Search results for: cylindrical nano wire (CW)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 596

Search results for: cylindrical nano wire (CW)

266 An Erosion-based Modeling of Abrasive Waterjet Turning

Authors: I. Zohourkari, M. Zohoor

Abstract:

In this paper, an erosion-based model for abrasive waterjet (AWJ) turning process is presented. By using modified Hashish erosion model, the volume of material removed by impacting of abrasive particles to surface of the rotating cylindrical specimen is estimated and radius reduction at each rotation is calculated. Different to previous works, the proposed model considers the continuous change in local impact angle due to change in workpiece diameter, axial traverse rate of the jet, the abrasive particle roundness and density. The accuracy of the proposed model is examined by experimental tests under various traverse rates. The final diameters estimated by the proposed model are in good accordance with experiments.

Keywords: Abrasive, Erosion, impact, Particle, Waterjet, Turning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2377
265 Computation of Induction Current in a Set of Dendrites

Authors: Sudhakar Tripathi, R. B. Mishra

Abstract:

In this paper, the cable model of dendrites have been considered. The dendrites are cylindrical cables of various segments having variable length and reducing radius from start point at synapse and end points. For a particular event signal being received by a neuron in response only some dendrite are active at a particular instance. Initial current signals with different current flows in dendrite are assumed. Due to overlapping and coupling of active dendrite, they induce currents in the dendrite segments of each other at a particular instance. But how these currents are induced in the various segments of active dendrites due to coupling between these dendrites, It is not presented in the literature. Here the paper presents a model for induced currents in active dendrite segments due to mutual coupling at the starting instance of an activity in dendrite. The model is as discussed further.

Keywords: Currents, dendrites, induction, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1472
264 Influence of Some Technological Parameters on the Content of Voids in Composite during On-Line Consolidation with Filament Winding Technology

Authors: M. Stefanovska, B. Samakoski, S. Risteska, G. Maneski

Abstract:

In this study was performed in situ consolidation of polypropylene matrix/glass reinforced roving by combining heating systems and roll pressing. The commingled roving during hoop winding was winded on a cylindrical mandrel. The work also presents the advances made in the processing of these materials into composites by conventional technique filament winding. Experimental studies were performed with changing parameters – temperature, pressure and speed. Finally, it describes the investigation of the optimal processing conditions that maximize the mechanical properties of the composites. These properties are good enough for composites to be used as engineering materials in many structural applications.

Keywords: Commingled fiber, consolidation heat, filament winding, voids.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2336
263 A Simple Approach of Three phase Distribution System Modeling for Power Flow Calculations

Authors: J. B. V. Subrahmanyam, C. Radhakrishna

Abstract:

This paper presents a simple three phase power flow method for solution of three-phase unbalanced radial distribution system (RDN) with voltage dependent loads. It solves a simple algebraic recursive expression of voltage magnitude, and all the data are stored in vector form. The algorithm uses basic principles of circuit theory and can be easily understood. Mutual coupling between the phases has been included in the mathematical model. The proposed algorithm has been tested with several unbalanced radial distribution networks and the results are presented in the article. 8- bus and IEEE 13 bus unbalanced radial distribution system results are in agreements with the literature and show that the proposed model is valid and reliable.

Keywords: radial distribution networks, load flow, circuitmodel, three-phase four-wire, unbalance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3935
262 Odor Discrimination Using Neural Decoding of Olfactory Bulbs in Rats

Authors: K.-J. You, H.J. Lee, Y. Lang, C. Im, C.S. Koh, H.-C. Shin

Abstract:

This paper presents a novel method for inferring the odor based on neural activities observed from rats- main olfactory bulbs. Multi-channel extra-cellular single unit recordings were done by micro-wire electrodes (tungsten, 50μm, 32 channels) implanted in the mitral/tufted cell layers of the main olfactory bulb of anesthetized rats to obtain neural responses to various odors. Neural response as a key feature was measured by substraction of neural firing rate before stimulus from after. For odor inference, we have developed a decoding method based on the maximum likelihood (ML) estimation. The results have shown that the average decoding accuracy is about 100.0%, 96.0%, 84.0%, and 100.0% with four rats, respectively. This work has profound implications for a novel brain-machine interface system for odor inference.

