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Abstract—We study different types of aggregation operatachs
as the ordered weighted averaging (OWA) operatod &me
generalized OWA (GOWA) operator. We analyze the alS®OWA
operators in the Minkowski distance. We will cédese new distance
aggregation operator the Minkowski ordered weightaeraging
distance (MOWAD) operator. We give a general ov@wiof this
type of generalization and study some of their n@ioperties. We
also analyze a wide range of particular cases foimdthis
generalization such as the ordered weighted avegagdistance
(OWAD) operator, the Euclidean ordered weighted rayieg
distance (EOWAD) operator, the normalized Minkowslistance,
etc. Finally, we give an illustrative example ofthew approach
where we can see the different results obtainedidiyzg different
aggregation operators.

Sometimes, when calculating the normalized distaiitce
would be interesting to consider the attitudinaretcter of the
decision maker. A very useful technique for theraggtion of
the information considering the attitudinal chaeacof the
decision maker is the ordered weighted averagingVAQp
operator introduced by Yager in [1]. The OWA operat
provides a parameterized family of aggregation afoes that
include the maximum, the minimum and the averager@. It
has been used in a wide range of applications asi¢B]—[21].

In this paper, we suggest a new type of distancasuore
consisting in normalize the Minkowski distance wtite OWA
operator. Then, the normalization developed wiflect the
attitudinal character of the decision maker angiilitprovide a
parameterized family of distance operators thatuge the

Keywords—Aggregation operators, Minkowski distance, OWAmMaximum distance, the minimum distance and the aaeer

operators, Selection of strategies.

. INTRODUCTION

HE distance measures are very useful techniquéhdva

been used in a wide range of applications suchzyfset
theory, multicriteria decision making, businessisieas, etc.
Among the great variety of distances we can findthe
literature, the Minkowski distance represents aegalization
to a wide range of them such as the Hamming distaiine
Euclidean distance, the geometric distance anchémmonic
distance.

distance. We will call this generalization as thénkéwski
ordered weighted averaging distance (MOWAD) operdty
studying special cases of the MOWAD operator, wik be
able to develop a wide range of distance operatach as the
Hamming ordered weighted averaging distance (HOWAD)
operator, the Euclidean ordered weighted averadiatance
(EOWAD) operator, the ordered weighted geometric
averaging distance (OWGAD) operator and the ordered
weighted harmonic averaging distance (OWHAD) opmrat
We should note that some considerations about USMEA
operators in distance measures have been studjgdl]in

Often, when calculating distances, we want an aeera This paper is organized as follows. In Sectiorwi, briefly

result of all the individual distances. We call sththe

normalization process. In the literature, we fimshgipally two

types of normalized distances. The first type & ¢hse when
we normalize the distance giving the same weighaltdhe

individual distances. The second type is the cakenwwe
normalize the distance giving different weights the

individual distances. Then, assuming that we alaegutghe

Minkowski distance, for the first type we will olnathe

normalized Minkowski distance and for the secongetyhe
weighted Minkowski distance.
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describe some aggregation operators such as the OWA
operator, the generalized OWA operator and the Blirgki
distance. In Section Ill, we develop the MOWAD agter. In
Section 1V, we study different families of MOWAD erators

and in Section V we present an illustrative exangflthe new
approach. Finally, in Section VI, we summarize tnain
conclusions found in the paper.

IIl. AGGREGATIONOPERATORS

In this Section, we briefly describe the OWA operathe
generalized OWA (GOWA) operator and the normalized
Minkowski distance.

A. OWA Operator

The OWA operator was introduced by Yager in [1] d@nd
provides a parameterized family of aggregation afoes that
include the maximum, the minimum and the arithmetian.
It can be defined as follows.
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Definition 1. An OWA operator of dimension is a mapping
OWA R" — R that has an associated weighting vestoof
dimensionn such that the sum of the weights is 1 apd]
[0,1], then:

OWA@y, &...., &) = Y W;b; )

=1

wherely; is thejth largest of they.
From a generalized perspective of the reorderieg, sive

From a generalized perspective of the reorderieg, sive
can distinguish between the descending general@edA
(DGOWA) operator and the ascending generalized OWA
(AGOWA) operator.

