Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30184
Nonlinear Control of a Continuous Bioreactor Based on Cell Population Model

Authors: Mahdi Sharifian, Mohammad Ali Fanaei

Abstract:

Saccharomyces cerevisiae (baker-s yeast) can exhibit sustained oscillations during the operation in a continuous bioreactor that adversely affects its stability and productivity. Because of heterogeneous nature of cell populations, the cell population balance models can be used to capture the dynamic behavior of such cultures. In this paper an unstructured, segregated model is used which is based on population balance equation(PBE) and then in order to simulation, the 4th order Rung-Kutta is used for time dimension and three methods, finite difference, orthogonal collocation on finite elements and Galerkin finite element are used for discretization of the cell mass domain. The results indicate that the orthogonal collocation on finite element not only is able to predict the oscillating behavior of the cell culture but also needs much little time for calculations. Therefore this method is preferred in comparison with other methods. In the next step two controllers, a globally linearizing control (GLC) and a conventional proportional-integral (PI) controller are designed for controlling the total cell mass per unit volume, and performances of these controllers are compared through simulation. The results show that although the PI controller has simpler structure, the GLC has better performance.

Keywords: Bioreactor, cell population balance, finite difference, orthogonal collocation on finite elements, Galerkin finite element, feedback linearization, PI controller.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1055627

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1529

References:


