Search results for: decision uncertainty distance (DUD)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2573

Search results for: decision uncertainty distance (DUD)

2543 Multiple Criteria Decision Making Analysis for Selecting and Evaluating Fighter Aircraft

Authors: C. Ardil, A. M. Pashaev, R.A. Sadiqov, P. Abdullayev

Abstract:

In this paper, multiple criteria decision making analysis technique, is presented for ranking and selection of a set of determined alternatives - fighter aircraft - which are associated with a set of decision factors. In fighter aircraft design, conflicting decision criteria, disciplines, and technologies are always involved in the design process. Multiple criteria decision making analysis techniques can be helpful to effectively deal with such situations and make wise design decisions. Multiple criteria decision making analysis theory is a systematic mathematical approach for dealing with problems which contain uncertainties in decision making. The feasibility and contributions of applying the multiple criteria decision making analysis technique in fighter aircraft selection analysis is explored. In this study, an integrated framework incorporating multiple criteria decision making analysis technique in fighter aircraft analysis is established using entropy objective weighting method. An improved integrated multiple criteria decision making analysis method is utilized to aggregate the multiple decision criteria into one composite figure of merit, which serves as an objective function in the decision process. Therefore, it is demonstrated that the suitable multiple criteria decision making analysis method with decision solution provides an effective objective function for the decision making analysis. Considering that the inherent uncertainties and the weighting factors have crucial decision impacts on the fighter aircraft evaluation, seven fighter aircraft models for the multiple design criteria in terms of the weighting factors are constructed. The proposed multiple criteria decision making analysis model is based on integrated entropy index procedure, and additive multiple criteria decision making analysis theory. Hence, the applicability of proposed technique for fighter aircraft selection problem is considered. The constructed multiple criteria decision making analysis model can provide efficient decision analysis approach for uncertainty assessment of the decision problem. Consequently, the fighter aircraft alternatives are ranked based their final evaluation scores, and sensitivity analysis is conducted.

Keywords: Fighter Aircraft, Fighter Aircraft Selection, Multiple Criteria Decision Making, Multiple Criteria Decision Making Analysis, MCDMA

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 567
2542 Photon Localization inside a Waveguide Modeled by Uncertainty Principle

Authors: Shilpa N. Kulkarni, Sujata R. Patrikar

Abstract:

In the present work, an attempt is made to understand electromagnetic field confinement in a subwavelength waveguide structure using concepts of quantum mechanics. Evanescent field in the waveguide is looked as inability of the photon to get confined in the waveguide core and uncertainty of position is assigned to it. The momentum uncertainty is calculated from position uncertainty. Schrödinger wave equation for the photon is written by incorporating position-momentum uncertainty. The equation is solved and field distribution in the waveguide is obtained. The field distribution and power confinement is compared with conventional waveguide theory. They were found in good agreement with each other.

Keywords: photon localization in waveguide, photon tunneling, quantum confinement of light, Schrödinger wave equation, uncertainty principle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2864
2541 A Rough-set Based Approach to Design an Expert System for Personnel Selection

Authors: Ehsan Akhlaghi

Abstract:

Effective employee selection is a critical component of a successful organization. Many important criteria for personnel selection such as decision-making ability, adaptability, ambition, and self-organization are naturally vague and imprecise to evaluate. The rough sets theory (RST) as a new mathematical approach to vagueness and uncertainty is a very well suited tool to deal with qualitative data and various decision problems. This paper provides conceptual, descriptive, and simulation results, concentrating chiefly on human resources and personnel selection factors. The current research derives certain decision rules which are able to facilitate personnel selection and identifies several significant features based on an empirical study conducted in an IT company in Iran.

