes have been used since it is capable of achieving better accuracy as well as preserving certain features of the equation e.g. linearity. The basic idea of the new scheme is to find the compact approximations to the derivative terms by differentiating centrally the governing equations. Our primary interest is to study the performance of the new scheme when applied to two Goursat partial differential equations against the traditional finite difference scheme.Keywords: Goursat problem, partial differential equation, finite difference scheme, compact finite difference
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19023025 Temperature Profile Modelling in Flexible Pavement Design
Authors: Csaba Tóth, Éva Lakatos, László Pethő, Seoyoung Cho
Abstract:
The temperature effect on asphalt pavement structure is a crucial factor at the design stage. In this paper, by applying the German guidelines for temperature along the asphalt depth is estimated. The aim is to consider temperature profiles in different seasons in numerical modelling. The model is built with an elastic and isotropic solid element with 19 subdivisions of asphalt layers to reflect the temperature variation. Comparison with the simple three-layer pavement system (asphalt layers, base, and subgrade layers) will be followed to see the difference in result without temperature variation along with the depth. Finally, the fatigue life calculation was checked to prove the validity of the methodology of considering the temperature in the numerical modelling.
Keywords: Temperature profile, flexible pavement modelling, finite element method, temperature modelling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5293024 Localized Meshfree Methods for Solving 3D-Helmholtz Equation
Authors: Reza Mollapourasl, Majid Haghi
Abstract:
In this study, we develop local meshfree methods known as radial basis function-generated finite difference (RBF-FD) method and Hermite finite difference (RBF-HFD) method to design stencil weights and spatial discretization for Helmholtz equation. The convergence and stability of schemes are investigated numerically in three dimensions with irregular shaped domain. These localized meshless methods incorporate the advantages of the RBF method, finite difference and Hermite finite difference methods to handle the ill-conditioning issue that often destroys the convergence rate of global RBF methods. Moreover, numerical illustrations show that the proposed localized RBF type methods are efficient and applicable for problems with complex geometries. The convergence and accuracy of both schemes are compared by solving a test problem.
Keywords: Radial basis functions, Hermite finite difference, Helmholtz equation, stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1293023 An Optimal Control of Water Pollution in a Stream Using a Finite Difference Method
Authors: Nopparat Pochai, Rujira Deepana
Abstract:
Water pollution assessment problems arise frequently in environmental science. In this research, a finite difference method for solving the one-dimensional steady convection-diffusion equation with variable coefficients is proposed; it is then used to optimize water treatment costs.Keywords: Finite difference, One-dimensional, Steady state, Waterpollution control, Optimization, Convection-diffusion equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17473022 Numerical Modelling of Dry Stone Masonry Structures Based on Finite-Discrete Element Method
Authors: Ž. Nikolić, H. Smoljanović, N. Živaljić
Abstract:
This paper presents numerical model based on finite-discrete element method for analysis of the structural response of dry stone masonry structures under static and dynamic loads. More precisely, each discrete stone block is discretized by finite elements. Material non-linearity including fracture and fragmentation of discrete elements as well as cyclic behavior during dynamic load are considered through contact elements which are implemented within a finite element mesh. The application of the model was conducted on several examples of these structures. The performed analysis shows high accuracy of the numerical results in comparison with the experimental ones and demonstrates the potential of the finite-discrete element method for modelling of the response of dry stone masonry structures.Keywords: Finite-discrete element method, dry stone masonry structures, static load, dynamic load.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16173021 A Non-Standard Finite Difference Scheme for the Solution of Laplace Equation with Dirichlet Boundary Conditions
Authors: Khaled Moaddy
Abstract:
In this paper, we present a fast and accurate numerical scheme for the solution of a Laplace equation with Dirichlet boundary conditions. The non-standard finite difference scheme (NSFD) is applied to construct the numerical solutions of a Laplace equation with two different Dirichlet boundary conditions. The solutions obtained using NSFD are compared with the solutions obtained using the standard finite difference scheme (SFD). The NSFD scheme is demonstrated to be reliable and efficient.
