Search results for: energy efficient
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4513

Search results for: energy efficient

3283 Flexural Performance of the Sandwich Structures Having Aluminum Foam Core with Different Thicknesses

Authors: Emre Kara, Ahmet F. Geylan, Kadir Koç, Şura Karakuzu, Metehan Demir, Halil Aykul

Abstract:

The structures obtained with the use of sandwich technologies combine low weight with high energy absorbing capacity and load carrying capacity. Hence, there is a growing and markedly interest in the use of sandwiches with aluminum foam core because of very good properties such as flexural rigidity and energy absorption capability. In the current investigation, the static threepoint bending tests were carried out on the sandwiches with aluminum foam core and glass fiber reinforced polymer (GFRP) skins at different values of support span distances aiming the analyses of their flexural performance. The influence of the core thickness and the GFRP skin type was reported in terms of peak load and energy absorption capacity. For this purpose, the skins with two different types of fabrics which have same thickness value and the aluminum foam core with two different thicknesses were bonded with a commercial polyurethane based flexible adhesive in order to combine the composite sandwich panels. The main results of the bending tests are: force-displacement curves, peak force values, absorbed energy, collapse mechanisms and the effect of the support span length and core thickness. The results of the experimental study showed that the sandwich with the skins made of S-Glass Woven fabrics and with the thicker foam core presented higher mechanical values such as load carrying and energy absorption capacities. The increment of the support span distance generated the decrease of the mechanical values for each type of panels, as expected, because of the inverse proportion between the force and span length. The most common failure types of the sandwiches are debonding of the lower skin and the core shear. The obtained results have particular importance for applications that require lightweight structures with a high capacity of energy dissipation, such as the transport industry (automotive, aerospace, shipbuilding and marine industry), where the problems of collision and crash have increased in the last years.

Keywords: Aluminum foam, Composite panel, Flexure, Transport application.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2281
3282 Performance of Nine Different Types of PV Modules in the Tropical Region

Authors: Jiang Fan

Abstract:

With growth of PV market in tropical region, it is necessary to investigate the performance of different types of PV technology under the tropical weather conditions. Singapore Polytechnic was funded by Economic Development Board (EDB) to set up a solar PV test-bed for the research on performance of different types of PV modules in the country. The PV test-bed installed the nine different types of PV systems that are integrated to power utility grid for monitoring and analyzing their operating performances. This paper presents the 12 months operational data of nine different PV systems and analyses on performances of installed PV systems using energy yield and performance ratio. The nine types of PV systems under test have shown their energy yields ranging from 2.67 to 3.36 kWh/kWp and their performance ratios (PRs) ranging from 70% to 88%.

Keywords: Monocrystalline, Multicrystalline, Amorphous Silicon, Cadmium Telluride and thin film PV.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3651
3281 Computational Model for Predicting Effective siRNA Sequences Using Whole Stacking Energy (% G) for Gene Silencing

Authors: Reena Murali, David Peter S.

Abstract:

The small interfering RNA (siRNA) alters the regulatory role of mRNA during gene expression by translational inhibition. Recent studies show that upregulation of mRNA because serious diseases like cancer. So designing effective siRNA with good knockdown effects plays an important role in gene silencing. Various siRNA design tools had been developed earlier. In this work, we are trying to analyze the existing good scoring second generation siRNA predicting tools and to optimize the efficiency of siRNA prediction by designing a computational model using Artificial Neural Network and whole stacking energy (%G), which may help in gene silencing and drug design in cancer therapy. Our model is trained and tested against a large data set of siRNA sequences. Validation of our results is done by finding correlation coefficient of experimental versus observed inhibition efficacy of siRNA. We achieved a correlation coefficient of 0.727 in our previous computational model and we could improve the correlation coefficient up to 0.753 when the threshold of whole tacking energy is greater than or equal to -32.5 kcal/mol.

Keywords: Artificial Neural Network, Double Stranded RNA, RNA Interference, Short Interfering RNA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2615
3280 An Energy Aware Dispatch Scheme WSNs

Authors: Siddhartha Chauhan, Kumar S. Pandey, Prateek Chandra

Abstract:

One of the key research issues in wireless sensor networks (WSNs) is how to efficiently deploy sensors to cover an area. In this paper, we present a Fishnet Based Dispatch Scheme (FiBDS) with energy aware mobility and interest based sensing angle. We propose two algorithms, one is FiBDS centralized algorithm and another is FiBDS distributed algorithm. The centralized algorithm is designed specifically for the non-time critical applications, commonly known as non real-time applications while the distributed algorithm is designed specifically for the time critical applications, commonly known as real-time applications. The proposed dispatch scheme works in a phase-selection manner. In this in each phase a specific constraint is dealt with according to the specified priority and then moved onto the next phase and at the end of each only the best suited nodes for the phase are chosen. Simulation results are presented to verify their effectiveness. 