Keywords: biomedical signal processing, neural engineering, olfactory, neural decoding, BMI

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1566
261 A Numerical Simulation of Arterial Mass Transport in Presence of Magnetic Field-Links to Atherosclerosis

Authors: H. Aminfar, M. Mohammadpourfard, K. Khajeh

Abstract:

This paper has focused on the most important parameters in the LSC uptake; inlet Re number and Sc number in the presence of non-uniform magnetic field. The magnetic field is arising from the thin wire with electric current placed vertically to the arterial blood vessel. According to the results of this study, applying magnetic field can be a treatment for atherosclerosis by reducing LSC along the vessel wall. Homogeneous porous layer as a arterial wall has been regarded. Blood flow has been considered laminar and incompressible containing Ferro fluid (blood and 4 % vol. Fe3O4) under steady state conditions. Numerical solution of governing equations was obtained by using the single-phase model and control volume technique for flow field.

Keywords: LDL Surface Concentration (LSC), Magnetic field, Computational fluid dynamics, Porous wall.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1523
260 Heat and Mass Transfer in a Saturated Porous Medium Confined in Cylindrical Annular Geometry

Authors: A. Ja, J. Belabid, A. Cheddadi

Abstract:

This paper reports the numerical simulation of doublediffusive natural convection flows within a horizontal annular filled with a saturated porous medium. The analysis concerns the influence of the different parameters governing the problem, namely, the Rayleigh number Ra, the Lewis number Le and the buoyancy ratio N, on the heat and mass transfer and on the flow structure, in the case of a fixed radius ratio R = 2. The numerical model used for the discretization of the dimensionless equations governing the problem is based on the finite difference method, using the ADI scheme. The study is focused on steady-state solutions in the cooperation situation.

Keywords: Natural convection, double-diffusion, porous medium, annular geometry, finite differences.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2178
259 A Survey of Access Control Schemes in Wireless Sensor Networks

Authors: Youssou Faye, Ibrahima Niang, Thomas Noel

Abstract:

Access control is a critical security service in Wire- less Sensor Networks (WSNs). To prevent malicious nodes from joining the sensor network, access control is required. On one hand, WSN must be able to authorize and grant users the right to access to the network. On the other hand, WSN must organize data collected by sensors in such a way that an unauthorized entity (the adversary) cannot make arbitrary queries. This restricts the network access only to eligible users and sensor nodes, while queries from outsiders will not be answered or forwarded by nodes. In this paper we presentee different access control schemes so as to ?nd out their objectives, provision, communication complexity, limits, etc. Using the node density parameter, we also provide a comparison of these proposed access control algorithms based on the network topology which can be flat or hierarchical.

Keywords: Access Control, Authentication, Key Management, Wireless Sensor Networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2613
258 Applying Half-Circle Fuzzy Numbers to Control System: A Preliminary Study on Development of Intelligent System on Marine Environment and Engineering

Authors: Chen-Yuan Chen, Wan-I Lee, Yi-Chaio Sui, Cheng-Wu Chen

Abstract:

This study focuses on the development of triangular fuzzy numbers, the revising of triangular fuzzy numbers, and the constructing of a HCFN (half-circle fuzzy number) model which can be utilized to perform more plural operations. They are further transformed for trigonometric functions and polar coordinates. From half-circle fuzzy numbers we can conceive cylindrical fuzzy numbers, which work better in algebraic operations. An example of fuzzy control is given in a simulation to show the applicability of the proposed half-circle fuzzy numbers.

Keywords: triangular fuzzy number, half-circle fuzzy numbers, predictions, polar coordinates, Lyapunov method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2383
257 Torrefaction of Biomass Pellets: Modeling of the Process in a Fixed Bed Reactor

Authors: Ekaterina Artiukhina, Panagiotis Grammelis

Abstract:

Torrefaction of biomass pellets is considered as a useful pretreatment technology in order to convert them into a high quality solid biofuel that is more suitable for pyrolysis, gasification, combustion, and co-firing applications. In the course of torrefaction, the temperature varies across the pellet, and therefore chemical reactions proceed unevenly within the pellet. However, the uniformity of the thermal distribution along the pellet is generally assumed. The torrefaction process of a single cylindrical pellet is modeled here, accounting for heat transfer coupled with chemical kinetics. The drying sub-model was also introduced. The nonstationary process of wood pellet decomposition is described by the system of non-linear partial differential equations over the temperature and mass. The model captures well the main features of the experimental data.