It can be demonstrated that the GOWA operator gdines
a wide range of aggregation operators [17] suchthes
maximum or the minimum.

Other special cases obtained with the weightingorecf
the GOWA operator [17] are the generalized mean taed
weighted generalized mean. Then, the GOWA operalsy
includes the particular cases of the generalizednnseich as

have to distinguish between the descending OWA (W the arithmetic mean, the geometric mean, the haicmosan
operator and the ascending OWA (AOWA) operator [12hng the quadratic mean, and the particular caseshef

Note that this distinction in the reordering stgprélevant in
order to distinguish between situations where thghdst
argument is the best result and situations wheeeldkvest
argument is the best result [25].

B. GOWA Operator

The GOWA operator [17] is a generalization of the&/®
operator by using generalized means. The genedalizean
was introduced in [26]-[27] and it represents aegalization
to a wide range of mean aggregations. It can baetfas
follows.

Definition 2. A generalized mean of dimensians a mapping
GM: R"— R such that:

Lo Y
GM(ay, a,..., &) = (EZaﬂ] )

i=1

weighted generalized mean such as the weightecgeethe
weighted geometric mean, the weighted harmonic naeah
the weighted quadratic mean.

If we analyze the parametdr we can also obtain another
group of special cases such as the usual OWA apdfdf the
ordered weighted geometric (OWG) operator [28]-[30f
ordered weighted harmonic averaging (OWHA) oper§i@i
and the ordered weighted quadratic averaging (OWQA)
operator [17]. Note that this group of particulases can be
constructed with a descending or an ascending order

C. Normalized Minkowski Distance

The normalized Minkowski distance is a distance suea
that generalizes a wide range of distances suchthas
normalized Hamming distance, the normalized Eualide
distance, the normalized geometric distance and the
normalized harmonic distance. In fuzzy set thedtrgan be
useful, for example, for the calculation of distasidetween
fuzzy sets, interval-valued fuzzy sets, intuitidiciSuzzy sets

wherea; is the argument variable antlis a parameter such 5nq  interval-valued intuitionistic fuzzy sets. ltarc be
that A O (-0, ). Note that depending on the value of thgormulated for two seta andB as follows.

parameterl, we obtain different types of means. Wheg o,

we obtain the maximum. Wheh = 1, the arithmetic mean.

When A = 0, the geometric mean. Whdre -1, the harmonic
mean. Whenl = 2, the quadratic mean. Whan= —co, the
minimum.

Note that if the arguments have different weigttign, the
generalized mean is transformed in the weightecigdined

Definition 4. A normalized Minkowski distance of dimension
nis a mappingl,: R" x R'— R such that:

. 1/
dn(AB) = [%ZM -b; |A] 4
=1

mean. With this information, we can define the GOWA

operator as follows.

Definition 3. A GOWA operator of dimension is a mapping
GOWA R"— R that has an associated weighting vettbof
dimensionn such that the sum of the weights is 1 and]
[0,1], then:

1/A
GOWAa, &, ..., ) = {Z W bf] (3)

j=1

wherea, andb; are theith arguments of the sefsandB and A
is a parameter such th&atd (-, o).

If we give different values to the paramefiemve can obtain
a wide range of special cases. For exampléFfl, we obtain
the normalized Hamming distance. Af= 2, the normalized
Euclidean distance. 1f4 = 0, the normalized geometric
distance. IfA = -1, the normalized harmonic distance. Note
that the formulation shown above is the generalresgion.
For the formulation used in fuzzy set theory seeeitample
[31]-[33].

Sometimes, when normalizing the Minkowski distanee,

wherelby; is thejth largest of they, andA is a parameter such prefer to give different weights to each individudistance.

thatA O (—co, o).
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Then, the distance is known as the weighted Minkowspossible in order to formulate this type of aggtigasuch as:

distance. It can be defined as follows.