Keywords: Standard finite difference schemes, non–standard schemes, Laplace equation, Dirichlet boundary conditions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6663020 Simulation of the Finite Difference Time Domain in Two Dimension
Abstract:
The finite-difference time-domain (FDTD) method is one of the most widely used computational methods in electromagnetic. This paper describes the design of two-dimensional (2D) FDTD simulation software for transverse magnetic (TM) polarization using Berenger's split-field perfectly matched layer (PML) formulation. The software is developed using Matlab programming language. Numerical examples validate the software.Keywords: Finite difference time domain (FDTD) method, perfectly matched layer (PML), split-filed formulation, transverse magnetic (TM) polarization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 56203019 Dynamic Response of Strain Rate Dependent Glass/Epoxy Composite Beams Using Finite Difference Method
Authors: M. M. Shokrieh, A. Karamnejad
Abstract:
This paper deals with a numerical analysis of the transient response of composite beams with strain rate dependent mechanical properties by use of a finite difference method. The equations of motion based on Timoshenko beam theory are derived. The geometric nonlinearity effects are taken into account with von Kármán large deflection theory. The finite difference method in conjunction with Newmark average acceleration method is applied to solve the differential equations. A modified progressive damage model which accounts for strain rate effects is developed based on the material property degradation rules and modified Hashin-type failure criteria and added to the finite difference model. The components of the model are implemented into a computer code in Mathematica 6. Glass/epoxy laminated composite beams with constant and strain rate dependent mechanical properties under dynamic load are analyzed. Effects of strain rate on dynamic response of the beam for various stacking sequences, load and boundary conditions are investigated.Keywords: Composite beam, Finite difference method, Progressive damage modeling, Strain rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19893018 Finite Element Modelling of Ground Vibrations Due to Tunnelling Activities
Authors: Muhammad E. Rahman, Trevor Orr
Abstract:
This paper presents the use of three-dimensional finite elements coupled with infinite elements to investigate the ground vibrations at the surface in terms of the peak particle velocity (PPV) due to construction of the first bore of the Dublin Port Tunnel. This situation is analysed using a commercially available general-purpose finite element package ABAQUS. A series of parametric studies is carried out to examine the sensitivity of the predicted vibrations to variations in the various input parameters required by finite element method, including the stiffness and the damping of ground. The results of this study show that stiffness has a more significant effect on the PPV rather than the damping of the ground.Keywords: Finite Elements, PPV, Tunnelling, Vibration
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32553017 Numerical Modelling of Crack Initiation around a Wellbore Due to Explosion
Authors: Meysam Lak, Mohammad Fatehi Marji, Alireza Yarahamdi Bafghi, Abolfazl Abdollahipour
Abstract:
A wellbore is a hole that is drilled to aid in the exploration and recovery of natural resources including oil and gas. Occasionally, in order to increase productivity index and porosity of the wellbore and reservoir, the well stimulation methods have been used. Hydraulic fracturing is one of these methods. Moreover, several explosions at the end of the well can stimulate the reservoir and create fractures around it. In this study, crack initiation in rock around the wellbore has been numerically modeled due to explosion. One, two, three, and four pairs of explosion have been set at the end of the wellbore on its wall. After each stage of the explosion, results have been presented and discussed. Results show that this method can initiate and probably propagate several fractures around the wellbore.
Keywords: Crack initiation, explosion, finite difference modelling, well productivity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8103016 Electromagnetic Wave Propagation Equations in 2D by Finite Difference Method
Authors: N. Fusun Oyman Serteller
Abstract:
In this paper, the techniques to solve time dependent electromagnetic wave propagation equations based on the Finite Difference Method (FDM) are proposed by comparing the results with Finite Element Method (FEM) in 2D while discussing some special simulation examples. Here, 2D dynamical wave equations for lossy media, even with a constant source, are discussed for establishing symbolic manipulation of wave propagation problems. The main objective of this contribution is to introduce a comparative study of two suitable numerical methods and to show that both methods can be applied effectively and efficiently to all types of wave propagation problems, both linear and nonlinear cases, by using symbolic computation. However, the results show that the FDM is more appropriate for solving the nonlinear cases in the symbolic solution. Furthermore, some specific complex domain examples of the comparison of electromagnetic waves equations are considered. Calculations are performed through Mathematica software by making some useful contribution to the programme and leveraging symbolic evaluations of FEM and FDM.