Keywords: Decision Making, Expert System, PersonnelSelection, Rough Set Theory

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2308
2540 Calibration of Syringe Pumps Using Interferometry and Optical Methods

Authors: E. Batista, R. Mendes, A. Furtado, M. C. Ferreira, I. Godinho, J. A. Sousa, M. Alvares, R. Martins

Abstract:

Syringe pumps are commonly used for drug delivery in hospitals and clinical environments. These instruments are critical in neonatology and oncology, where any variation in the flow rate and drug dosing quantity can lead to severe incidents and even death of the patient. Therefore it is very important to determine the accuracy and precision of these devices using the suitable calibration methods. The Volume Laboratory of the Portuguese Institute for Quality (LVC/IPQ) uses two different methods to calibrate syringe pumps from 16 nL/min up to 20 mL/min. The Interferometric method uses an interferometer to monitor the distance travelled by a pusher block of the syringe pump in order to determine the flow rate. Therefore, knowing the internal diameter of the syringe with very high precision, the travelled distance, and the time needed for that travelled distance, it was possible to calculate the flow rate of the fluid inside the syringe and its uncertainty. As an alternative to the gravimetric and the interferometric method, a methodology based on the application of optical technology was also developed to measure flow rates. Mainly this method relies on measuring the increase of volume of a drop over time. The objective of this work is to compare the results of the calibration of two syringe pumps using the different methodologies described above. The obtained results were consistent for the three methods used. The uncertainties values were very similar for all the three methods, being higher for the optical drop method due to setup limitations.

Keywords: Calibration, interferometry, syringe pump, optical method, uncertainty.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 714
2539 Data Envelopment Analysis under Uncertainty and Risk

Authors: P. Beraldi, M. E. Bruni

Abstract:

Data Envelopment Analysis (DEA) is one of the most widely used technique for evaluating the relative efficiency of a set of homogeneous decision making units. Traditionally, it assumes that input and output variables are known in advance, ignoring the critical issue of data uncertainty. In this paper, we deal with the problem of efficiency evaluation under uncertain conditions by adopting the general framework of the stochastic programming. We assume that output parameters are represented by discretely distributed random variables and we propose two different models defined according to a neutral and risk-averse perspective. The models have been validated by considering a real case study concerning the evaluation of the technical efficiency of a sample of individual firms operating in the Italian leather manufacturing industry. Our findings show the validity of the proposed approach as ex-ante evaluation technique by providing the decision maker with useful insights depending on his risk aversion degree.

Keywords: DEA, Stochastic Programming, Ex-ante evaluation technique, Conditional Value at Risk.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1924
2538 A Distance Function for Data with Missing Values and Its Application

Authors: Loai AbdAllah, Ilan Shimshoni

Abstract:

Missing values in data are common in real world applications. Since the performance of many data mining algorithms depend critically on it being given a good metric over the input space, we decided in this paper to define a distance function for unlabeled datasets with missing values. We use the Bhattacharyya distance, which measures the similarity of two probability distributions, to define our new distance function. According to this distance, the distance between two points without missing attributes values is simply the Mahalanobis distance. When on the other hand there is a missing value of one of the coordinates, the distance is computed according to the distribution of the missing coordinate. Our distance is general and can be used as part of any algorithm that computes the distance between data points. Because its performance depends strongly on the chosen distance measure, we opted for the k nearest neighbor classifier to evaluate its ability to accurately reflect object similarity. We experimented on standard numerical datasets from the UCI repository from different fields. On these datasets we simulated missing values and compared the performance of the kNN classifier using our distance to other three basic methods. Our  experiments show that kNN using our distance function outperforms the kNN using other methods. Moreover, the runtime performance of our method is only slightly higher than the other methods.

Keywords: Missing values, Distance metric, Bhattacharyya distance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2698
2537 Geometric Operators in the Selection of Human Resources

Authors: José M. Merigó, Anna M. Gil-Lafuente

Abstract:

We study the possibility of using geometric operators in the selection of human resources. We develop three new methods that use the ordered weighted geometric (OWG) operator in different indexes used for the selection of human resources. The objective of these models is to manipulate the neutrality of the old methods so the decision maker is able to select human resources according to his particular attitude. In order to develop these models, first a short revision of the OWG operator is developed. Second, we briefly explain the general process for the selection of human resources. Then, we develop the three new indexes. They will use the OWG operator in the Hamming distance, in the adequacy coefficient and in the index of maximum and minimum level. Finally, an illustrative example about the new approach is given.

