Search results for: catalytic cracking
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 240

Search results for: catalytic cracking

90 The Effect of Fine Aggregate Properties on the Fatigue Behavior of the Conventional and Polymer Modified Bituminous Mixtures Using Two Types of Sand as Fine Aggregate

Authors: S. G. Yasreen, N. B. Madzlan, K. Ibrahim

Abstract:

Fatigue cracking continues to be the main challenges in improving the performance of bituminous mixture pavements. The purpose of this paper is to look at some aspects of the effects of fine aggregate properties on the fatigue behaviour of hot mixture asphalt. Two types of sand (quarry and mining sand) with two conventional bitumen (PEN 50/60 & PEN 80/100) and four polymers modified bitumen PMB (PM1_82, PM1_76, PM2_82 and PM2_76) were used. Physical, chemical and mechanical tests were performed on the sands to determine their effect when incorporated with a bituminous mixture. According to the beam fatigue results, quarry sand that has more angularity, rougher, higher shear strength and a higher percentage of Aluminium oxide presented higher resistance to fatigue. Also a PMB mixture gives better fatigue results than conventional mixtures, this is due to the PMB having better viscosity property than that of the conventional bitumen.

Keywords: Beam fatigue test, chemical property, mechanical property, physical property

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2760
89 Post-Cracking Behaviour of High Strength Fiber Concrete Prediction and Validation

Authors: Andrejs Krasnikovs, Olga Kononova, Amjad Khabbaz, Edgar Machanovsky, Artur Machanovsky

Abstract:

Fracture process in mechanically loaded steel fiber reinforced high-strength (SFRHSC) concrete is characterized by fibers bridging the crack providing resistance to its opening. Structural SFRHSC fracture model was created; material fracture process was modeled, based on single fiber pull-out laws, which were determined experimentally (for straight fibers, fibers with end hooks (Dramix), and corrugated fibers (Tabix)) as well as obtained numerically ( using FEM simulations). For this purpose experimental program was realized and pull-out force versus pull-out fiber length was obtained (for fibers embedded into concrete at different depth and under different angle). Model predictions were validated by 15x15x60cm prisms 4 point bending tests. Fracture surfaces analysis was realized for broken prisms with the goal to improve elaborated model assumptions. Optimal SFRHSC structures were recognized.

Keywords: crack, fiber concrete, fiber pull-out, strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2048
88 Polyacrylate Modified Copper Nanoparticles with Controlled Size

Authors: Robert Prucek, Aleš Panáček, Jan Filip, Libor Kvítek, Radek Zbořil

Abstract:

The preparation of Cu nanoparticles (NPs) through the reduction of copper ions by sodium borohydride in the presence of sodium polyacrylate with a molecular weight of 1200 is reported. Cu NPs were synthesized at a concentration of copper salt equal to 2.5, 5, and 10 mM, and at a molar ratio of copper ions and monomeric unit of polyacrylate equal to 1:2. The as-prepared Cu NPs have diameters of about 2.5–3 nm for copper concentrations of 2.5 and 5 mM, and 6 nm for copper concentration of 10 mM. Depending on the copper salt concentration and concentration of additionally added polyacrylate to Cu particle dispersion, primarily formed NPs grow through the process of aggregation and/or coalescence into clusters and/or particles with a diameter between 20–100 nm. The amount of additionally added sodium polyacrylate influences the stability of Cu particles against air oxidation. The catalytic efficiency of the prepared Cu particles for the reduction of 4-nitrophenol is discussed.

Keywords: Copper, nanoparticles, sodium polyacrylate, catalyst, 4-nitrophenol.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3405
87 De-Securitizing Identity: Narrative (In)Consistency in Periods of Transition

Authors: Katerina Antoniou

Abstract:

When examining conflicts around the world, it is evident that the majority of intractable conflicts are steeped in identity. Identity seems to be not only a causal variable for conflict, but also a catalytic parameter for the process of reconciliation that follows ceasefire. This paper focuses on the process of identity securitization that occurs between rival groups of heterogeneous collective identities – ethnic, national or religious – as well as on the relationship between identity securitization and the ability of the groups involved to reconcile. Are securitized identities obstacles to the process of reconciliation, able to hinder any prospects of peace? If the level to which an identity is securitized is catalytic to a conflict’s discourse and settlement, then which factors act as indicators of identity de-securitization? The level of an in-group’s identity securitization can be estimated through a number of indicators, one of which is narrative. The stories, views and stances each in-group adopts in relation to its history of conflict and relation with their rival out-group can clarify whether that specific in-group feels victimized and threatened or safe and ready to reconcile. Accordingly, this study discusses identity securitization through narrative in relation to intractable conflicts. Are there conflicts around the world that, despite having been identified as intractable, stagnated or insoluble, show signs of identity de-securitization through narrative? This inquiry uses the case of the Cyprus conflict and its partitioned societies to present official narratives from the two communities and assess whether these narratives have transformed, indicating a less securitized in-group identity for the Greek and Turkish Cypriots. Specifically, the study compares the official historical overviews presented by each community’s Ministry of Foreign Affairs website and discusses the extent to which the two official narratives present a securitized collective identity. In addition, the study will observe whether official stances by the two communities – as adopted by community leaders – have transformed to depict less securitization over time. Additionally, the leaders’ reflection of popular opinion is evaluated through recent opinion polls from each community. Cyprus is currently experiencing renewed optimism for reunification, with the leaders of its two communities engaging in rigorous negotiations, and with rumors calling for a potential referendum for reunification to be taking place even as early as within 2016. Although leaders’ have shown a shift in their rhetoric and have moved away from narratives of victimization, this is not the case for the official narratives used by their respective ministries of foreign affairs. The study’s findings explore whether this narrative inconsistency proves that Cyprus is transitioning towards reunification, or whether the leaders are risking sending a securitized population to the polls to reject a potential reunification. More broadly, this study suggests that in the event that intractable conflicts might be moving towards viable peace, in-group narratives--official narratives in particular--can act as indicators of the extent to which rival entities have managed to reconcile.