Keywords: Finite difference method, finite element method, linear-nonlinear PDEs, symbolic computation, wave propagation equations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7133015 Empowering Student Success: Innovative Modelling Techniques for Enhancing Self-Efficacy in Education
Authors: Aldrin R. Logdat, Marianne Christine Jane B. Capio
Abstract:
The study aimed to investigate the impact of modelling techniques on the self-efficacy of first year Bachelor of Science Major in Hospitality Management (BSHM) college students at City College of Calapan, Oriental Mindoro. The research utilized a ten-point general self-efficacy scale and collected responses from a sample of 107 students across five BSHM sections. The study found that the majority of students had a moderate level of self-efficacy, with 49.53% of total respondents falling within this category. However, 35.51% of students had high self-efficacy, and 14.95% had low self-efficacy levels. The two-tailed t-test for independent samples indicated a significant difference between the mean post-test scores of the experimental and control groups. Furthermore, Wilcoxon test showed that there were significant differences in the experimental group's self-efficacy before and after treatment, while no such difference was observed in the control group. Thus, the modelling technique proved to be effective in improving the self-efficacy levels of first year BSHM college students. Ultimately, the use of modelling techniques helped to elevate students’ self-efficacy levels into higher categories.
Keywords: Self-efficacy, counselling, modelling techniques, hospitality management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3873014 3D Modelling and Numerical Analysis of Human Inner Ear by Means of Finite Elements Method
Authors: C. Castro-Egler, A. Durán-Escalante, A. García-González
Abstract:
This paper presents a method to generate a finite element model of the human auditory inner ear system. The geometric model has been realized using 2D images from a virtual model of temporal bones. A point cloud has been gotten manually from those images to construct a whole mesh with hexahedral elements. The main difference with the predecessor models is the spiral shape of the cochlea with its three scales completely defined: scala tympani, scala media and scala vestibuli; which are separate by basilar membrane and Reissner membrane. To validate this model, numerical simulations have been realised with two models: an isolated inner ear and a whole model of human auditory system. Ideal conditions of displacement are applied over the oval window in the isolated Inner Ear model. The whole model is made up of the outer auditory channel, the tympani, the ossicular chain, and the inner ear. The boundary condition for the whole model is 1Pa over the auditory channel entrance. The numerical simulations by FEM have been done using a harmonic analysis with a frequency range between 100-10.000 Hz with an interval of 100Hz. The following results have been carried out: basilar membrane displacement; the scala media pressure according to the cochlea length and the transfer function of the middle ear normalized with the pressure in the tympanic membrane. The basilar membrane displacements and the pressure in the scala media make it possible to validate the response in frequency of the basilar membrane.
Keywords: Finite elements method, human auditory system model, numerical analysis, 3D modelling cochlea.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15323013 A Fully Implicit Finite-Difference Solution to One Dimensional Coupled Nonlinear Burgers’ Equations
Authors: Vineet K. Srivastava, Mukesh K. Awasthi, Mohammad Tamsir
Abstract:
A fully implicit finite-difference method has been proposed for the numerical solutions of one dimensional coupled nonlinear Burgers’ equations on the uniform mesh points. The method forms a system of nonlinear difference equations which is to be solved at each iteration. Newton’s iterative method has been implemented to solve this nonlinear assembled system of equations. The linear system has been solved by Gauss elimination method with partial pivoting algorithm at each iteration of Newton’s method. Three test examples have been carried out to illustrate the accuracy of the method. Computed solutions obtained by proposed scheme have been compared with analytical solutions and those already available in the literature by finding L2 and L∞ errors.
