
 

 

  
Abstract—This paper reports the numerical simulation of double-

diffusive natural convection flows within a horizontal annular filled 

with a saturated porous medium. The analysis concerns the influence 

of the different parameters governing the problem, namely, the 

Rayleigh number Ra, the Lewis number Le and the buoyancy ratio N, 

on the heat and mass transfer and on the flow structure, in the case of 

a fixed radius ratio R = 2. The numerical model used for the 

discretization of the dimensionless equations governing the problem 

is based on the finite difference method, using the ADI scheme. The 

study is focused on steady-state solutions in the cooperation situation. 

 

Keywords—Natural convection, double-diffusion, porous 

medium, annular geometry, finite differences.  

I. INTRODUCTION 

HE study of heat and mass transfer within porous media 

has been the subject of a large number of studies in recent 

decades, due to its numerous applications (thermal insulation, 

heat exchangers...). Cavities of different geometries have been 

considered, such as the rectangular cavity, purely thermal [1], 

[2] or double diffusive [3], [4]. The vertical annular cavities 

subject to horizontal temperature gradients have been widely 

studied numerically and analytically [5], [6], constant 

temperature and concentration imposed across the vertical 

walls [7]-[9] or with opposing temperature and concentration 

gradients, were also studied numerically in this configuration 

[10]. Most of the existing works on natural convection in a 

horizontal annular porous media are concerned with the case 

of a cavity subject to temperature gradients [11]-[14], and the 

double-diffusive natural convection has been investigated in 

the presence of the Soret effect [15], [16]. In this study, we 

consider the double-diffusive convection in a horizontal 

porous annular layer, bounded by two coaxial, horizontal 

cylinders subjected to constant and uniform temperatures and 

concentrations (Fig. 1). The porous medium is saturated by a 

viscous binary fluid. The paper is aimed to present the effect 

of control parameters, namely, the thermal Rayleigh number 

0.1 ≤ Ra ≤ 200, the buoyancy ratio 0 ≤ N ≤ 7 and the Lewis 

number 0.01 ≤ Le ≤ 60, on the flow structure and the thermal 

and solutal transfers. The radius ratio is kept constant R = 2. 

The Boussinesq approximation is assumed to be valid. 
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Fig. 1 Schematic of the problem under investigation 

II. PROBLEM FORMULATION AND NUMERICAL METHOD 

A. Equations 

The dimensionless steady state equations governing the 

two-dimensional flow described in stream function 

formulation are given by:  
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where T and S are the adimensional temperature and 

concentration, ψ the stream function defined by � � �
�

��
�� and 

� � 	 ��
�� , where U and V are respectively the radial and 

tangential velocities. In the above equations Ra is the Rayleigh 

number given by 
� � ��∆���
�

�� , N the buoyancy ratio given by 

� � �∆�
�∆�, Le the Lewis number given by �� � �
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radius ratio defined by 
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. The heat and mass transfers are 

evaluated by the average Nusselt and Sherwood numbers 

defined respectively by �� � 	 �
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The dimensionless boundary conditions are: 

 

T = 1, S = 1 and  
��
�� � 0  for r = 1, (%                  (4) 

 

T = 0, S = 0 and  
��
�� � 0  for r = R, (%                  (5) 
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The geometric symmetry of the problem studied leads to the 

addition of two boundary conditions: 

 

(% � 0 , * : 
��
�� � 0 and  

��
�� � 0, (+                    (6) 

B. Numerical Method 

The governing equations are discretized using a central 

Finite Difference method. The iterative procedure is 

performed with the Alternating Direction Implicit scheme 

(ADI). Preliminary tests conducted to examine the effect of 

the grid size on the obtained results showed that a 91x111 grid 

is sufficient. The accuracy of the numerical code was checked 

in the case of pure thermal convection using the results 

reported in [11]. The computed heat transfer rates (not shown 

here) are in good agreement. The iterative process is 

completed when the following criterion is satisfied in each 

node of the grid: !,-./0,-

,- ! 1 1004, where 5 refers to T, S or ψ. 

III. RESULTS AND DISCUSSION 

A. Effect of Rayleigh number  

In this section we are interested in the effect of Rayleigh 

number on the flow structure and on the heat and mass 

transfers, in the case of cooperating thermosolutal convection 

N = 1, for equal thermal and solutal diffusivities Le = 1. Figs. 