Keywords: Torrefaction, biomass pellets, model, heat and mass transfer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1760
256 Numerical Study of Flow Separation Control over a NACA2415 Airfoil

Authors: M. Tahar Bouzaher

Abstract:

This study involves numerical simulation of the flow around a NACA2415 airfoil, with a 18° angle of attack, and flow separation control using a rod, It involves putting a cylindrical rod - upstream of the leading edge- in vertical translation movement in order to accelerate the transition of the boundary layer by interaction between the rod wake and the boundary layer. The viscous, nonstationary flow is simulated using ANSYS FLUENT 13. The rod movement is reproduced using the dynamic mesh technique and an in-house developed UDF (User Define Function). The frequency varies from 75 to 450 Hz and the considered amplitudes are 2%, and 3% of the foil chord. The frequency chosen closed to the frequency of separation. Our results showed a substantial modification in the flow behavior and a maximum drag reduction of 61%.

Keywords: CFD, Flow separation, Active control, Boundary layer, rod, NACA 2415.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2899
255 A Transform-Free HOC Scheme for Incompressible Viscous Flow past a Rotationally Oscillating Circular Cylinder

Authors: Rajendra K. Ray, H. V. R. Mittal

Abstract:

A numerical study is made of laminar, unsteady flow behind a rotationally oscillating circular cylinder using a recently developed higher order compact (HOC) scheme. The stream function vorticity formulation of Navier-Stokes (N-S) equations in cylindrical polar coordinates are considered as the governing equations. The temporal behaviour of vortex formation and relevant streamline patterns of the flow are scrutinized over broad ranges of two externally specified parameters namely dimensionless forced oscillating frequency Sf and dimensionless peak rotation rate αm for the Reynolds-s number Re = 200. Excellent agreements are found both qualitatively and quantitatively with the existing experimental and standard numerical results.

Keywords: HOC, Navier-Stokes, non-uniform polar grids, rotationally oscillating cylinder.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1582
254 Numerical Investigation of the Effect of Flow and Heat Transfer of a Semi-Cylindrical Obstacle Located in a Channel

Authors: Omer F. Can, Nevin Celik

Abstract:

In this study, a semi-cylinder obstacle placed in a channel is handled to determine the effect of flow and heat transfer around the obstacle. Both faces of the semi-cylinder are used in the numerical analysis. First, the front face of the semi-cylinder is stated perpendicular to flow, than the rear face is placed. The study is carried out numerically, by using commercial software ANSYS 11.0. The well-known κ-ε model is applied as the turbulence model. Reynolds number is in the range of 104 to 105 and air is assumed as the flowing fluid. The results showed that, heat transfer increased approximately 15 % in the front faze case, while it enhanced up to 28 % in the rear face case.

Keywords: External flow, semi-cylinder obstacle, heat transfer, friction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3147
253 Testing of Materials for Rapid Prototyping Fused Deposition Modelling Technology

Authors: L. Novakova-Marcincinova, J. Novak-Marcincin

Abstract:

Paper presents knowledge about types of test in area of materials properties of selected methods of rapid prototyping technologies. In today used rapid prototyping technologies for production of models and final parts are used materials in initial state as solid, liquid or powder material structure. In solid state are used various forms such as pellets, wire or laminates. Basic range materials include paper, nylon, wax, resins, metals and ceramics. In Fused Deposition Modeling (FDM) rapid prototyping technology are mainly used as basic materials ABS (Acrylonitrile Butadiene Styrene), polyamide, polycarbonate, polyethylene and polypropylene. For advanced FDM applications are used special materials as silicon nitrate, PZT (Piezoceramic Material - Lead Zirconate Titanate), aluminium oxide, hydroxypatite and stainless steel.