Keywords: Burgers’ equation, Implicit Finite-difference method, Newton’s method, Gauss elimination with partial pivoting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 59423012 The Finite Difference Scheme for the Suspended String Equation with the Nonlinear Damping Term
Authors: Jaipong Kasemsuwan
Abstract:
A numerical solution of the initial boundary value problem of the suspended string vibrating equation with the particular nonlinear damping term based on the finite difference scheme is presented in this paper. The investigation of how the second and third power terms of the nonlinear term affect the vibration characteristic. We compare the vibration amplitude as a result of the third power nonlinear damping with the second power obtained from previous report provided that the same initial shape and initial velocities are assumed. The comparison results show that the vibration amplitude is inversely proportional to the coefficient of the damping term for the third power nonlinear damping case, while the vibration amplitude is proportional to the coefficient of the damping term in the second power nonlinear damping case.Keywords: Finite-difference method, the nonlinear damped equation, the numerical simulation, the suspended string equation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14513011 The Simulation and Experimental Investigation to Study the Strain Distribution Pattern during the Closed Die Forging Process
Authors: D. B. Gohil
Abstract:
Closed die forging is a very complex process, and measurement of actual forces for real material is difficult and time consuming. Hence, the modelling technique has taken the advantage of carrying out the experimentation with the proper model material which needs lesser forces and relatively low temperature. The results of experiments on the model material then may be correlated with the actual material by using the theory of similarity. There are several methods available to resolve the complexity involved in the closed die forging process. Finite Element Method (FEM) and Finite Difference Method (FDM) are relatively difficult as compared to the slab method. The slab method is very popular and very widely used by the people working on shop floor because it is relatively easy to apply and reasonably accurate for most of the common forging load requirement computations.Keywords: Experimentation, forging, process modeling, strain distribution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13653010 Nonlinear Control of a Continuous Bioreactor Based on Cell Population Model
Authors: Mahdi Sharifian, Mohammad Ali Fanaei
Abstract:
Saccharomyces cerevisiae (baker-s yeast) can exhibit sustained oscillations during the operation in a continuous bioreactor that adversely affects its stability and productivity. Because of heterogeneous nature of cell populations, the cell population balance models can be used to capture the dynamic behavior of such cultures. In this paper an unstructured, segregated model is used which is based on population balance equation(PBE) and then in order to simulation, the 4th order Rung-Kutta is used for time dimension and three methods, finite difference, orthogonal collocation on finite elements and Galerkin finite element are used for discretization of the cell mass domain. The results indicate that the orthogonal collocation on finite element not only is able to predict the oscillating behavior of the cell culture but also needs much little time for calculations. Therefore this method is preferred in comparison with other methods. In the next step two controllers, a globally linearizing control (GLC) and a conventional proportional-integral (PI) controller are designed for controlling the total cell mass per unit volume, and performances of these controllers are compared through simulation. The results show that although the PI controller has simpler structure, the GLC has better performance.Keywords: Bioreactor, cell population balance, finite difference, orthogonal collocation on finite elements, Galerkin finite element, feedback linearization, PI controller.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18823009 Heuristic Method for Judging the Computational Stability of the Difference Schemes of the Biharmonic Equation
Authors: Guang Zeng, Jin Huang, Zicai Li
Abstract:
In this paper, we research the standard 13-point difference schemes for solving the biharmonic equation. Heuristic method is applied to judging the stability of multi-level difference schemes of the biharmonic equation. It is showed that the standard 13-point difference schemes are stable.
Keywords: Finite-difference equation, computational stability, hirt method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13583008 Septic B-spline Collocation Method for Solving One-dimensional Hyperbolic Telegraph Equation
Authors: Marzieh Dosti, Alireza Nazemi
Abstract:
Recently, it is found that telegraph equation is more suitable than ordinary diffusion equation in modelling reaction diffusion for such branches of sciences. In this paper, a numerical solution for the one-dimensional hyperbolic telegraph equation by using the collocation method using the septic splines is proposed. The scheme works in a similar fashion as finite difference methods. Test problems are used to validate our scheme by calculate L2-norm and L∞-norm. The accuracy of the presented method is demonstrated by two test problems. The numerical results are found to be in good agreement with the exact solutions.