Keywords: Dispatch Scheme, Energy Aware Mobility, Interest based Sensing, Wireless Sensor Networks (WSNs).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1576
3279 Pricing European Options under Jump Diffusion Models with Fast L-stable Padé Scheme

Authors: Salah Alrabeei, Mohammad Yousuf

Abstract:

The goal of option pricing theory is to help the investors to manage their money, enhance returns and control their financial future by theoretically valuing their options. Modeling option pricing by Black-School models with jumps guarantees to consider the market movement. However, only numerical methods can solve this model. Furthermore, not all the numerical methods are efficient to solve these models because they have nonsmoothing payoffs or discontinuous derivatives at the exercise price. In this paper, the exponential time differencing (ETD) method is applied for solving partial integrodifferential equations arising in pricing European options under Merton’s and Kou’s jump-diffusion models. Fast Fourier Transform (FFT) algorithm is used as a matrix-vector multiplication solver, which reduces the complexity from O(M2) into O(M logM). A partial fraction form of Pad`e schemes is used to overcome the complexity of inverting polynomial of matrices. These two tools guarantee to get efficient and accurate numerical solutions. We construct a parallel and easy to implement a version of the numerical scheme. Numerical experiments are given to show how fast and accurate is our scheme.

Keywords: Integral differential equations, L-stable methods, pricing European options, Jump–diffusion model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 430
3278 Application of Vortex Induced Vibration Energy Generation Technologies to the Offshore Oil and Gas Platform: The Feasibility Study

Authors: T. Yui Khing, M. A. Zahari, S. S. Dol

Abstract:

Ocean current is always available around the surrounding of SHELL Sabah Water Platform and data are collected every 10 minutes, 24 hours a day, for a period of 365 days. Due to low current speed, conventional hydrokinetic power generation is not feasible, thus leading to the study of low current enabled vortex induced vibration power generation application. In this case, the design of a vortex induced vibration application is studied to obtain an optimum design for the VIV oscillator. Power output is then determined to study the feasibility of the VIV application in low current condition.

Keywords: Renewable energy, Vortex induced vibration, Turbulence, Lock-in.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2427
3277 Formal Analysis of a Public-Key Algorithm

Authors: Markus Kaiser, Johannes Buchmann

Abstract:

In this article, a formal specification and verification of the Rabin public-key scheme in a formal proof system is presented. The idea is to use the two views of cryptographic verification: the computational approach relying on the vocabulary of probability theory and complexity theory and the formal approach based on ideas and techniques from logic and programming languages. A major objective of this article is the presentation of the first computer-proved implementation of the Rabin public-key scheme in Isabelle/HOL. Moreover, we explicate a (computer-proven) formalization of correctness as well as a computer verification of security properties using a straight-forward computation model in Isabelle/HOL. The analysis uses a given database to prove formal properties of our implemented functions with computer support. The main task in designing a practical formalization of correctness as well as efficient computer proofs of security properties is to cope with the complexity of cryptographic proving. We reduce this complexity by exploring a light-weight formalization that enables both appropriate formal definitions as well as efficient formal proofs. Consequently, we get reliable proofs with a minimal error rate augmenting the used database, what provides a formal basis for more computer proof constructions in this area.

Keywords: public-key encryption, Rabin public-key scheme, formalproof system, higher-order logic, formal verification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1492
3276 Human Action Recognition Using Variational Bayesian HMM with Dirichlet Process Mixture of Gaussian Wishart Emission Model

Authors: Wanhyun Cho, Soonja Kang, Sangkyoon Kim, Soonyoung Park

Abstract:

In this paper, we present the human action recognition method using the variational Bayesian HMM with the Dirichlet process mixture (DPM) of the Gaussian-Wishart emission model (GWEM). First, we define the Bayesian HMM based on the Dirichlet process, which allows an infinite number of Gaussian-Wishart components to support continuous emission observations. Second, we have considered an efficient variational Bayesian inference method that can be applied to drive the posterior distribution of hidden variables and model parameters for the proposed model based on training data. And then we have derived the predictive distribution that may be used to classify new action. Third, the paper proposes a process of extracting appropriate spatial-temporal feature vectors that can be used to recognize a wide range of human behaviors from input video image. Finally, we have conducted experiments that can evaluate the performance of the proposed method. The experimental results show that the method presented is more efficient with human action recognition than existing methods.