Keywords: OWG operator, decision making, human resources, Hamming distance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1349
2536 Managing Uncertainty in Unmanned Aircraft System Safety Performance Requirements Compliance Process

Authors: Achim Washington, Reece Clothier, Jose Silva

Abstract:

System Safety Regulations (SSR) are a central component to the airworthiness certification of Unmanned Aircraft Systems (UAS). There is significant debate on the setting of appropriate SSR for UAS. Putting this debate aside, the challenge lies in how to apply the system safety process to UAS, which lacks the data and operational heritage of conventionally piloted aircraft. The limited knowledge and lack of operational data result in uncertainty in the system safety assessment of UAS. This uncertainty can lead to incorrect compliance findings and the potential certification and operation of UAS that do not meet minimum safety performance requirements. The existing system safety assessment and compliance processes, as used for conventional piloted aviation, do not adequately account for the uncertainty, limiting the suitability of its application to UAS. This paper discusses the challenges of undertaking system safety assessments for UAS and presents current and envisaged research towards addressing these challenges. It aims to highlight the main advantages associated with adopting a risk based framework to the System Safety Performance Requirement (SSPR) compliance process that is capable of taking the uncertainty associated with each of the outputs of the system safety assessment process into consideration. Based on this study, it is made clear that developing a framework tailored to UAS, would allow for a more rational, transparent and systematic approach to decision making. This would reduce the need for conservative assumptions and take the risk posed by each UAS into consideration while determining its state of compliance to the SSR.

Keywords: Part 1309 regulations, unmanned aircraft systems, system safety, uncertainty.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1066
2535 Formulating the Stochastic Finite Elements for Free Vibration Analysis of Plates with Variable Elastic Modulus

Authors: Mojtaba Aghamiri Esfahani, Mohammad Karkon, Seyed Majid Hosseini Nezhad, Reza Hosseini-Ara

Abstract:

In this study, the effect of uncertainty in elastic modulus of a plate on free vibration response is investigated. For this purpose, the elastic modulus of the plate is modeled as stochastic variable with normal distribution. Moreover, the distance autocorrelation function is used for stochastic field. Then, by applying the finite element method and Monte Carlo simulation, stochastic finite element relations are extracted. Finally, with a numerical test, the effect of uncertainty in the elastic modulus on free vibration response of a plate is studied. The results show that the effect of uncertainty in elastic modulus of the plate cannot play an important role on the free vibration response.

Keywords: Stochastic finite elements, plate bending, free vibration, Monte Carlo, Neumann expansion method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1647
2534 Investigating the Effect of Uncertainty on a LP Model of a Petrochemical Complex: Stability Analysis Approach

Authors: Abdallah Al-Shammari

Abstract:

This study discusses the effect of uncertainty on production levels of a petrochemical complex. Uncertainly or variations in some model parameters, such as prices, supply and demand of materials, can affect the optimality or the efficiency of any chemical process. For any petrochemical complex with many plants, there are many sources of uncertainty and frequent variations which require more attention. Many optimization approaches are proposed in the literature to incorporate uncertainty within the model in order to obtain a robust solution. In this work, a stability analysis approach is applied to a deterministic LP model of a petrochemical complex consists of ten plants to investigate the effect of such variations on the obtained optimal production levels. The proposed approach can determinate the allowable variation ranges of some parameters, mainly objective or RHS coefficients, before the system lose its optimality. Parameters with relatively narrow range of variations, i.e. stability limits, are classified as sensitive parameters or constraints that need accurate estimate or intensive monitoring. These stability limits offer easy-to-use information to the decision maker and help in understanding the interaction between some model parameters and deciding when the system need to be re-optimize. The study shows that maximum production of ethylene and the prices of intermediate products are the most sensitive factors that affect the stability of the optimum solution

Keywords: Linear programming, Petrochemicals, stability analysis, uncertainty

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1906
2533 Fighter Aircraft Evaluation and Selection Process Based on Triangular Fuzzy Numbers in Multiple Criteria Decision Making Analysis Using the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)

Authors: C. Ardil

Abstract:

This article presents a multiple criteria evaluation approach to uncertainty, vagueness, and imprecision analysis for ranking alternatives with fuzzy data for decision making using the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). The fighter aircraft evaluation and selection decision making problem is modeled in a fuzzy environment with triangular fuzzy numbers. The fuzzy decision information related to the fighter aircraft selection problem is taken into account in ordering the alternatives and selecting the best candidate. The basic fuzzy TOPSIS procedure steps transform fuzzy decision matrices into matrices of alternatives evaluated according to all decision criteria. A practical numerical example illustrates the proposed approach to the fighter aircraft selection problem.