Keywords: Rapid prototyping, materials, testing of materials.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4367
252 Effect of Amplitude and Mean Angle of Attack on Wake of an Oscillating Airfoil

Authors: Sadeghi H., Mani M., Ardakani M. A.

Abstract:

The unsteady wake of an EPPLER 361 airfoil in pitching motion has been investigated in a subsonic wind tunnel by hot-wire anemometry. The airfoil was given the pitching motion about the one-quarter chord axis at reduced frequency of 0182. Streamwise mean velocity profiles (wake profiles) were investigated at several vertically aligned points behind the airfoil at one-quarter chord downstream distance from trailing edge. Oscillation amplitude and mean angle of attack were varied to determine the effects on wake profiles. When the maximum dynamic angle of attack was below the static stall angle of attack, weak effects on wake were found by increasing oscillation amplitude and mean angle of attack. But, for higher angles of attack strong unsteady effects were appeared on the wake.

Keywords: Unsteady wake, amplitude, mean angle, EPPLER 361 airfoil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2617
251 Review of Surface Electromyogram Signals: Its Analysis and Applications

Authors: Anjana Goen, D. C. Tiwari

Abstract:

Electromyography (EMG) is the study of muscles function through analysis of electrical activity produced from muscles. This electrical activity which is displayed in the form of signal is the result of neuromuscular activation associated with muscle contraction. The most common techniques of EMG signal recording are by using surface and needle/wire electrode where the latter is usually used for interest in deep muscle. This paper will focus on surface electromyogram (SEMG) signal. During SEMG recording, several problems had to been countered such as noise, motion artifact and signal instability. Thus, various signal processing techniques had been implemented to produce a reliable signal for analysis. SEMG signal finds broad application particularly in biomedical field. It had been analyzed and studied for various interests such as neuromuscular disease, enhancement of muscular function and human-computer interface.

Keywords: Evolvable hardware (EHW), Functional Electrical Simulation (FES), Hidden Markov Model (HMM), Hjorth Time Domain (HTD).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3468
250 Extension of a Smart Piezoelectric Ceramic Rod

Authors: Ali Reza Pouladkhan, Jalil Emadi, Hamed Habibolahiyan

Abstract:

This paper presents an exact solution and a finite element method (FEM) for a Piezoceramic Rod under static load. The cylindrical rod is made from polarized ceramics (piezoceramics) with axial poling. The lateral surface of the rod is traction-free and is unelectroded. The two end faces are under a uniform normal traction. Electrically, the two end faces are electroded with a circuit between the electrodes, which can be switched on or off. Two cases of open and shorted electrodes (short circuit and open circuit) will be considered. Finally, a finite element model will be used to compare the results with an exact solution. The study uses ABAQUS (v.6.7) software to derive the finite element model of the ceramic rod.

Keywords: Finite element method, Ceramic rod; Axial poling, Normal traction, Short circuit, Open circuit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1895
249 Parametric Vibrations of Periodic Shells

Authors: B. Tomczyk, R. Mania

Abstract:

Thin linear-elastic cylindrical circular shells having a micro-periodic structure along two directions tangent to the shell midsurface (biperiodic shells) are object of considerations. The aim of this paper is twofold. First, we formulate an averaged nonasymptotic model for the analysis of parametric vibrations or dynamical stability of periodic shells under consideration, which has constant coefficients and takes into account the effect of a cell size on the overall shell behavior (a length-scale effect). This model is derived employing the tolerance modeling procedure. Second we apply the obtained model to derivation of frequency equation being a starting point in the analysis of parametric vibrations. The effect of the microstructure length oh this frequency equation is discussed.

Keywords: Micro-periodic shells, mathematical modeling, length-scale effect, parametric vibrations

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1480
248 Mathematical Modeling of Surface Roughness in Surface Grinding Operation

Authors: M.A. Kamely, S.M. Kamil, C.W. Chong

Abstract:

A mathematical model of the surface roughness has been developed by using response surface methodology (RSM) in grinding of AISI D2 cold work tool steels. Analysis of variance (ANOVA) was used to check the validity of the model. Low and high value for work speed and feed rate are decided from design of experiment. The influences of all machining parameters on surface roughness have been analyzed based on the developed mathematical model. The developed prediction equation shows that both the feed rate and work speed are the most important factor that influences the surface roughness. The surface roughness was found to be the lowers with the used of low feed rate and low work speed. Accuracy of the best model was proved with the testing data.