Definition 5. A weighted Minkowski distance of dimension

MOWAD(A,B)
A fundamental aspect of the MOWAD operator is the
reordering of the arguments based upon their vallieat is,

is a mappingd,» R" x R" — R that has an associatedthe weights rather than being associated with ecifpe
weighting vectorW of dimensionn such that the sum of the argument, as in the case with the usual Minkowskiadce,

weights is 1 aney; O [0,1]. Then:

n 1/A
dur(AB) = [Z w; |a —by |‘J (5)

i=1

wherea, andb; are theith arguments of the sefsandB and A
is a parameter such th&td (-, ).

In this case, we can also obtain a wide range efiapcases

by using different values in the paramelelFor example, ifA
= 1, we obtain the weighted Hamming distancel ¥ 2, the

weighted Euclidean distance.Af= 0, the weighted geometric

distance. IfA = -1, the weighted harmonic distance.

lll. THE MINKOWSKI ORDEREDWEIGHTED
AVERAGING DISTANCEOPERATOR

are associated with a particular position in théedng. This
reordering introduces nonlinearity into an otheewikinear
process.

If D is a vector corresponding to the ordered argurr[éjﬁts
we shall call this the ordered argument vector, @Ads the
transpose of the weighting vector, then the MOWAD
aggregation can be expressed as:

MOWAD(,, o...., &) = WD)’ @)

Note that from a generalized perspective of thedeing
step, we can distinguish between the descendindadwviski
OWAD (DMOWAD) and the ascending Minkowski OWAD
(AMOWAD) operators. Note also that it is possibte use
them in situations where the highest value is #& besult and
in situations where the lowest value is the bestiiteBut in a

The Minkowski OWAD (MOWAD) operator represents anmore efficient way, it is better to use one of thésn one

extension of the traditional normalized Minkowsikstdnce by
using OWA operators. The difference is that we deorthe
arguments of the individual distances accordinthéir values.
Then, we can calculate the distance between twoeglts, two
sets, two fuzzy sets, etc., modifying the resutsoeding to the
attitudinal character of the decision maker. Faareple, this
type of distance is useful when a decision makentsvao

situation and the other one for the other situatias it is
explained in [12], [25] for the OWA operator. ThiDWAD
operator has the same definition than the MOWADraioe.

Definition 7. An AMOWAD operator of dimensiom is a
mapping AMOWAD R' x R" — R that has an associated
weighting vectorW of dimensionn such that the sum of the

compare two fuzzy subsets but he wants to give MOjgights is 1 anaw O [0,1]. Then, the distance between two

importance to the highest individual distance beeatne
believes that it will be more significant in theadysis. Note
that this type of normalized distance operator dam
constructed by mixing the Minkowski distance with\V@

operators, by mixing the Hamming distance with GOWA
operators or by mixing the Hamming OWAD operatothwi

generalized means. It can be defined as follows.

Definition 6. A Minkowski OWAD operator of dimensiomis

a mappingMOWAD R' x R" — R that has an associate
weighting vectorW of dimensionn such that the sum of the -
weights is 1 andy O [0,1]. Then, the distance between two_

setsA andB is:

1/A
MOWAD(d;, O,..., d) = [ij Df} (6)
j=1

where D; is thejth largest of thed, andd; is the individual
distance betweed and B. That is,d; = g — b A is a

setsA andB is:

1/A
AMOWAD(d,, y,..., ¢) = {Z Wj Df} ®
j=1

where D; is thejth lowest of thed, and d; is the individual
distance betwee and B. That is,d, = O — b A is a

dparameter such thatd (—oo, ). As we can see, the elements

D; (=1, 2, ...,n) are ordered in an increasing wal; < D,
... £ Dy Then, it is possible to see that the weightshef t
DMOWAD are related to those of the AMOWAD by using
= W* 4.1, Wherew; is thejth weight of the DMOWAD and
w*.1 thejth weight of the AMOWAD operator.