Keywords: triangular fuzzy number (TFN), multiple criteria decision making analysis, decision making, aircraft selection, MCDMA, fuzzy TOPSIS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 408
2532 Aerial Firefighting Aircraft Selection with Standard Fuzzy Sets using Multiple Criteria Group Decision Making Analysis

Authors: C. Ardil

Abstract:

Aircraft selection decisions can be challenging due to their multidimensional and interdisciplinary nature. They involve multiple stakeholders with conflicting objectives and numerous alternative options with uncertain outcomes. This study focuses on the analysis of aerial firefighting aircraft that can be chosen for the Air Fire Service to extinguish forest fires. To make such a selection, the characteristics of the fire zones must be considered, and the capability to manage the logistics involved in such operations, as well as the purchase and maintenance of the aircraft, must be determined. The selection of firefighting aircraft is particularly complex because they have longer fleet lives and require more demanding operation and maintenance than scheduled passenger air service. This paper aims to use the fuzzy proximity measure method to select the most appropriate aerial firefighting aircraft based on decision criteria using multiple attribute decision making analysis. Following fuzzy decision analysis, the most suitable aerial firefighting aircraft is ranked and determined for the Air Fire Service.

Keywords: Aerial firefighting aircraft selection, multiple criteria decision making, fuzzy sets, standard fuzzy sets, determinate fuzzy sets, indeterminate fuzzy sets, proximity measure method, Minkowski distance family function, Hausdorff distance function, MCDM, PMM, PMM-F

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 314
2531 Military Combat Aircraft Selection Using Trapezoidal Fuzzy Numbers with the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)

Authors: C. Ardil

Abstract:

This article presents a new approach to uncertainty, vagueness, and imprecision analysis for ranking alternatives with fuzzy data for decision making using the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). In the proposed approach, fuzzy decision information related to the aircraft selection problem is taken into account in ranking the alternatives and selecting the best one. The basic procedural step is to transform the fuzzy decision matrices into matrices of alternatives evaluated according to all decision criteria. A numerical example illustrates the proposed approach for the military combat aircraft selection problem.

Keywords: trapezoidal fuzzy numbers, multiple criteria decision making analysis, decision making, aircraft selection, MCDMA, fuzzy TOPSIS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 408
2530 A Fuzzy Classifier with Evolutionary Design of Ellipsoidal Decision Regions

Authors: Leehter Yao, Kuei-Song Weng, Cherng-Dir Huang

Abstract:

A fuzzy classifier using multiple ellipsoids approximating decision regions for classification is to be designed in this paper. An algorithm called Gustafson-Kessel algorithm (GKA) with an adaptive distance norm based on covariance matrices of prototype data points is adopted to learn the ellipsoids. GKA is able toadapt the distance norm to the underlying distribution of the prototypedata points except that the sizes of ellipsoids need to be determined a priori. To overcome GKA's inability to determine appropriate size ofellipsoid, the genetic algorithm (GA) is applied to learn the size ofellipsoid. With GA combined with GKA, it will be shown in this paper that the proposed method outperforms the benchmark algorithms as well as algorithms in the field.

Keywords: Ellipsoids, genetic algorithm, classification, fuzzyc-means (FCM)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1654
2529 Differences in Students` Satisfaction with Distance Learning Studies

Authors: Ana Horvat, Maja Krsmanovic, Mladen Djuric

Abstract:

Rapid growth of distance learning resulted in importance to conduct research on students- satisfaction with distance learning because differences in students- satisfaction might influence educational opportunities for learning in a relevant Web-based environment. In line with this, this paper deals with satisfaction of students with distance module at Faculty of organizational sciences (FOS) in Serbia as well as some factors affecting differences in their satisfaction . We have conducted a research on a population of 68 first-year students of distance learning studies at FOS. Using statistical techniques, we have found out that there is no significant difference in students- satisfaction with distance learning module between men and women. In the same way, we also concluded that there is a difference in satisfaction with distance learning module regarding to student-s perception of opportunity to gain knowledge as the classic students.