Keywords: B-spline, collocation method, second-order hyperbolic telegraph equation, difference schemes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17963007 The Finite Difference Scheme for the Suspended String Equation with the Nonlinear External Forces
Authors: Jaipong Kasemsuwan
Abstract:
This paper presents the finite difference scheme and the numerical simulation of suspended string. The vibration solutions when the various external forces are taken into account are obtained and compared with the solutions without external force. In addition, we also investigate how the external forces and their powers and coefficients affect the amplitude of vibration.
Keywords: Nonlinear external forces, Numerical simulation, Suspended string equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15063006 Stepsize Control of the Finite Difference Method for Solving Ordinary Differential Equations
Authors: Davod Khojasteh Salkuyeh
Abstract:
An important task in solving second order linear ordinary differential equations by the finite difference is to choose a suitable stepsize h. In this paper, by using the stochastic arithmetic, the CESTAC method and the CADNA library we present a procedure to estimate the optimal stepsize hopt, the stepsize which minimizes the global error consisting of truncation and round-off error.
Keywords: Ordinary differential equations, optimal stepsize, error, stochastic arithmetic, CESTAC, CADNA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13623005 Crank-Nicolson Difference Scheme for the Generalized Rosenau-Burgers Equation
Authors: Kelong Zheng, Jinsong Hu,
Abstract:
In this paper, numerical solution for the generalized Rosenau-Burgers equation is considered and Crank-Nicolson finite difference scheme is proposed. Existence of the solutions for the difference scheme has been shown. Stability, convergence and priori error estimate of the scheme are proved. Numerical results demonstrate that the scheme is efficient and reliable.
Keywords: Generalized Rosenau-Burgers equation, difference scheme, stability, convergence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18623004 New High Order Group Iterative Schemes in the Solution of Poisson Equation
Authors: Sam Teek Ling, Norhashidah Hj. Mohd. Ali
Abstract:
We investigate the formulation and implementation of new explicit group iterative methods in solving the two-dimensional Poisson equation with Dirichlet boundary conditions. The methods are derived from a fourth order compact nine point finite difference discretization. The methods are compared with the existing second order standard five point formula to show the dramatic improvement in computed accuracy. Numerical experiments are presented to illustrate the effectiveness of the proposed methods.
Keywords: Explicit group iterative method, finite difference, fourth order compact, Poisson equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16803003 Comparison of Finite Difference Schemes for Water Flow in Unsaturated Soils
Authors: H. Taheri Shahraiyni, B. Ataie Ashtiani
Abstract:
Flow movement in unsaturated soil can be expressed by a partial differential equation, named Richards equation. The objective of this study is the finding of an appropriate implicit numerical solution for head based Richards equation. Some of the well known finite difference schemes (fully implicit, Crank Nicolson and Runge-Kutta) have been utilized in this study. In addition, the effects of different approximations of moisture capacity function, convergence criteria and time stepping methods were evaluated. Two different infiltration problems were solved to investigate the performance of different schemes. These problems include of vertical water flow in a wet and very dry soils. The numerical solutions of two problems were compared using four evaluation criteria and the results of comparisons showed that fully implicit scheme is better than the other schemes. In addition, utilizing of standard chord slope method for approximation of moisture capacity function, automatic time stepping method and difference between two successive iterations as convergence criterion in the fully implicit scheme can lead to better and more reliable results for simulation of fluid movement in different unsaturated soils.Keywords: Finite Difference methods, Richards equation, fullyimplicit, Crank-Nicolson, Runge-Kutta.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23753002 Analysis of One Dimensional Advection Diffusion Model Using Finite Difference Method
Authors: Vijay Kumar Kukreja, Ravneet Kaur
Abstract:
In this paper, one dimensional advection diffusion model is analyzed using finite difference method based on Crank-Nicolson scheme. A practical problem of filter cake washing of chemical engineering is analyzed. The model is converted into dimensionless form. For the grid Ω × ω = [0, 1] × [0, T], the Crank-Nicolson spatial derivative scheme is used in space domain and forward difference scheme is used in time domain. The scheme is found to be unconditionally convergent, stable, first order accurate in time and second order accurate in space domain. For a test problem, numerical results are compared with the analytical ones for different values of parameter.Keywords: Consistency, Crank-Nicolson scheme, Gerschgorin circle, Lax-Richtmyer theorem, Peclet number, stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7613001 Knowledge Modelling for a Hotel Recommendation System
Authors: B. A. Gobin, R. K. Subramanian
Abstract:
Knowledge modelling, a main activity for the development of Knowledge Based Systems, have no set standards and are mostly done in an ad hoc way. There is a lack of support for the transition from abstract level to implementation. In this paper, a methodology for the development of the knowledge model, which is inspired by both Software and Knowledge Engineering, is proposed. Use of UML which is the de-facto standard for modelling in the software engineering arena is explored for knowledge modelling. The methodology proposed, is used to develop a knowledge model of a knowledge based system for recommending suitable hotels for tourists visiting Mauritius.Keywords: Domain Modelling, Knowledge Based Systems, Knowledge Modelling, UML.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37643000 Modelling and Enhancing Engineering Drawing and Design Table Design by Analyzing Stress and Advanced Deformation Analysis Using Finite Element Method
Authors: Nitesh Pandey, Manish Kumar, Amit Kumar Srivastava, Pankaj Gupta
Abstract:
The research presents an extensive analysis of the Engineering Drawing and Design (EDD) table's design and development, accentuating its convertible utility and ergonomic design principles. Through the amalgamation of advanced design methodologies with simulation tools, this paper explores and compares the structural integrity of the EDD table, considering both linear and nonlinear stress behaviors. The study evaluates stress distribution and deformation patterns using the Finite Element Method (FEM) in Autodesk Fusion 360 CAD/CAM software. These analyses are critical to maximizing the durability and performance of the table. Stress situations are modeled using mathematical equations, which provide an accurate depiction of real-world operational conditions. The research highlights the EDD table as an innovative solution tailored to the diverse needs of modern workspaces, providing a balance of practical functionality and ergonomic design while demonstrating cost-effectiveness and time efficiency in the design process.
Keywords: Parametric modelling, Finite element method, FEM, Autodesk Fusion 360, stress analysis, CAD/CAM, computer aided design, computer-aided manufacturing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 312999 Matrix Valued Difference Equations with Spectral Singularities
Authors: Serifenur Cebesoy, Yelda Aygar, Elgiz Bairamov
Abstract:
In this study, we examine some spectral properties of non-selfadjoint matrix-valued difference equations consisting of a polynomial-type Jost solution. The aim of this study is to investigate the eigenvalues and spectral singularities of the difference operator L which is expressed by the above-mentioned difference equation. Firstly, thanks to the representation of polynomial type Jost solution of this equation, we obtain asymptotics and some analytical properties. Then, using the uniqueness theorems of analytic functions, we guarantee that the operator L has a finite number of eigenvalues and spectral singularities.
Keywords: Difference Equations, Jost Functions, Asymptotics, Eigenvalues, Continuous Spectrum, Spectral Singularities.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18102998 On Finite Hjelmslev Planes of Parameters (pk−1, p)
Authors: Atilla Akpinar
Abstract:
In this paper, we study on finite projective Hjelmslev planes M(Zq) coordinatized by Hjelmslev ring Zq (where prime power q = pk). We obtain finite hyperbolic Klingenberg planes from these planes under certain conditions. Also, we give a combinatorical result on M(Zq), related by deleting a line from lines in same neighbour.
Keywords: Finite Klingenberg plane, finite hyperbolic Klingenberg plane.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1146