The MOWAD operator is a mean or averaging operator.
This is a reflection of the fact that the operasocommutative,
monotonic, bounded and idempotent for both the DNEDN
and the AMOWAD operator. It is commutative becaasg
permutation of the arguments has the same evatuattmat is,
MOWAD(dy,d,,...,d,) = MOWADEey,&,,....&,), Where €,...,6)

parameter such thatl] (e, «). As we can see, we adapt theg 5y permutation of the arguments, (..,d). It is monotonic

characteristics of the Minkowski distance to tharaleteristics
of the OWA operator. Note that different notatioase
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because ifd, > e, for all d, then, MOWADQ(d,,d,...,d,) >
MOWADe,e,,...,6). It is bounded because the MOWAD
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aggregation is delimitated by the minimum and treximum.
That is, Min{d} < MOWADQ(,,d,,...,d,) < Max{d}. It is
idempotent because ifd = d, for all d, then,
MOWAD(dy,d,, ...,dn) =d.

Another interesting issue to analyze is the atittald

obtained whemw, = a, w, =1 -a,w; = 0, for allj # 1,n, then,
MOWAD(y, dy, ..., d)) = a Max{d} + (1 - a) Min{d;}. Note
that if a = 1, the Hurwicz MOWAD criteria becomes the
maximum distance and ifr = 0, it becomes the minimum
distance.

character of the MOWAD operator. Based on the me@asu Remark2: Whenw, = 1 fork<j < k+m-1 andw = 0
developed for the GOWA operators in [17], it can by >k + mandj <k, we are using the window-MOWAD

formulated in two different forms depending on tiype of
ordering used. For the first form we get the follogv

=[S (23] |

And for the second, we get:

1 A\ A
Iy (4
a(V\/)—[JZ:lWJ(n—_J ]

Note that we will also select one of these two &qua
according to the problem analyzed. That is, oueciin will
be different depending on if we are in a situatidmere the
highest argument is the best result or in a sitnatvhere the
lowest value is the best result.

IV. FAMILIES OFMOWAD OPERATORS

A. Analysing the Weighting Vector W
By choosing a different manifestation of the weliiggt

operator that it is based on the window-OWA operi3].
Note thatk andm must be positive integers such tkatm- 1
< n. Also note that im =k = 1, then, the window-MOWAD is
transformed in the maximum. th = 1, k = n, the window-

(9) MOWAD becomes the minimum. And iif = n andk = 1, the

window-MOWAD is
Minkowski distance.
Remark3: If w; =w, = 0, and for all others; = 1/(n - 2),
we are using the olympic-MOWAD operator that ibeésed on
the olympic average [16]. Note thatrnf= 3 orn = 4, the

transformed in the normalized

(10) olympic-MOWAD average is transformed in the MOWAD

median and ifn = n - 2 andk = 2, the window-MOWAD is
transformed in the olympic-MOWAD operator.

Remark4: The median and the weighted median can also be

used as MOWAD operators. For the MOWAD mediam i
odd we assigmv, . 1> = 1 andw; = O for all others, and this
affects the [0 + 1)/2]th largest argumerd. If n is even we
assign for exampley,, = W) + 1 = 0.5, and this affects the
arguments with then(2)th and [(/2) + 1]th largest.. For the
weighted MOWAD median, we select the argument trest
the kth largestd, such that the sum of the weights from kto
is equal or higher than 0.5 and the sum of the hteiffom 1
tok — 1 is less than 0.5.

vector in the MOWAD operator, we are able to obtain Remark5: Another type of aggregation that could be used

different types of aggregation operators. For exampe can
obtain the maximum distance, the minimum distarite,
normalized Minkowski distance and the weighted Mwwkki
distance.

the E-Z MOWAD weights that it is based on the E-W/@®
weights [18]. In this case, we should distinguigtween two
classes. In the first class, we assig O forj = 1 ton-k and
w; = (1k) forj =n -k + 1 ton, and in the second class we