2 (a)-(d), correspond to isocontours for different Rayleigh 

number values Ra = 0.1 to 200.  
 

 

              6�7  9:;< � 0.0236                         6A7  9:;< � 4.5395 
                     �� � &' � 1                                �� � &' � 1.2376 

     

            6F7  9:;< � 16.3221                       6$7  9:;< � 24.7665 
               �� � &' � 2.6884                            �� � &' � 3.8428 

Fig. 2 Streamlines, isotherms and isoconcentrations for different 

values of Ra for N = 1 and Le = 1 (a) Ra = 0.1, (b) Ra = 20, (c) Ra = 

100, (d) Ra = 200 

 

The streamlines show that the flow is unicellular clockwise 

in the left half-annulus. At very low values of the Rayleigh 

number (Ra ≤ 1), the isotherms and isoconcentrations are 

stratified in the radial direction, showing that the thermal and 

solutal transfers occur by conduction. The average Nusselt and 

Sherwood numbers are identical (Le = 1) and of the order of 

unity. The increase of the Rayleigh number leads to an 

increase in the flow intensity and dynamic, thermal and solutal 

boundary layers develop on the inner and outer walls. The 

shape of the isotherms and isoconcentrations shows a change 

in the mode of transfer: convective regime emerges after a 

state of conduction/diffusion. 

The isocontours shown in Figs. 3 (a)-(d) for the same range 

of the Rayleigh number, with N = 1 and Le = 5, shows that, for 

small values of the Rayleigh number (Ra ≤ 1), the results are 

similar to those illustrated in the case Le = 1. 

 

       

             6�7  9:;< � 0.0237                          6A7  9:;< � 3.6856 
            �� � 1  &' � 1.0002                   �� � 1.1793  &' � 2.8157 

      

          6F7  9:;< � 11.6314                        6$7  9:;< � 17.9279 
         �� � 2.2843  &' � 6.4283             �� � 3.2550  &' � 9.1402 

Fig. 3 Streamlines, isotherms and isoconcentrations for different 

values of Ra for N = 1 and Le = 5 (a) Ra = 0.1, (b) Ra = 20, (c) Ra = 

100, (d) Ra = 200 

 

We note that the flow intensity increases with the increase 

of Rayleigh number, illustrated by increase in the amplitude of 

the tangential component of velocity close to the actives walls 

(Fig. 4 (a)), which leads to a reduction in the thickness of the 

dynamic boundary layer. The comparison between the 

isotherms shown in the cases Le = 1 and Le = 5, shows that for 

a same value of Rayleigh number, the isotherms are 

practically identical, so that the mode of heat transfer depends 

primarily on the Rayleigh number whereas, the 

isoconcentrations are strongly deformed in the core region of 

the cavity. Because of the great value of the Lewis number    

Le = 5, the form of the isoconcentrations indicates that the 

solutal convection is strong. The slopes of the temperature 

profiles (Fig. 4 (b)) and particularly concentration profiles 

(Fig. 4 (c)) indicate that when increasing the Rayleigh number, 

the thermal and solutal boundary layer regimes grow at the 

active walls, which clearly explains the shape of the isotherms 

and isoconcentrations shown in Fig. 2. Yet, the concentration 

in the core region of the cavity is almost equal to 0.5 for Ra 

values from 160 onwards. 

Fig. 5 shows the evolution of the mean Nusselt and 

Sherwood numbers respectively for different Rayleigh 

numbers. For Ra ≤ 1, the values of �� and &' are of the order 

of unity (transfer by conduction). The increase in Ra, leads to 

a monotonic increase in thermal and solutal transfers. Because 

of the high value of the Lewis number (Le = 5), the rate of 

solutal transfer is more important than that of heat transfer. 
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For example, we find that the solutal transfer is 282% of the 

heat transfer for Ra = 80. 

 

 

(a) 

 

 

(b) 

 

 

(c) 

Fig. 4 Tangential velocity, temperature and concentration distribution 

for % � �
H for different values of Ra for N = 1 and Le = 5 

B. Effect of Lewis number 

Fig. 6 presents the impact of the Lewis number on the flow 

structure and on heat and mass transfers for a range of           

Le = 0.1 to 60 with Ra = 50 and N = 1. The increase in the 

Lewis number causes a decrease in the flow intensity. The 

isoconcentrations are strongly influenced by the value of Le, 

their form shows that the solutal flux is increasingly 

convective with increasing Le. At a small Lewis number     

(Le = 0.1), the solutal boundary layers are no longer distinct, 

and the mass transfer is mainly due to the diffusion of species. 