Keywords: distance learning, students' satisfaction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2537
2528 Decision Making with Dempster-Shafer Theory of Evidence Using Geometric Operators

Authors: José M. Merigó, Montserrat Casanovas

Abstract:

We study the problem of decision making with Dempster-Shafer belief structure. We analyze the previous work developed by Yager about using the ordered weighted averaging (OWA) operator in the aggregation of the Dempster-Shafer decision process. We discuss the possibility of aggregating with an ascending order in the OWA operator for the cases where the smallest value is the best result. We suggest the introduction of the ordered weighted geometric (OWG) operator in the Dempster-Shafer framework. In this case, we also discuss the possibility of aggregating with an ascending order and we find that it is completely necessary as the OWG operator cannot aggregate negative numbers. Finally, we give an illustrative example where we can see the different results obtained by using the OWA, the Ascending OWA (AOWA), the OWG and the Ascending OWG (AOWG) operator.

Keywords: Decision making, aggregation operators, Dempster- Shafer theory of evidence, Uncertainty, OWA operator, OWG operator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1488
2527 Property Aggregation and Uncertainty with Links to the Management and Determination of Critical Design Features

Authors: Steven Whittle, Ingrida Valiusaityte

Abstract:

Within the domain of Systems Engineering the need to perform property aggregation to understand, analyze and manage complex systems is unequivocal. This can be seen in numerous domains such as capability analysis, Mission Essential Competencies (MEC) and Critical Design Features (CDF). Furthermore, the need to consider uncertainty propagation as well as the sensitivity of related properties within such analysis is equally as important when determining a set of critical properties within such a system. This paper describes this property breakdown in a number of domains within Systems Engineering and, within the area of CDFs, emphasizes the importance of uncertainty analysis. As part of this, a section of the paper describes possible techniques which may be used within uncertainty propagation and in conclusion an example is described utilizing one of the techniques for property and uncertainty aggregation within an aircraft system to aid the determination of Critical Design Features.

Keywords: Complex Systems, Critical Design Features, Property Aggregation, Uncertainty.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1498
2526 Deep Reinforcement Learning for Optimal Decision-making in Supply Chains

Authors: Nitin Singh, Meng Ling, Talha Ahmed, Tianxia Zhao, Reinier van de Pol

Abstract:

We propose the use of Reinforcement Learning (RL) as a viable alternative for optimizing supply chain management, particularly in scenarios with stochasticity in product demands. RL’s adaptability to changing conditions and its demonstrated success in diverse fields of sequential decision-making make it a promising candidate for addressing supply chain problems. We investigate the impact of demand fluctuations in a multi-product supply chain system and develop RL agents with learned generalizable policies. We provide experimentation details for training RL agents and a statistical analysis of the results. We study generalization ability of RL agents for different demand uncertainty scenarios and observe superior performance compared to the agents trained with fixed demand curves. The proposed methodology has the potential to lead to cost reduction and increased profit for companies dealing with frequent inventory movement between supply and demand nodes.

Keywords: Inventory Management, Reinforcement Learning, Supply Chain Optimization, Uncertainty.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 267
2525 Dynamic Slope Scaling Procedure for Stochastic Integer Programming Problem

Authors: Takayuki Shiina

Abstract:

Mathematical programming has been applied to various problems. For many actual problems, the assumption that the parameters involved are deterministic known data is often unjustified. In such cases, these data contain uncertainty and are thus represented as random variables, since they represent information about the future. Decision-making under uncertainty involves potential risk. Stochastic programming is a commonly used method for optimization under uncertainty. A stochastic programming problem with recourse is referred to as a two-stage stochastic problem. In this study, we consider a stochastic programming problem with simple integer recourse in which the value of the recourse variable is restricted to a multiple of a nonnegative integer. The algorithm of a dynamic slope scaling procedure for solving this problem is developed by using a property of the expected recourse function. Numerical experiments demonstrate that the proposed algorithm is quite efficient. The stochastic programming model defined in this paper is quite useful for a variety of design and operational problems.