For the DMOWAD operator, the maximum distance i@ssignw; = (1K) forj =1 tok andw; = 0 forj > k. Note that for

obtained whemw,; = 1 andw; = 0, for allj # 1. The minimum
distance is found whem, = 1 andw; = 0, for allj # n. And for
the AMOWAD operator, the maximum distance is fowiten

w, = 1 andw; = 0, for allj # n, and the minimum distance is
found whernw; = 1 andw; = 0, for allj # 1. As we can see, the

the first class, the maximum distance is obtaiféd=i 1 andb;
= Max{a}, and the normalized Minkowski distancekit n. In
the second class, the minimum distance is obtafried 1 and
b, = Min{a}, and the normalized Minkowski distancekif n.
In [4], Filev and Yager suggested two methods fataming
the OWA weights. Following their methodology we cgply

maximum and the minimum distances are Obta'netﬂese methods for the MOWAD weights as follows. Hor

independently of the value of the parameteMore generally,
if we = 1 andw; = 0, for allj # k, we get for anyA/,
MOWAD(d;, ..., d) = Dy, whereDy is thekth largest or
lowest of the arguments.

The normalized Minkowski distance and the weighted

Minkowski distance are also particular cases ofM@@WAD
operator. The normalized Minkowski distance is oted

whenw; = 1h, for all j. The weighted Minkowski distance is

obtained when =i, for all i andj, wherej is thejth argument
of D; andi is theith argument od;.

first method, the weights can be expressedvas a, w, =
Wh1(1 = wi)/wy, andw, = wj4(1 - wy) forj = 2 ton - 1. For
the second method, the weights are obtained,as1l- a, w;

= Wo(1 — Wn)/Wh, andw; = wi(1 - w,) forj =2 ton- 1.

Remark 6: Another useful approach for obtaining the
weights is the functional method introduced by Ydd#] for
the OWA operator. For the MOWAD operator, it can be
summarized as follows. L¢tbe a functionf: [0, 1] - [0, 1]
such thatf(0) = f(1) andf(x) = f(y) for x >y. We call this

Remarkl: Other families of aggregation operators cowd bfunct|on a basic unit interval monotonic functioBUM).

obtained by choosing a different manifestatiorhim weighting

vector. For example, the Hurwicz MOWAD criteria isfor]:
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Using this BUM function we obtain the MOWAD weighig
ltonas
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"= (ﬁ) f(’Tl] (1D L (16)
2oy

It can easily be shown that using this method vihsatisfy
that the sum of the weights is 1 amd] [0,1]. where a 0 (-, «), b is the jth largest element of the
Remark7: By using the orness or attitudinal charactet arfrgumentsd. In this case, we also get the normalized
the dispersion measure it is also possible to ohita weights Minkowski distance ifo = 0 and ifa = co, we get the minimum
of the MOWAD operator. For example, following [8]ew distance.
could develop the maximal entropy MOWAD (MEMOWAD) Remark9: Another interesting family is the S-MOWAD
as follows operator based on the S-OWA operator [13], [15kdh be
subdivided in three classes, the “orlike”, the ‘el and the
n generalized S-MOWAD operator. The “orlike” S-MOWAD
Maximize: —ij Inw; (12) operator is found whew; = (1h)(1 - a) + a, andw; = (Lh)(1
j=1 - q) forj = 2 ton with a O [0, 1]. Note that ifa = 0, we get
the arithmetic mean and & = 1, we get the maximum. The
N Lo\ 2 “andlike” S-MOWAD operator is found whem, = (1h)(1 -
Subject to:[ZWj(”_lj ] = a(W) (13) P +Bandw; = (Lh)(1 - B forj =1 ton - 1 with B0 [0, 1].
= \n-1 Note that in this class, = 0 we get the average angGif 1,
we get the minimum. Finally, the generalized S-MOWA

wherea O [0, 1], w 0 [0,1], and the sum of the weights is 1.0perator is obtained whew, = (1h)(1 - (a + ) + a, W, =
Note that other methods similar to the MEMOWAD abbe  (1/)(1 = (a + B)) + B, andw; = (1h)(1 - (a + B)) forj = 2 to
developed for obtaining the MOWAD weights followinge N~ 1 wherea, S0 [0, 1] anda + < 1. Note that ifr = O, the
same methodologies than [5]-[6], [9]-[10]. Then, veuld generalized S-MOWAD operator becomes the “andlike”
obtain for example, the maximal renyi entropy MOWADMOWAD operator and iff = 0, it becomes the “orlike” S-
weights, the minimal variability MOWAD weights, the MOWAD operator. Also note that it + 8= 1, the generalized
minimax disparity MOWAD weights, etc. S_-MOWAD_ operator becomes the Hurwicz generalized
Remarks: Other families of MOWAD operators could bediStance criteria. ,