Beyond the value Le = 1, the isoconcentrations show that the 

solutal transfer is dominated by convection. A low solutal 

gradient in the core region of the cavity is distinguished and 

solutal boundary layers are much pronounced compared to the 

thermal ones. 

 

 

Fig. 5 Evolution of the average Nusselt and Sherwood numbers for 

different values of Ra, for N = 1 and Le = 5 

 

      

          6�7  9:;< � 10.4664                         6A7  9:;< � 9.9730 
     �� � 1.9040   &' � 1.0140                    �� � &' � 1.8678 

     

             6F7  9:;< � 5.9840                       6$7  9:;< � 5.7374 
      �� � 1.4579   &' � 9.0593       �� � 1.3986   &' � 16.4022 

Fig. 6 Streamlines, isotherms and isoconcentrations for different 

values of Le for Ra = 50 and N = 1 (a) Le = 0.1, (b) Le = 1, (c) Le = 

20, (d) Le = 60 

 

From Fig. 7, it appears that the temperature distribution 

characterized by low thermal gradients, since the effect of the 

Lewis number is negligible on heat transfer (Fig. 7 (b)). While 

concentration gradients near the active walls indicate that the 

solutal boundary layers are thinner with increasing Le, and in 

the center of the cavity the concentration is almost constant 

(Fig. 7 (c)). 

Fig. 8 illustrates the influence of the Lewis number on heat 

and mass transfers. The average Nusselt number decreases 

gradually to an asymptotic value. In contrast, the mean 

Sherwood number gradually increases. Note that the 

Sherwood number approaches unity when Le is small enough 

(≈ 0.01) and the rate of thermal and solutal transfers are 

identical when Le = 1. 
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(a) 

 

 

(b) 

 

 

(c) 

Fig. 7 Tangential velocity, temperature and concentration distribution 

for % � �
H for different values of Le for Ra = 50 and N = 1 

C. Effect of Buoyancy Ratio 

Fig. 9 illustrates the effect of the buoyancy ratio in the 

cooperating case N ≥ 0 on the flow structure. When N = 0, the 

resulting flow is purely thermal. For N << 1, the thermal 

buoyancy forces are dominant, while in the opposite case       

N >> 1, the flow is controlled by solutal buoyancy effects. 

Note that, the increase of N in the cooperative cases, the 

thermal and the solutal buoyancy forces drive the intensified 

flow in the same direction. In this situation, the concentration 

gradients strengthen the temperature and the velocity gradients 

near the active walls. This trend is illustrated in Fig. 10 (a) 

showing increasing amplitude of the tangential component of 

velocity with the buoyancy ratio. Consequently, the rates of 

heat and mass transfers are represented in Fig. 11, increase 

with N under a convective regime. But because of the high Le, 

the average Sherwood number is more important than the 

Nusselt number. For example, for N = 5 the solutal transfer is 

321% of the thermal one. 

 

 

Fig. 8 Evolution of the average Nusselt and Sherwood numbers 

for different values of Le, for Ra = 50 and N = 1 

 

     

          6�7  9:;< � 5.5665                        6A7  9:;< � 6.5195 
  �� � 1.3429   &' � 3.3624            �� � 1.4971  &' � 4.0030 

     

          6F7  9:;< � 7.2476                       6$7  9:;< � 12.1337 
  �� � 1.6291   &' � 4.5426            �� � 2.6557  &' � 8.7938 

Fig. 9 Streamlines, isotherms and isoconcentrations for different 

values of N for Ra = 50 and Le = 5 (a) N = 0, (b) N = 0.5, (c) N = 1, 

(d) N = 7 

 

 

Fig. 10 Tangential component of velocity for % � �
H for different 

values of N, for Ra=50 and Le=5 
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Fig. 11 Evolution of the average Nusselt and Sherwood numbers 

for different values of N, for Ra = 50 and Le = 5 

IV. CONCLUSION 

A numerical investigation of double-diffusive natural 

convection in a horizontal porous annulus saturated with a 

binary fluid using the ADI method is presented. Results are 

given for the radius ratio R = 2. The effect of the control 

parameters, namely, Ra, N and Le has been investigated. The 

variation of these parameters reveals their influence, 

especially, on the flow structure and on the rates of heat and 

mass transfer.  
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