Keywords: stochastic programming problem with recourse, simple integer recourse, dynamic slope scaling procedure

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1572
2524 Estimation of Uncertainty of Thermal Conductivity Measurement with Single Laboratory Validation Approach

Authors: Saowaluck Ukrisdawithid

Abstract:

The thermal conductivity of thermal insulation materials are measured by Heat Flow Meter (HFM) apparatus. The components of uncertainty are complex and difficult on routine measurement by modelling approach. In this study, uncertainty of thermal conductivity measurement was estimated by single laboratory validation approach. The within-laboratory reproducibility was 1.1%. The standard uncertainty of method and laboratory bias by using SRM1453 expanded polystyrene board was dominant at 1.4%. However, it was assessed that there was no significant bias. For sample measurement, the sources of uncertainty were repeatability, density of sample and thermal conductivity resolution of HFM. From this approach to sample measurements, the combined uncertainty was calculated. In summary, the thermal conductivity of sample, polystyrene foam, was reported as 0.03367 W/m·K ± 3.5% (k = 2) at mean temperature 23.5 °C. The single laboratory validation approach is simple key of routine testing laboratory for estimation uncertainty of thermal conductivity measurement by using HFM, according to ISO/IEC 17025-2017 requirements. These are meaningful for laboratory competent improvement, quality control on products, and conformity assessment.

Keywords: Single laboratory validation approach, within-laboratory reproducibility, method and laboratory bias, certified reference material.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 730
2523 Modeling the Uncertainty of the Remanufacturing Process for Consideration of Extended Producer Responsibility (EPR)

Authors: Michael R. Johnson, Ian P. McCarthy

Abstract:

There is a growing body of evidence to support the proposition of product take back for remanufacturing particularly within the context of Extended Producer Responsibility (EPR). Remanufacturing however presents challenges unlike that of traditional manufacturing environments due to its high levels of uncertainty which may further distract organizations from considering its potential benefits. This paper presents a novel modeling approach for evaluating the uncertainty of part failures within the remanufacturing process and its impact on economic and environmental performance measures. This paper presents both the theoretical modeling approach and an example of its use in application.

Keywords: Remanufacturing, Demanufacturing, Extended Producer Responsibility, Sustainability, Uncertainty.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1692
2522 Modeling the Symptom-Disease Relationship by Using Rough Set Theory and Formal Concept Analysis

Authors: Mert Bal, Hayri Sever, Oya Kalıpsız

Abstract:

Medical Decision Support Systems (MDSSs) are sophisticated, intelligent systems that can provide inference due to lack of information and uncertainty. In such systems, to model the uncertainty various soft computing methods such as Bayesian networks, rough sets, artificial neural networks, fuzzy logic, inductive logic programming and genetic algorithms and hybrid methods that formed from the combination of the few mentioned methods are used. In this study, symptom-disease relationships are presented by a framework which is modeled with a formal concept analysis and theory, as diseases, objects and attributes of symptoms. After a concept lattice is formed, Bayes theorem can be used to determine the relationships between attributes and objects. A discernibility relation that forms the base of the rough sets can be applied to attribute data sets in order to reduce attributes and decrease the complexity of computation.

Keywords: Formal Concept Analysis, Rough Set Theory, Granular Computing, Medical Decision Support System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1774
2521 OWA Operators in Generalized Distances

Authors: José M. Merigó, Anna M. Gil-Lafuente

Abstract:

Different types of aggregation operators such as the ordered weighted quasi-arithmetic mean (Quasi-OWA) operator and the normalized Hamming distance are studied. We introduce the use of the OWA operator in generalized distances such as the quasiarithmetic distance. We will call these new distance aggregation the ordered weighted quasi-arithmetic distance (Quasi-OWAD) operator. We develop a general overview of this type of generalization and study some of their main properties such as the distinction between descending and ascending orders. We also consider different families of Quasi-OWAD operators such as the Minkowski ordered weighted averaging distance (MOWAD) operator, the ordered weighted averaging distance (OWAD) operator, the Euclidean ordered weighted averaging distance (EOWAD) operator, the normalized quasi-arithmetic distance, etc.