Keywords: Mathematical Modeling, Response surfacemethodology, Surface roughness, Cylindrical Grinding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3205
247 Photocatalytic Degradation of Produced Water Hydrocarbon of an Oil Field by Using Ag-Doped TiO2 Nanoparticles

Authors: Hamed Bazrafshan, Saeideh Dabirnia, Zahra Alipour Tesieh, Samaneh Alavi, Bahram Dabir

Abstract:

In this study, the removal of pollutants of a real produced water sample from an oil reservoir (a light oil reservoir), using a photocatalytic degradation process in a cylindrical glass reactor, was investigated. Using TiO2 and Ag-TiO2 in slurry form, the photocatalytic degradation was studied by measuring the Chemical Oxygen Demand (COD) parameter, qualitative analysis, and GC-MS. At first, optimization of the parameters on photocatalytic degradation of hydrocarbon pollutants in real produced water, using TiO2 nanoparticles as photocatalysts under UV light, was carried out applying response surface methodology. The results of the design of the experiment showed that the optimum conditions were at a catalyst concentration of 1.14 g/lit and pH of 2.67, and the percentage of COD removal was 72.65%.

Keywords: Photocatalyst, Ag-doped, TiO2, produced water, nanoparticles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 423
246 Behaviours of Energy Spectrum at Low Reynolds Numbers in Grid Turbulence

Authors: Md. Kamruzzaman, L. Djenidi, R. A. Antonia

Abstract:

This paper reports an experimental investigation of the energy spectrum of turbulent velocity fields at low Reynolds numbers in grid turbulence. Hot wire measurements are carried out in grid turbulence with subjected to a 1.36:1 contraction of the wind tunnel. Three different grids are used: (i) large square perforated grid (mesh size 43.75mm), (ii) small square perforated grid (mesh size 14. and (iii) woven mesh grid (mesh size 5mm). The results indicate that the energy spectrum at small Reynolds numbers does not follow Kolmogorov’s universal scaling. It is further found that the critical Reynolds number, below which the scaling breaks down, is around 25.

Keywords: Decay exponent, Energy spectrum, Taylor microscale Reynolds number, Taylor microscale, Turbulent kinetic energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2356
245 Evaluation of Salivary Nickel Level during Orthodontic Treatment

Authors: Mudafara S. Bengleil, Juma M. Orfi, Iman Abdelgader

Abstract:

Since nickel is a known toxic and carcinogenic metal, the present study was designed to evaluate the level of nickel released into the saliva of orthodontic patients. Non-stimulated saliva was collected from 18 patients attending The Orthodontic Clinic of Dental Faculty of Benghazi University. Patients were divided into two groups and level of nickel was determined by atomic absorption spectrophotometry. Nickel concentration value (mg/L) in first group prior to starting treatment was 0.097± 0.071. An increase in level of nickel was followed by decrease 4 and 8 weeks after applying the arch wire (0.208± 0.112) and (0.077±0.056 mg/L) respectively. Nickel levels in saliva of the second group were showed minimal variation and ranged from 0.061± 0.044mg/L to 0.083±0.054 throughout period of study. It may be concluded that there could be a release of nickel from the appliances used in first group but it doesn't reach toxic level in saliva.

Keywords: Atomic absorption spectrophotometry, nickel, orthodontic treatment, saliva, toxicity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2358
244 Effect of Scanning Speed on Material Efficiency of Laser Metal Deposited Ti6Al4V

Authors: Esther T. Akinlabi, Rasheedat M. Mahamood, Mukul Shukla, Sisa. Pityana

Abstract:

The study of effect of laser scanning speed on material efficiency in Ti6Al4V application is very important because unspent powder is not reusable because of high temperature oxygen pick-up and contamination. This study carried out an extensive study on the effect of scanning speed on material efficiency by varying the speed between 0.01 to 0.1m/sec. The samples are wire brushed and cleaned with acetone after each deposition to remove un-melted particles from the surface of the deposit. The substrate is weighed before and after deposition. A formula was developed to calculate the material efficiency and the scanning speed was compared with the powder efficiency obtained. The results are presented and discussed. The study revealed that the optimum scanning speed exists for this study at 0.01m/sec, above and below which the powder efficiency will drop