[1] T. Munch, B. Sonnleitner, and A. Fiechter, "New insights into the synchronization mechanism with forced synchronous cultures of Saccharomyces cerevisiae", J. Biotechnol., 24, p299-313, 1992.
[2] S. J. Parulekar, G. B. Semones, M. J. Rolf, J. C. Lievense, and H. C. Lim, "Induction and elimination of oscillations in continuous cultures of Saccharomyces cerevisiae", Biotechn. Bioeng., 28, p700-710, 1986.
[3] P. R. Patnaik, "Oscillatory metabolism of Saccharomyces cerevisiae: an overview of mechanisms and models", Biotechnology Advances, 21, p183-192, 2003.
[4] C. Strassle, B. Sonnleitner, and A. Fiechter, "A predictive model for the spontaneous synchronization of Saccharomyces cerevisiae grow in continuous culture. II. Experimental verification", J. Biotechnal., 9, p191-208, 1989.
[5] D. E. Porro, B. Martegani, M. Ranzi, and L. Alberghina, "Oscillations in continuous cultures of budding yeasts: A segregated parameter analysis", Biotechnol. Bioeng., 32, p411-417, 1988.
[6] T. Munch, B. Sonnleitner, and A. Fiechter, "The decisive role of the Saccharomyces cerevisiae cell cycle behavior for dynamic growth characterization", J. Biotechnol., 22, p329-352, 1992.
[7] M. Beuse, R. Bartling, A. Kopmann, H. Diekmann, and M. Thoma, "Effect of the dilution rate on the mode of osillation in continuous cultures of Saccharomyces cerevisiae", J. of Biotechnology, 61, p15-31, 1998.
[8] L. Cazzador, L. Mariani, E. Martegani, and L. Alberghina, "Structured segregated models and analysis of self-oscillating yeast continuous cultures", Bioprocess Eng., 5, p175-180, 1990.
[9] K. D. Jones, and D. S. Kompala, "Cybernetic model of the growth dynamics of Saccharomyces cerevisiae in batch and continuous cultures", J. Biotechnology, 71, p105-131, 1999.
[10] E. Martegani, D. Porro, B. M. Ranzi, and L. Alberghina, "Involvement of a cell size control mechanism in the induction and maintenance of oscillations in continuous cultures of budding yeast", Biotechnol. Bioeng., 36, p453-459, 1990.
[11] C. Strassle, B. Sonnleitner, and A. Fiechter, "A predictive model for the spontaneous synchronization of Saccharomyces cerevisiae grown in continuous culture. I. Concept", J. Biotechnol., 7, p299-318, 1988.
[12] N. V. Mantzaris, F. Srienc, and P. Daoutidis, "Nonlinear productivity control using a multi-stage cell population balance model", Chem. Eng. Sci., 57, p1-14, 2002.
[13] A. G. Fredrickson, and N. V. Mantzaris, "A new set of population balance equations for microbial and cell cultures", Chem. Eng. Sci., 57, p2265-2278, 2002.
[14] D. Ramkrishna, D. S. Kompala., and G. T. Tsao, "Are microbes optimal strategists?", Biotechnol. Prog., 3, p121-126, 1987.
[15] J. D. Sheppard, and P. S. Dawson, "Cell synchrony and periodic behavior in yeast populations", Canadian J. Chem. Eng., 77, p893-902, 1999.
[16] Y. Zhang, M. A. Henson, and Y.G. Kevrekidis, "Nonlinear model reduction for dynamic analysis of cell population models", Chem. Eng. Sci., 58, p429-445, 2003.
[17] M. A. Henson, "Dynamic modeling and control of yeast cell populations in continuous biochemical reactors", Comp. Chem. Eng., 27, p1185- 1199, 2003.
[18] N. V. Mantzaris, P. Daoutidis, "Cell population balance modeling and control in continuous bioreactors", J. Process Control, 14, p775-784, 2004.
[19] G. Y. Zhu, A. M. Zamamiri, M. A. Henson, and M. A. Hjortso, "Model predictive control of continuous yeast bioreactors using cell population models", Chem. Eng. Sci., 55, p6155-6167, 2000.
[20] Y. Zhang, Dynamic modeling and analysis of oscillatory bioreactors, PhD Theses, Louisiana State University, Chem. Eng. Department, 2002.
[21] M. A. Hjortso, and J. Nielsen, "A conceptual model of autonomous oscillations in microbial cultures", Chem. Eng. Sci., 49, p1083-1095, 1994.
[22] M. A. Hjortso, and J. Nielsen, "Population balance models of autonomous microbial oscillations", J. Biotechnol., 42, p255-269, 1995.
[23] N. V. Mantzaris, J. J. Liou, P. Daoutidis, and F. Srienc, "Numerical solution of a mass structured cell population balance model in an environment of changing substrate concentration", J. Biotechnol., 71, p157-174, 1999.
[24] N. V. Mantzaris, P. Daoutidis, and F. Srienc, "Numerical solution of multi-variable cell population balance models: I. Finite difference methods", Comp. Chem. Eng., 25, p1411-1440, 2001.
[25] N. V. Mantzaris, P. Daoutidis, and F. Srienc, "Numerical solution of multi-variable cell population balance models: II. Spectral methods", Comp. Chem. Eng., 25, p1441-1462, 2001.
[26] N. V. Mantzaris, P. Daoutidis, and F. Srienc, "Numerical solution of multi-variable cell population balance models: III. Finite element methods", Comp. Chem. Eng., 25, p1463-1481, 2001.
[27] B. A. Finlayson, Nonlinear analysis in chemical engineering, McGraw- Hill, 1980.
[28] M. J. Kurtz, G. Y. Zhu, A. M. Zamamiri, M. A. Henson, and M. A. Hjortso, "Control of oscillating microbial cultures described by population balance models", Ind. Eng. Chem. Research, 37, p4059-4070, 1998.
[29] Y. Zhang, A. M. Zamamiri, M. A. Henson, and M. A. Hjortso, "Cell population models for bifurcation analysis and nonlinear control of continuous yeast bioreactors", J. process control. ,12, p721-734, 2002.
[30] M. J. Kurtz, G. Y. Zhu, A. M. Zamamiri, M. A. Henson, and M. A. Hjortso, "Control of oscillating microbial cultures described by population balance models", Ind. Eng. Chem. Research, 37, p4059-4070, 1998.
[31] M. Shahrokhi, and M. A. Fanaei, "State estimation in a batch suspension polymerization reactor", Iranian Polymer J., 10, p173-187, 2001.
[32] M. Soroush, and C. Kravaris, "Nonlinear control of a batch polymerization reactor: An experimental study", AIChE J., 38, p1429- 1440, 1992.