obtained such as the weights that depend on theegajgd Remark 10: A further type of aggreg_atlon operators that
objects [13]. Note that in the MOWAD operator, theCOUId be used in the_MOWAD operator is the cent€d¥dA
aggregated objects are individual distances. Tthenweights CPerator [19]. Following the same methodology, wald say
depend on the distances between the elements oiftaeent '3t @ MOWAD operator is a centered aggregationaipe if
sets. For example, we could develop the BADD-MOWAD! 'S Symmetic, strongly decaying and inclusive. i

operator that it is based on the OWA version deadoin SYMMEiC ifw = Wi, . Itis strongly decaying when< j < (n
[13]. + 1)/2 thenw; <w; and when >j = (n + 1)/2 thenw; <wj. It is

inclusive if w, > 0. Note that it is possible to consider a
ba softening of the second cond_ition by usimgs w; in;tead ofw,
n' j14 < w. We shall refer to this as softly decaying certere
ijlbf’ MOWAD operator. Note that the normalized Minkowski
where @ O (-, ®), b is the jth largest element of the distance is an example of this particular case eftared-

argumentsd;, that is, the individual distances. Note that thg/lO:NAz M(g)\(/evrzgr. Anotther partlcu'lfa rsituation fhf mttte
sum of the weights is 1 ang O [0,1]. Also note that itr= 0, centere operator appears I we remove

. . L . condition. We shall refer to it as a non-inclusieentered-
we get the normalized Minkowski distance andrifE «, we MOWAD operator. For this situation. we find the rigd
get the maximum distance. Another family of MOWAD P y '

operator that depends on the aggregated objects is MOWAD as a particular case.
P P ggreg ) Remarkll: A special type of centered-MOWAD operator is

" the Gaussian MOWAD weights which follows the same
- (@-by) (15)methodology than the Gaussian OWA weights suggesyed

. Z’_‘_l(l—bj)” Xu [11]. In order to define it, we have to conside6Gaussian
1= distributionn(y, o) where

Wj:

where g O (-«, ), b is the jth largest element of the L Nl

argumentsd;.. Note that in this case & = 0, we also get the Un :—Zj =— 17
normalized Minkowski distance and i&f = o, we get the
minimum distance. A third family of MOWAD operattnat
depends on the aggregated objects is

International Scholarly and Scientific Research & Innovation 2(9) 2008 1036 1SN1:0000000091950263
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1o , operator or by mixing the Hamming distance with @\&QA
On = FZ(]_ﬂn) (18)operator.
j=1

Assuming that

1/2
EOWADd,, dy,..., d) = [Z W, Df] (22)
j=1

P = 1 ~(j~pn)? 1202
= e n n 19
n(i) no, (19)

g

From a generalized perspective of the reordering, sive
we can define the MOWAD weights as can distinguish between the descending EOWAD (DE@YVA
operator and the ascending EOWAD (AEOWAD) operator.

With the EOWAD operator it is also possible to dfta
wj = — == — (20) another parameterized family of aggregation opesathat
20 Y e iz include for example, the maximum distance, the mimn
distance, the normalized Euclidean distance andvtighted
: : Euclidean distance.
Note that the sum of the weights is 1 andl [0,1]. Remark 14: Another particular case obtained with the
B. Analysing the Parametér MOWAD operator is the OWGAD operator [24]. This eds

If we analyze different values of the parametewe obtain found whenA = 0. Note that it is possible to construct it in
another group of particular cases such as the Haghardered another way such as by mixing the Hamming distamitte the
weighted averaging distance (HOWAD) operator, th©WGA operator or by mixing the geometric distancthhe
Euclidean ordered weighted averaging distance (E@yA OWA operator.
operator, the ordered weighted geometric averadistance
(OWGAD) operator and the ordered weighted harmonic
averaging distance (OWHAD) operator.