Keywords: Aggregation operators, Distance measures, Quasi- OWA operator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1625
2520 Analyzing Methods of the Relation between Concepts based on a Concept Hierarchy

Authors: Ke Lu, Tetsuya Furukawa

Abstract:

Data objects are usually organized hierarchically, and the relations between them are analyzed based on a corresponding concept hierarchy. The relation between data objects, for example how similar they are, are usually analyzed based on the conceptual distance in the hierarchy. If a node is an ancestor of another node, it is enough to analyze how close they are by calculating the distance vertically. However, if there is not such relation between two nodes, the vertical distance cannot express their relation explicitly. This paper tries to fill this gap by improving the analysis method for data objects based on hierarchy. The contributions of this paper include: (1) proposing an improved method to evaluate the vertical distance between concepts; (2) defining the concept horizontal distance and a method to calculate the horizontal distance; and (3) discussing the methods to confine a range by the horizontal distance and the vertical distance, and evaluating the relation between concepts.

Keywords: Concept Hierarchy, Horizontal Distance, Relation Analysis, Vertical Distance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1190
2519 Remarks on Some Properties of Decision Rules

Authors: Songlin Yang, Ying Ge

Abstract:

This paper shows that some properties of the decision rules in the literature do not hold by presenting a counterexample. We give sufficient and necessary conditions under which these properties are valid. These results will be helpful when one tries to choose the right decision rules in the research of rough set theory.

Keywords: set, Decision table, Decision rule, coverage factor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1364
2518 Variation of Uncertainty in Steady And Non-Steady Processes Of Queuing Theory

Authors: Om Parkash, C.P.Gandhi

Abstract:

Probabilistic measures of uncertainty have been obtained as functions of time and birth and death rates in a queuing process. The variation of different entropy measures has been studied in steady and non-steady processes of queuing theory.

Keywords: Uncertainty, steady state, non-steady state, trafficintensity, monotonocity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1134
2517 Using the OWA Operator in the Minkowski Distance

Authors: José M. Merigó, Anna M. Gil-Lafuente

Abstract:

We study different types of aggregation operators such as the ordered weighted averaging (OWA) operator and the generalized OWA (GOWA) operator. We analyze the use of OWA operators in the Minkowski distance. We will call these new distance aggregation operator the Minkowski ordered weighted averaging distance (MOWAD) operator. We give a general overview of this type of generalization and study some of their main properties. We also analyze a wide range of particular cases found in this generalization such as the ordered weighted averaging distance (OWAD) operator, the Euclidean ordered weighted averaging distance (EOWAD) operator, the normalized Minkowski distance, etc. Finally, we give an illustrative example of the new approach where we can see the different results obtained by using different aggregation operators.

Keywords: Aggregation operators, Minkowski distance, OWA operators, Selection of strategies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2060
2516 Comparison of Reliability Systems Based Uncertainty

Authors: A. Aissani, H. Benaoudia

Abstract:

Stochastic comparison has been an important direction of research in various area. This can be done by the use of the notion of stochastic ordering which gives qualitatitive rather than purely quantitative estimation of the system under study. In this paper we present applications of comparison based uncertainty related to entropy in Reliability analysis, for example to design better systems. These results can be used as a priori information in simulation studies.

Keywords: Uncertainty, Stochastic comparison, Reliability, serie's system, imperfect repair.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1210
2515 The Distance between a Point and a Bezier Curveon a Bezier Surface

Authors: Wen-Haw Chen, Sheng-Gwo Chen

Abstract:

The distance between two objects is an important problem in CAGD, CAD and CG etc. It will be presented in this paper that a simple and quick method to estimate the distance between a point and a Bezier curve on a Bezier surface.

Keywords: Geodesic-like curve, distance, projection, Bezier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2508
2514 Determination of Measurement Uncertainty in Extracting of Forming Limit Diagrams

Authors: M. Mahboubkhah, H. Fayazfar

Abstract:

In this research, Forming Limit Diagrams for supertension sheet metals which are using in automobile industry have been obtained. The exerted strains to sheet metals have been measured with four different methods and the errors of each method have also been represented. These methods have been compared with together and the most efficient and economic way of extracting of the exerted strains to sheet metals has been introduced. In this paper total error and uncertainty of FLD extraction procedures have been derived. Determination of the measurement uncertainty in extracting of FLD has a great importance in design and analysis of the sheet metal forming process.

Keywords: Forming Limit Diagram, Major and Minor Strain, Measurement Uncertainty.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1948