Keywords: Human action recognition, Bayesian HMM, Dirichlet process mixture model, Gaussian-Wishart emission model, Variational Bayesian inference, Prior distribution and approximate posterior distribution, KTH dataset.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 952
3275 Analytical Comparison of Conventional Algorithms with Vedic Algorithm for Digital Multiplier

Authors: Akhilesh G. Naik, Dipankar Pal

Abstract:

In today’s scenario, the complexity of digital signal processing (DSP) applications and various microcontroller architectures have been increasing to such an extent that the traditional approaches to multiplier design in most processors are becoming outdated for being comparatively slow. Modern processing applications require suitable pipelined approaches, and therefore, algorithms that are friendlier with pipelined architectures. Traditional algorithms like Wallace Tree, Radix-4 Booth, Radix-8 Booth, Dadda architectures have been proven to be comparatively slow for pipelined architectures. These architectures, therefore, need to be optimized or combined with other architectures amongst them to enhance its performances and to be made suitable for pipelined hardware/architectures. Recently, Vedic algorithm mathematically has proven to be efficient by appearing to be less complex and with fewer steps for its output establishment and have assumed renewed importance. This paper describes and shows how the Vedic algorithm can be better suited for pipelined architectures and also can be combined with traditional architectures and algorithms for enhancing its ability even further. In this paper, we also established that for complex applications on DSP and other microcontroller architectures, using Vedic approach for multiplication proves to be the best available and efficient option.

Keywords: Wallace tree, Radix-4 Booth, Radix-8 Booth, Dadda, Vedic, Single-Stage Karatsuba, Looped Karatsuba.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 780
3274 A Study on the Effectiveness of Alternative Commercial Ventilation Inlets That Improve Energy Efficiency of Building Ventilation Systems

Authors: Brian Considine, Aonghus McNabola, John Gallagher, Prashant Kumar

Abstract:

Passive air pollution control devices known as aspiration efficiency reducers (AER) have been developed using aspiration efficiency (AE) concepts. Their purpose is to reduce the concentration of particulate matter (PM) drawn into a building air handling unit (AHU) through alterations in the inlet design improving energy consumption. In this paper an examination is conducted into the effect of installing a deflector system around an AER-AHU inlet for both a forward and rear-facing orientations relative to the wind. The results of the study found that these deflectors are an effective passive control method for reducing AE at various ambient wind speeds over a range of microparticles of varying diameter. The deflector system was found to induce a large wake zone at low ambient wind speeds for a rear-facing AER-AHU, resulting in significantly lower AE in comparison to without. As the wind speed increased, both contained a wake zone but have much lower concentration gradients with the deflectors. For the forward-facing models, the deflector system at low ambient wind speed was preferred at higher Stokes numbers but there was negligible difference as the Stokes number decreased. Similarly, there was no significant difference at higher wind speeds across the Stokes number range tested. The results demonstrate that a deflector system is a viable passive control method for the reduction of ventilation energy consumption.

Keywords: Aspiration efficiency, energy, particulate matter, ventilation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 421
3273 Determination of Myocardial Function Using Heart Accumulated Radiopharmaceuticals

Authors: C. C. D. Kulathilake, M. Jayatilake, T. Takahashi

Abstract:

The myocardium is composed of specialized muscle which relies mainly on fatty acid and sugar metabolism and it is widely contribute to the heart functioning. The changes of the cardiac energy-producing system during heart failure have been proved using autoradiography techniques. This study focused on evaluating sugar and fatty acid metabolism in myocardium as cardiac energy getting system using heart-accumulated radiopharmaceuticals. Two sets of autoradiographs of heart cross sections of Lewis male rats were analyzed and the time- accumulation curve obtained with use of the MATLAB image processing software to evaluate fatty acid and sugar metabolic functions.