Remark 12: The Hamming OWAD operator or simply
OWAD operator [22] is found when the parameler 1. In
this type of distance, we introduce a reordering tlie
individual distances in order to aggregate thenthim most
efficient way according to the interests of theisie maker.

It can be constructed as a particular case of ti@&\WAD
operator, but it is also possible to constructyitnhixing the
OWA operator with the Hamming distance.

n i)/ 208

OWGARd, tb,..., dh) = > D;" (23)

In this case, we can distinguish between the degogn
OWGAD (DOWGAD) operator and the ascending OWGAD
(AOWGAD) operator. Note that the geometric operator
cannot aggregate negative numbers and the value. zer
Therefore, this distance aggregation operator Ig aseful in
some special situations. Note also that it is [bssio
transform this operator, so it can deal with zermegative
N numbers [34].

HOWAD(y, tb,..., &) = sz D, (21) Note that it is also possible to obtain anotheapeterized
= family of aggregation operators. With the OWGAD wgier,
we can obtain among others the maximum distance, th

In this case it is possible to distinguish betwedescending Minimum distance, the normalized geometric distearue the
(DHOWAD or DOWAD) and ascending (AHOWAD or Weighted geometric distance. _

AOWAD) orders. Remark15: Another special case found in the MOWAD

With the HOWAD operator it is also possible to dbta OPerator is the OWHAD operator. In this cades —1. Note
another parameterized family of aggregation opesatach as that the OWHAD operator can also be constructednbyng
the maximum distance, the minimum distance, thenatieed the harmonic distance with the OWA operator or hiyimg
Hamming distance and the weighted Hamming distafibe. the Hamming distance with the OWHA operator.
maximum and the minimum distances are obtained has

been explained with the MOWAD operator. The noreedi OWHAOd,, ..., d) = 1 (24)
Hamming distance is found whes = 1h, for all j. The . W;

weighted Hamming distance is obtained wheni, for all i ZF

andj, wheregj is thejth argument oD; andi is theith argument 1=

of di.

Remark13: The Euclidean OWAD operator [21], [23] or From'a.gen.eralized perspective of the reor.deriag,stve
also the ordered weighted quadratic averaging rmista ngwf:igngwsh betweend thﬁ descer(ljlc.ilng O(\)/\\;\I/-:-,LAE\)D
(OWQAD) operator is found when the parameter 2. Note (AOWHAD) opetrator an the  ascending
that it can be constructed as a particular casbeoMOWAD ( ) operator.

operator or by mixing the Euclidean distance wite OWA Wwith the OWHA_D operat_or it is also ppssmle to abta
another parameterized family of aggregation opesatdve
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can obtain among others the maximum distance, thianem With this information we can develop different agggtion

distance, the normalized harmonic distance andmtighted methods in order to select a strategy. First, vee gaing to
harmonic distance. The maximum distance is obtaimeen consider four basic aggregations that are partiaslaes of the
w; = 1 andw; = 0, for allj # 1, and the minimum distance MOWAD operator su_ch as th_e normalized Hamming d_'ma
whenw, = 1 andw; = 0, for allj # n. The normalized harmonic the normalized Euclidean distance, the weighted rriag

distance is found whem; = 1h, for all j. The weighted dl;;tance and the.we|ghlted'EucI|dean distance. Nt we

harmonic distance is obtained wheni, for all i andj, where will use the following weighting vectd¥ = (0.1, O'.2’ 02,02,
j is thejth argument o, andi is theith argument ofi. 0.3), when necessary. The results are the follawing

TABLE IlI

V. MOWAD OPERATORIN THE SELECTIONOF AGGREGATED RESULTS

STRATEGIES

In the following, we are going to develop an ilhagive NHD NED WHD WED
example in order to see the results obtained iragggegation S 0.28 0.29 0.21 0.28
by using different types of MOWAD operators. We lwil = 0.34 0.41 0.36 0.42
analyze the selection of strategies the decisiokemaeeds to S 034 0.37 031 035
find the best strategy according to his interestge that other S 03 0.36 03 0.36
selection problems could be developed such asetket®on of S 0.32 0.38 0.28 0.32

human resources, the selection of financial pragjutte

selection of investments, etc. [7], [23]-[25], [3@7]. As we can see, the best alternative accordingésettiour
Assume that an enterprise is considering its glebategy cases is the strate@y because it has the lowest distance.

for the next year and they are thinking in somengea in Now, we are going to study the results obtaineddigg the

order to obtain more benefits. In order to do ke, toard of OWAD operator, the AOWAD operator, the EOWAD

directors has established five possible strate§iethat the operator and the AEOWAD operator.

enterprise could develop in the future.