Keywords: Additive Manufacturing, Laser Metal Deposition Process, Material efficiency, Processing Parameter, Titanium alloy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2271
243 Obtain the Stress Intensity Factor (SIF) in a Medium Containing a Penny-Shaped Crack by the Ritz Method

Authors: A. Tavangari, N. Salehzadeh

Abstract:

In the crack growth analysis, the Stress Intensity Factor (SIF) is a fundamental prerequisite. In the present study, the mode I stress intensity factor (SIF) of three-dimensional penny- Shaped crack is obtained in an isotropic elastic cylindrical medium with arbitrary dimensions under arbitrary loading at the top of the cylinder, by the semi-analytical method based on the Rayleigh-Ritz method. This method that is based on minimizing the potential energy amount of the whole of the system, gives a very close results to the previous studies. Defining the displacements (elastic fields) by hypothetical functions in a defined coordinate system is the base of this research. So for creating the singularity conditions at the tip of the crack the appropriate terms should be found.

Keywords: Penny-shaped crack, Stress intensity factor, Fracture mechanics, Ritz method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2075
242 Study of Temperature Difference and Current Distribution in Parallel-Connected Cells at Low Temperature

Authors: Sara Kamalisiahroudi, Jun Huang, Zhe Li, Jianbo Zhang

Abstract:

Two types of commercial cylindrical lithium ion batteries (Panasonic 3.4 Ah NCR-18650B and Samsung 2.9 Ah INR-18650), were investigated experimentally. The capacities of these samples were individually measured using constant current-constant voltage (CC-CV) method at different ambient temperatures (-10°C, 0°C, 25°C). Their internal resistance was determined by electrochemical impedance spectroscopy (EIS) and pulse discharge methods. The cells with different configurations of parallel connection NCR-NCR, INR-INR and NCR-INR were charged/discharged at the aforementioned ambient temperatures. The results showed that the difference of internal resistance between cells much more evident at low temperatures. Furthermore, the parallel connection of NCR-NCR exhibits the most uniform temperature distribution in cells at -10°C, this feature is quite favorable for the safety of the battery pack.

Keywords: Batteries in parallel connection, internal resistance, low temperature, temperature difference, current distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3168
241 Synthesis of PVA/γ-Fe2O3 Used in Cancer Treatment by Hyperthermia

Authors: Sajjad Seifi Mofarah, S. K. Sadrnezhaad, Shokooh Moghadam, Javad Tavakoli

Abstract:

In recent years a new method of combination treatment for cancer has been developed and studied that has led to significant advancements in the field of cancer therapy. Hyperthermia is a traditional therapy that, along with a creation of a medically approved level of heat with the help of an alternating magnetic AC current, results in the destruction of cancer cells by heat. This paper gives details regarding the production of the spherical nanocomposite PVA/γ-Fe2O3 in order to be used for medical purposes such as tumor treatment by hyperthermia. To reach a suitable and evenly distributed temperature, the nanocomposite with core-shell morphology and spherical form within a 100 to 200 nanometer size was created using phase separation emulsion, in which the magnetic nano-particles γ- Fe2O3 with an average particle size of 20 nano-meters and with different percentages of 0.2, 0.4, 0.5 and 0.6 were covered by polyvinyl alcohol. The main concern in hyperthermia and heat treatment is achieving desirable specific absorption rate (SAR) and one of the most critical factors in SAR is particle size. In this project all attempts has been done to reach minimal size and consequently maximum SAR. The morphological analysis of the spherical structure of the nanocomposite PVA/γ-Fe2O3 was achieved by SEM analyses and the study of the chemical bonds created was made possible by FTIR analysis. To investigate the manner of magnetic nanocomposite particle size distribution a DLS experiment was conducted. Moreover, to determine the magnetic behavior of the γ- Fe2O3 particle and the nanocomposite PVA/γ-Fe2O3 in different concentrations a VSM test was conducted. To sum up, creating magnetic nanocomposites with a spherical morphology that would be employed for drug loading opens doors to new approaches in developing nanocomposites that provide efficient heat and a controlled release of drug simultaneously inside the magnetic field, which are among their positive characteristics that could significantly improve the recovery process in patients.