Keywords: Autoradiographs, fatty acid, radiopharmaceuticals and sugar.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2378
3272 Mechanical Behavior of Recycled Mortars Manufactured from Moisture Correction Using the Halogen Light Thermogravimetric Balance as an Alternative to the Traditional ASTM C 128 Method

Authors: Diana Gómez-Cano, J. C. Ochoa-Botero, Roberto Bernal Correa, Yhan Paul Arias

Abstract:

To obtain high mechanical performance, the fresh conditions of a mortar are decisive. Measuring the absorption of aggregates used in mortar mixes is a fundamental requirement for proper design of the mixes prior to their placement in construction sites. In this sense, absorption is a determining factor in the design of a mix because it conditions the amount of water, which in turn affects the water/cement ratio and the final porosity of the mortar. Thus, this work focuses on the mechanical behavior of recycled mortars manufactured from moisture correction using the Thermogravimetric Balancing Halogen Light (TBHL) technique in comparison with the traditional ASTM C 128 International Standard method. The advantages of using the TBHL technique are favorable in terms of reduced consumption of resources such as materials, energy and time. The results show that in contrast to the ASTM C 128 method, the TBHL alternative technique allows obtaining a higher precision in the absorption values of recycled aggregates, which is reflected not only in a more efficient process in terms of sustainability in the characterization of construction materials, but also in an effect on the mechanical performance of recycled mortars.

Keywords: Alternative raw materials, halogen light, recycled mortar, resources optimization, water absorption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 463
3271 CO2 Abatement by Methanol Production from Flue-Gas in Methanol Plant

Authors: A. K. Sayah, Sh. Hosseinabadi, M. Farazar

Abstract:

This study investigates CO2 mitigation by methanol synthesis from flue gas CO2 and H2 generation through water electrolysis. Electrolytic hydrogen generation is viable provided that the required electrical power is supplied from renewable energy resources; whereby power generation from renewable resources is yet commercial challenging. This approach contribute to zero-emission, moreover it produce oxygen which could be used as feedstock for chemical process. At ZPC, however, oxygen would be utilized through partial oxidation of methane in autothermal reactor (ATR); this makes ease the difficulties of O2 delivery and marketing. On the other hand, onboard hydrogen storage and consumption; in methanol plant; make the project economically more competitive.

Keywords: Biomass, CO2 abatement, flue gas recovery, renewable energy, sustainable development.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3542
3270 Simulation Model for Optimizing Energy in Supply Chain Management

Authors: Nazli Akhlaghinia, Ali Rajabzadeh Ghatari

Abstract:

In today's world, with increasing environmental awareness, firms are facing severe pressure from various stakeholders, including the government and customers, to reduce their harmful effects on the environment. Over the past few decades, the increasing effects of global warming, climate change, waste, and air pollution have increased the global attention of experts to the issue of the green supply chain and led them to the optimal solution for greenery. Green supply chain management (GSCM) plays an important role in motivating the sustainability of the organization. With increasing environmental concerns, the main objective of the research is to use system thinking methodology and Vensim software for designing a dynamic system model for green supply chain and observing behaviors. Using this methodology, we look for the effects of a green supply chain structure on the behavioral dynamics of output variables. We try to simulate the complexity of GSCM in a period of 30 months and observe the complexity of behaviors of variables including sustainability, providing green products, and reducing energy consumption, and consequently reducing sample pollution.

Keywords: Supply chain management, green supply chain management, system dynamics, energy consumption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 813
3269 Evaluation of Easy-to-Use Energy Building Design Tools for Solar Access Analysis in Urban Contexts: Comparison of Friendly Simulation Design Tools for Architectural Practice in the Early Design Stage

Authors: M. Iommi, G. Losco

Abstract:

Current building sector is focused on reduction of energy requirements, on renewable energy generation and on regeneration of existing urban areas. These targets need to be solved with a systemic approach, considering several aspects simultaneously such as climate conditions, lighting conditions, solar radiation, PV potential, etc. The solar access analysis is an already known method to analyze the solar potentials, but in current years, simulation tools have provided more effective opportunities to perform this type of analysis, in particular in the early design stage. Nowadays, the study of the solar access is related to the easiness of the use of simulation tools, in rapid and easy way, during the design process. This study presents a comparison of three simulation tools, from the point of view of the user, with the aim to highlight differences in the easy-to-use of these tools. Using a real urban context as case study, three tools; Ecotect, Townscope and Heliodon, are tested, performing models and simulations and examining the capabilities and output results of solar access analysis. The evaluation of the ease-to-use of these tools is based on some detected parameters and features, such as the types of simulation, requirements of input data, types of results, etc. As a result, a framework is provided in which features and capabilities of each tool are shown. This framework shows the differences among these tools about functions, features and capabilities. The aim of this study is to support users and to improve the integration of simulation tools for solar access with the design process.