TABLE IV
(1) S consists in implement strategy 1. AGGREGATED RESULTS 2
(2) S consists in implement strategy 2.
(3) S;consists in implement strategy 3. OWAD AOWAD EOWAD AEOWAD
(4) S, consists in implement strategy 4. St 0.25 0.31 0.27 0.32
(5) S consists in implement strategy 5. S 0.28 0.4 0.349 0.46
) _ _ S 0.29 0.39 0.327 0.42
_After careful review of the |nfo_rmat|on,_ the exmehave s 0.24 0.36 0293 0.42
given the following general information. They have
S 0.26 0.38 0.309 0.43

summarized the information of the strategies ire fimain
characteristicsC; with the following results. Note that the

results are valuations between 0 and 1. As we can see, we will select a different stratédggending
on the particular case of MOWAD operator used ip th

TABLE | aggregation. If we use the AOWAD operator, the ECOVA

CHARACTERISTICS OF THE STRATEGIES operator or the AEOWAD operator, the optimal chaidé be
the strategys,. And if we use the OWAD operator, then the

= G Cs Ca Cs best alternative is the strateBy
S 0.5 0.7 0.8 0.6 0.5 If we try to order the strategies, a typical siitwhen we
S 0.8 0.9 0.2 0.4 0.5 want to consider more than one alternative, we sz that
S5 05 0.7 0.6 0.3 0.7 each distance aggregation operator gives us adfitfeesult
S 0.7 0.9 0.6 0.2 0.6 leading to different decisions.
S 0.2 0.7 0.8 0.7 0.5

TABLE V

. L - . ORDERING OF THE STRATEGIES
According to the objectives and policies of theeeptise,

the experts have established the ideal strategyhéocompany NHD SIS SH=Ss OWAD SUSISIS IS
independently of the strategies available. They ehav  Nep sislsists, AOWAD sisiststs,
established the following valuations for it. WHD sistsists, EOWAD s'stsists,
WED SiS51S5tS S AEOWAD  SIS=SiStS

TABLE Il

CHARACTERISTICS OF THE IDEAL STRATEGY .
As a general conclusion for the example, we cantisae

C Cz Cs o Cs depending on the method used in the selection pspamur
Ideal 0.9 1 0.9 0.9 0.8
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decision will be different. Note that the metho@didhas to be
in accordance with the interests of the decisiokana

VL.

We have studied different types of distance measiiest,
we have reviewed some basic aggregation operatmts &s
the OWA operator, the GOWA operator and the norzedli
Minkowski distance. With this initial informationye have
introduced the MOWAD operator. We have considei@ues
of its main properties such as the distinction leetw
descending and ascending orders. Next, we havdopedka
wide range of particular cases of the MOWAD oparatach
as the HOWAD operator, the EOWAD operator, the OVIIGA
operator and the OWHAD operator. We have seenthiese
special cases also provide a parameterized family
aggregation operators with similar properties thtre
MOWAD operator. We have also considered the usu
families found in the weighting vector such as wiedow-
MOWAD, the olympic-MOWAD, the MOWAD median, the

CONCLUSION

S-MOWAD, the centered-MOWAD, etc. Finally, we have

presented an illustrative example of the new apgroshere
we have seen that depending on the distance adigrega
operator used, the result is completely different.

This work represents an extension about the pdisgibf
using OWA operators in the Minkowski distance whitds
been applied in strategic management. In futureare$, we
expect to develop other extensions to the Minkowitiance
by using different types of OWA operators and wk apply it
in other decision making problems.
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