Keywords: Nanocomposite, hyperthermia, cancer therapy, drug release.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4700
240 Size Dependence of 1D Superconductivity in NbN Nanowires on Suspended Carbon Nanotubes

Authors: T. Hashimoto, N. Miki, H. Maki

Abstract:

We report the size dependence of 1D superconductivity in ultrathin (10-130 nm) nanowires produced by coating suspended carbon nanotubes with a superconducting NbN thin film. The resistance-temperature characteristic curves for samples with ≧25 nm wire width show the superconducting transition. On the other hand, for the samples with 10-nm width, the superconducting transition is not exhibited owing to the quantum size effect. The differential resistance vs. current density characteristic curves show some peak, indicating that Josephson junctions are formed in nanowires. The presence of the Josephson junctions is well explained by the measurement of the magnetic field dependence of the critical current. These understanding allow for the further expansion of the potential application of NbN, which is utilized for single photon detectors and so on.

Keywords: NbN nanowire, carbon nanotube, quantum size effect, Josephson junction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2010
239 Gas Detonation Forming by a Mixture of H2+O2 Detonation

Authors: Morteza Khaleghi Meybodi, Hossein Bisadi

Abstract:

Explosive forming is one of the unconventional techniques in which, most commonly, the water is used as the pressure transmission medium. One of the newest methods in explosive forming is gas detonation forming which uses a normal shock wave derived of gas detonation, to form sheet metals. For this purpose a detonation is developed from the reaction of H2+O2 mixture in a long cylindrical detonation tube. The detonation wave goes through the detonation tube and acts as a blast load on the steel blank and forms it. Experimental results are compared with a finite element model; and the comparison of the experimental and numerical results obtained from strain, thickness variation and deformed geometry is carried out. Numerical and experimental results showed approximately 75 – 90 % similarity in formability of desired shape. Also optimum percent of gas mixture obtained when we mix 68% H2 with 32% O2.

Keywords: Explosive forming, High strain rate, Gas detonation, Finite element analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2108
238 A Grid Current-controlled Inverter with Particle Swarm Optimization MPPT for PV Generators

Authors: Hanny H. Tumbelaka, Masafumi Miyatake

Abstract:

This paper proposes a three-phase four-wire currentcontrolled Voltage Source Inverter (CC-VSI) for both power quality improvement and PV energy extraction. For power quality improvement, the CC-VSI works as a grid current-controlling shunt active power filter to compensate for harmonic and reactive power of loads. Then, the PV array is coupled to the DC bus of the CC-VSI and supplies active power to the grid. The MPPT controller employs the particle swarm optimization technique. The output of the MPPT controller is a DC voltage that determines the DC-bus voltage according to PV maximum power. The PSO method is simple and effective especially for a partially shaded PV array. From computer simulation results, it proves that grid currents are sinusoidal and inphase with grid voltages, while the PV maximum active power is delivered to loads.

Keywords: Active Power Filter, MPPT, PV Energy Conversion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2105
237 Numerical Modeling of Steel-Composite Hybrid Tubes Subject to Static and Dynamic Loading

Authors: Y. S. Tai, M. Y. Huang, H. T. Hu

Abstract:

The commercial finite element program LS-DYNA was employed to evaluate the response and energy absorbing capacity of cylindrical metal tubes that are externally wrapped with composite. The effects of composite wall thickness, loading conditions and fiber ply orientation were examined. The results demonstrate that a wrapped composite can be utilized effectively to enhance the crushing characteristics and energy absorbing capacity of the tubes. Increasing the thickness of the composite increases the mean force and the specific energy absorption under both static and dynamic crushing. The ply pattern affects the energy absorption capacity and the failure mode of the metal tube and the composite material property is also significant in determining energy absorption efficiency.

Keywords: fiber-reinforced metal tubes, energy absorption, axial crushing, impact loading.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2484