Keywords: Solar access analysis, energy building design tools, urban planning, solar potential.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2014
3268 A Two-Step Approach for Tree-structured XPath Query Reduction

Authors: Minsoo Lee, Yun-mi Kim, Yoon-kyung Lee

Abstract:

XML data consists of a very flexible tree-structure which makes it difficult to support the storing and retrieving of XML data. The node numbering scheme is one of the most popular approaches to store XML in relational databases. Together with the node numbering storage scheme, structural joins can be used to efficiently process the hierarchical relationships in XML. However, in order to process a tree-structured XPath query containing several hierarchical relationships and conditional sentences on XML data, many structural joins need to be carried out, which results in a high query execution cost. This paper introduces mechanisms to reduce the XPath queries including branch nodes into a much more efficient form with less numbers of structural joins. A two step approach is proposed. The first step merges duplicate nodes in the tree-structured query and the second step divides the query into sub-queries, shortens the paths and then merges the sub-queries back together. The proposed approach can highly contribute to the efficient execution of XML queries. Experimental results show that the proposed scheme can reduce the query execution cost by up to an order of magnitude of the original execution cost.

Keywords: XML, Xpath, tree-structured query, query reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1506
3267 A Watermarking Scheme for MP3 Audio Files

Authors: Dimitrios Koukopoulos, Yiannis Stamatiou

Abstract:

In this work, we present for the first time in our perception an efficient digital watermarking scheme for mpeg audio layer 3 files that operates directly in the compressed data domain, while manipulating the time and subband/channel domain. In addition, it does not need the original signal to detect the watermark. Our scheme was implemented taking special care for the efficient usage of the two limited resources of computer systems: time and space. It offers to the industrial user the capability of watermark embedding and detection in time immediately comparable to the real music time of the original audio file that depends on the mpeg compression, while the end user/audience does not face any artifacts or delays hearing the watermarked audio file. Furthermore, it overcomes the disadvantage of algorithms operating in the PCMData domain to be vulnerable to compression/recompression attacks, as it places the watermark in the scale factors domain and not in the digitized sound audio data. The strength of our scheme, that allows it to be used with success in both authentication and copyright protection, relies on the fact that it gives to the users the enhanced capability their ownership of the audio file not to be accomplished simply by detecting the bit pattern that comprises the watermark itself, but by showing that the legal owner knows a hard to compute property of the watermark.

Keywords: Audio watermarking, mpeg audio layer 3, hardinstance generation, NP-completeness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1605
3266 Analyzing the Performance Properties of Stress Absorbing Membrane Interlayer Modified with Recycled Crumb Rubber

Authors: Seyed Mohammad Asgharzadeh, Moein Biglari

Abstract:

Asphalt overlay is the most commonly used technique of pavement rehabilitation. However, the reflective cracks which occur on the overlay surface after a short period of time are the most important distresses threatening the durability of new overlays. Stress Absorbing Membrane Interlayers (SAMIs) are used to postpone the reflective cracking in the overlays. Sand asphalt mixtures, in unmodified or crumb rubber modified (CRM) conditions, can be used as an SAMI material. In this research, the performance properties of different SAMI applications were evaluated in the laboratory using an Indirect Tensile (IDT) fracture energy. The IDT fracture energy of sand asphalt samples was also evaluated and then compared to that of the regular dense graded asphalt used as an overlay. Texas boiling water and modified Lottman tests were also conducted to evaluate the moisture susceptibility of sand asphalt mixtures. The test results showed that sand asphalt mixtures can stand higher levels of energy before cracking, and this is even more pronounced for the CRM sand mix. Sand asphalt mixture using CRM binder was also shown to be more resistance to moisture induced distresses.

Keywords: SAMI, sand asphalt, crumb rubber, Lottman Modified Test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1229
3265 Development of Cooling Load Demand Program for Building in Malaysia

Authors: Zamri Noranai, Dayang Siti Zainab Abang Bujang, Rosli Asmawi, Hamidon Salleh, Mohammad Zainal Md Yusof

Abstract:

Air conditioning is mainly to be used as human comfort medium. It has been use more often in country in which the daily temperatures are high. In scientific, air conditioning is defined as a process of controlling the moisture, cooling, heating and cleaning air. Without proper estimation of cooling load, big amount of waste energy been used because of unsuitable of air conditioning system are not considering to overcoming heat gains from surrounding. This is due to the size of the room is too big and the air conditioning has to use more energy to cool the room and the air conditioning is too small for the room. The studies are basically to develop a program to calculate cooling load. Through this study it is easy to calculate cooling load estimation. Furthermore it-s help to compare the cooling load estimation by hourly and yearly. Base on the last study that been done, the developed software are not user-friendly. For individual without proper knowledge of calculating cooling load estimation might be problem. Easy excess and user-friendly should be the main objective to design something. This program will allow cooling load able be estimate by any users rather than estimation by using rule of thumb. Several of limitation of case study is judged to sure it-s meeting to Malaysia building specification. Finally validation is done by comparison manual calculation and by developed program.

Keywords: Building, Energy and Coaling Load

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2897
3264 Advanced Energy Absorbers Used in Blast Resistant Systems

Authors: Martina Drdlová, Michal Frank, Radek Řídký, Jaroslav Buchar, Josef Krátký

Abstract:

The main aim of the presented experiments is to improve behaviour of sandwich structures under dynamic loading, such as crash or explosion. This paper describes experimental investigation on the response of new advanced materials to low and high velocity load. Blast wave energy absorbers were designed using two types of porous lightweight raw particle materials based on expanded glass and ceramics with dimensions of 0.5-1 mm, combined with polymeric binder. The effect of binder amount on the static and dynamic properties of designed materials was observed. Prism shaped specimens were prepared and loaded to obtain physicomechanical parameters – bulk density, compressive and flexural strength under quasistatic load, the dynamic response was determined using Split Hopkinson Pressure bar apparatus. Numerical investigation of the material behaviour in sandwich structure was performed using implicit/explicit solver LS-Dyna. As the last step, the developed material was used as the interlayer of blast resistant litter bin, and it´s functionality was verified by real field blast tests.

Keywords: Blast energy absorber, SHPB, expanded glass, expanded ceramics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2397
3263 Deformation Mechanisms at Elevated Temperatures: Influence of Momenta and Energy in the Single Impact Test

Authors: Harald Rojacz, Markus Varga, Horst Winkelmann

Abstract:

Within this work High Temperature Single Impact Studies were performed to evaluate deformation mechanisms at different energy and momentum levels. To show the influence of different microstructures and hardness levels and their response to single impacts four different materials were tested at various temperatures up to 700°C. One carbide reinforced NiCrBSi based Metal Matrix Composite and three different steels were tested. The aim of this work is to determine critical energies for fracture appearance and the materials response at different energy and momenta levels. Critical impact loadings were examined at elevated temperatures to limit operating conditions in impact dominated regimes at elevated temperatures. The investigations on the mechanisms were performed using different means of microscopy at the surface and in metallographic cross sections. Results indicate temperature dependence of the occurrence of cracks in hardphase rich materials, such as Metal Matrix Composites High Speed Steels and the influence of different impact momenta at constant energies on the deformation of different steels.

Keywords: Deformation, High Temperature, Metal Matrix Composite, Single Impact Test, Steel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1964
3262 3 State Current Mode of a Grid Connected PV Converter

Authors: Attila Balogh, Eszter Varga, István Varjasi

Abstract:

Nowadays in applications of renewable energy sources it is important to develop powerful and energy-saving photovoltaic converters and to keep the prescriptions of the standards. In grid connected PV converters the obvious solution to increase the efficiency is to reduce the switching losses. Our new developed control method reduces the switching losses and keeps the limitations of the harmonic distortion standards. The base idea of the method is the utilization of 3-state control causing discontinuous current mode at low input power. In the following sections the control theory, the realizations and the simulation results are presented.

Keywords: Discontinuous current, high efficiency, PVconverter, control method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1419
3261 MONPAR - A Page Replacement Algorithm for a Spatiotemporal Database

Authors: U. Kalay, O. Kalıpsız

Abstract:

For a spatiotemporal database management system, I/O cost of queries and other operations is an important performance criterion. In order to optimize this cost, an intense research on designing robust index structures has been done in the past decade. With these major considerations, there are still other design issues that deserve addressing due to their direct impact on the I/O cost. Having said this, an efficient buffer management strategy plays a key role on reducing redundant disk access. In this paper, we proposed an efficient buffer strategy for a spatiotemporal database index structure, specifically indexing objects moving over a network of roads. The proposed strategy, namely MONPAR, is based on the data type (i.e. spatiotemporal data) and the structure of the index structure. For the purpose of an experimental evaluation, we set up a simulation environment that counts the number of disk accesses while executing a number of spatiotemporal range-queries over the index. We reiterated simulations with query sets with different distributions, such as uniform query distribution and skewed query distribution. Based on the comparison of our strategy with wellknown page-replacement techniques, like LRU-based and Prioritybased buffers, we conclude that MONPAR behaves better than its competitors for small and medium size buffers under all used query-distributions.

Keywords: Buffer Management, Spatiotemporal databases.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1439
3260 Experimental Investigation of the Effect of Hydrogen Manifold Injection on the Performance of Compression Ignition Engines

Authors: Haroun A.K. Shahad, Nabeel Abdul-Hadi

Abstract:

Experiments were carried out to evaluate the influence of the addition of hydrogen to the inlet air on the performance of a single cylinder direct injection diesel engine. Hydrogen was injected in the inlet manifold. The addition of hydrogen was done on energy replacement basis. It was found that the addition of hydrogen improves the combustion process due to superior combustion characteristics of hydrogen in comparison to conventional diesel fuels. It was also found that 10% energy replacement improves the engine thermal efficiency by about 40% and reduces the sfc by about 35% however the volumetric efficiency was reduced by about 35%.

Keywords: Hydrogen, Blended fuel, Manifold injection , Performance , Combustion

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2102
3259 Graphical Approach for Targeting Work Exchange Networks

Authors: Hui Chen, Xiao Feng

Abstract:

Depressurization and pressurization streams in industrial systems constitute a work exchange network (WEN). In this paper, a novel graphical approach for targeting energy conservation potential of a WEN is proposed. Through constructing the composite work curves in the pressure-work diagram and assuming all of the mechanical energy of the depressurization streams is recovered by expanders, the maximum work target of a WEN can be determined via the proposed targeting steps. A WEN in an ammonia production process is used as a case study to illustrate the applicability of the proposed graphical approach.

Keywords: Expanders, Graphical approach, Pressure-work diagram, Work exchange network, Work target

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1446
3258 Exploring the Role of Hydrogen to Achieve the Italian Decarbonization Targets Using an Open-Source Energy System Optimization Model

Authors: A. Balbo, G. Colucci, M. Nicoli, L. Savoldi

Abstract:

Hydrogen is expected to become an undisputed player in the ecological transition throughout the next decades. The decarbonization potential offered by this energy vector provides various opportunities for the so-called “hard-to-abate” sectors, including industrial production of iron and steel, glass, refineries and the heavy-duty transport. In this regard, Italy, in the framework of decarbonization plans for the whole European Union, has been considering a wider use of hydrogen to provide an alternative to fossil fuels in hard-to-abate sectors. This work aims to assess and compare different options concerning the pathway to be followed in the development of the future Italian energy system in order to meet decarbonization targets as established by the Paris Agreement and by the European Green Deal, and to infer a techno-economic analysis of the required asset alternatives to be used in that perspective. To accomplish this objective, the Energy System Optimization Model TEMOA-Italy is used, based on the open-source platform TEMOA and developed at PoliTo as a tool to be used for technology assessment and energy scenario analysis. The adopted assessment strategy includes two different scenarios to be compared with a business-as-usual one, which considers the application of current policies in a time horizon up to 2050. The studied scenarios are based on the up-to-date hydrogen-related targets and planned investments included in the National Hydrogen Strategy and in the Italian National Recovery and Resilience Plan, with the purpose of providing a critical assessment of what they propose. One scenario imposes decarbonization objectives for the years 2030, 2040 and 2050, without any other specific target. The second one (inspired to the national objectives on the development of the sector) promotes the deployment of the hydrogen value-chain. These scenarios provide feedback about the applications hydrogen could have in the Italian energy system, including transport, industry and synfuels production. Furthermore, the decarbonization scenario where hydrogen production is not imposed, will make use of this energy vector as well, showing the necessity of its exploitation in order to meet pledged targets by 2050. The distance of the planned policies from the optimal conditions for the achievement of Italian objectives is clarified, revealing possible improvements of various steps of the decarbonization pathway, which seems to have as a fundamental element Carbon Capture and Utilization technologies for its accomplishment. In line with the European Commission open science guidelines, the transparency and the robustness of the presented results are ensured by the adoption of the open-source open-data model such as the TEMOA-Italy.

Keywords: Decarbonization, energy system optimization models, hydrogen, open-source modeling, TEMOA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 572
3257 Theoretical Review on Influencing Factors in the Design of Parabolic Trough Collector

Authors: S. N. Vijayan, S. Sendhil Kumar

Abstract:

Recent years have an upward trend in the research of renewable energy sector, due to the low availability of resources and huge consumption of conventional energies. Considerable renewable energy can be achieved from the available solar power with the utilization of collecting systems. Parabolic trough concentrating collector systems are mostly used to utilize maximum availability of solar power. This paper reviews the contributing factors for the overall performance of parabolic trough collectors. Its performance depends on the operating parameters such as the type of receiver and the collector material, medium of heat transfer, type of application and various climatic conditions.

Keywords: Solar radiation, parabolic trough collector, thermal analysis, efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 968
3256 Factors in a Sustainability Assessment of New Types of Closed Cavity Façades

Authors: Zoran Veršić, Josip Galić, Marin Binički, Lucija Stepinac

Abstract:

With the current increase in CO2 emissions and global warming, the sustainability of both existing and new solutions must be assessed on a wide scale. As the implementation of closed cavity façades (CCF) is on the rise, various factors must be included in the analysis of new types of CCF. This paper aims to cover the relevant factors included in the sustainability assessment of new types of CCF. Several mathematical models are being used to describe the physical behavior of CCF. Depending on the type of CCF, they cover the main factors which affect the durability of the façade: thermal behavior of various elements in the façade, stress and deflection of the glass panels, pressure and the moisture control in the cavity. CCF itself represents a complex system in which all mentioned factors must be considered mutually. Still, the façade is only an envelope of a more complex system, the building. Choice of the façade dictates the heat loss and the heat gain, thermal comfort of inner space, natural lighting, and ventilation. Annual energy consumption for heating, cooling, lighting, and maintenance costs will present the operational advantages or disadvantages of the chosen façade system in economic and environmental aspects. Still, the only operational viewpoint is not all-inclusive. As the building codes constantly demand higher energy efficiency as well as transfer to renewable energy sources, the ratio of embodied and lifetime operational energy footprint of buildings is changing. With the drop in operational energy CO2 emissions, embodied energy emissions present a larger and larger share in the lifecycle emissions of the building. Taking all into account, the sustainability assessment of a façade, as well as other major building elements, should include all mentioned factors during the lifecycle of an element. The challenge of such an approach is a timescale. Depending on the climatic conditions on the building site, the expected lifetime of a glazed façade can exceed 25 years. In such a timespan, some of the factors can be estimated more precisely than the others. However, the ones depending on the socio-economic conditions are more likely to be harder to predict than the natural ones like the climatic load. This work recognizes and summarizes the relevant factors needed for the assessment of a new type of CCF, considering the entire lifetime of a façade element in an environmental aspect.

Keywords: Assessment, closed cavity façade, life cycle, sustainability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 345
3255 Passive Solar Techniques to Improve Thermal Comfort and Reduce Energy Consumption of Domestic Use

Authors: Naci Kalkan, Ihsan Dagtekin

Abstract:

Passive design responds to improve indoor thermal comfort and minimize the energy consumption. The present research analyzed the how efficiently passive solar technologies generate heating and cooling and provide the system integration for domestic applications. In addition to this, the aim of this study is to increase the efficiency of solar systems system with integration some innovation and optimization. As a result, outputs of the project might start a new sector to provide environmentally friendly and cheap cooling for domestic use.

Keywords: Passive Solar Systems, Heating, Cooling, Thermal Comfort, Ventilation Systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1620
3254 Multi-Modal Film Boiling Simulations on Adaptive Octree Grids

Authors: M. Wasy Akhtar

Abstract:

Multi-modal film boiling simulations are carried out on adaptive octree grids. The liquid-vapor interface is captured using the volume-of-fluid framework adjusted to account for exchanges of mass, momentum, and energy across the interface. Surface tension effects are included using a volumetric source term in the momentum equations. The phase change calculations are conducted based on the exact location and orientation of the interface; however, the source terms are calculated using the mixture variables to be consistent with the one field formulation used to represent the entire fluid domain. The numerical model on octree representation of the computational grid is first verified using test cases including advection tests in severely deforming velocity fields, gravity-based instabilities and bubble growth in uniformly superheated liquid under zero gravity. The model is then used to simulate both single and multi-modal film boiling simulations. The octree grid is dynamically adapted in order to maintain the highest grid resolution on the instability fronts using markers of interface location, volume fraction, and thermal gradients. The method thus provides an efficient platform to simulate fluid instabilities with or without phase change in the presence of body forces like gravity or shear layer instabilities.

Keywords: Boiling flows, dynamic octree grids, heat transfer, interface capturing, phase change.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 687