Keywords: Conflict, Identity, Narrative, Reconciliation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1496
86 Conversion of Methanol to Propylene over a High Silica B-HZSM-5 Catalyst

Authors: Aina Xu, Hongfang Ma, Haitao Zhang, Weiyong Ying, Dingye Fang

Abstract:

Hydrothermally synthesized high silica borosilicates with the MFI structure was subjected to several characterization techniques. The effect of boron on the structure and acidity of HZSM-5 catalyst were studied by XRD, SEM, N2 adsorption, solid state NMR, NH3-TPD. It was confirmed that boron had entered the framework in the boron samples. The results also revealed that strong acidity was weakened and weak acidity was strengthened by the boron added zeolite framework compared with parent catalyst. The catalytic performance was carried out in a fixed bed at 460°C for methanol to propylene (MTP) reaction. The results of MTP reaction showed a great increment of the propylene selectivity and excellent stability for the B-HZSM-5. The catalyst exhibited about 81% selectivity to C2 = - C4 = olefins with 40% selectivity of propylene as major component at near 100% methanol conversion, and the stable performance in the studied period was 100h.

Keywords: Methanol to propylene, HZSM-5, boron.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3522
85 Synthesis of Vic-Dioxime Palladium (II) Complex: Precursor for Deposition on SBA-15 in ScCO2

Authors: Asım Egitmen, Aysen Demir, Burcu Darendeli, Fatma Ulusal, Bilgehan Güzel

Abstract:

Synthesizing supercritical carbon dioxide (scCO2) soluble precursors would be helpful for many processes of material syntheses based on scCO2. Ligand (amphi-(1Z, 2Z)-N-(2-fluoro-3-(trifluoromethyl) phenyl)-N'-hydroxy-2-(hydroxyimino) were synthesized from chloro glyoxime and flourus aniline and Pd(II) complex (precursor) prepared. For scCO2 deposition method, organometallic precursor was dissolved in scCO2 and impregnated onto the SBA-15 at 90 °C and 3000 psi. Then the organometallic precursor was reduced with H2 in the CO2 mixture (150 psi H2 + 2850 psi CO2). Pd deposited support material was characterized by ICP-OES, XRD, FE-SEM, TEM and EDX analyses. The Pd loading of the prepared catalyst, measured by ICP-OES showed a value of about 1.64% mol/g Pd of catalyst. Average particle size was found 5.3 nm. The catalytic activity of prepared catalyst was investigated over Suzuki-Miyaura C-C coupling reaction in different solvent with K2CO3 at 50 oC. The conversion ratio was determined by gas chromatography.

Keywords: Nanoparticle, nanotube, oximes, precursor, supercritical CO2.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1143
84 Stress Intensity Factors for Plates with Collinear and Non-Aligned Straight Cracks

Authors: Surendran M, Palani G. S, Nagesh R. Iyer

Abstract:

Multi-site damage (MSD) has been a challenge to aircraft, civil and power plant structures. In real life components are subjected to cracking at many vulnerable locations such as the bolt holes. However, we do not consider for the presence of multiple cracks. Unlike components with a single crack, these components are difficult to predict. When two cracks approach one another, their stress fields influence each other and produce enhancing or shielding effect depending on the position of the cracks. In the present study, numerical studies on fracture analysis have been conducted by using the developed code based on the modified virtual crack closure integral (MVCCI) technique and finite element analysis (FEA) software ABAQUS for computing SIF of plates with multiple cracks. Various parametric studies have been carried out and the results have been compared with literature where ever available and also with the solution, obtained by using ABAQUS. By conducting extensive numerical studies expressions for SIF have been obtained for collinear cracks and non-aligned cracks.

Keywords: Crack interaction, Fracture mechanics, Multiple site damage, stress intensity factor, collinear cracks, non-aligned cracks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2878
83 Internal Force State Recognition of Jiujiang Bridge Based on Cable Force-displacement Relationship

Authors: Weifeng Wang, Guoqing Huang, Xianwei Zeng

Abstract:

The nearly 21-year-old Jiujiang Bridge, which is suffering from uneven line shape, constant great downwarping of the main beam and cracking of the box girder, needs reinforcement and cable adjustment. It has undergone cable adjustment for twice with incomplete data. Therefore, the initial internal force state of the Jiujiang Bridge is identified as the key for the cable adjustment project. Based on parameter identification by means of static force test data, this paper suggests determining the initial internal force state of the cable-stayed bridge according to the cable force-displacement relationship parameter identification method. That is, upon measuring the displacement and the change in cable forces for twice, one can identify the parameters concerned by means of optimization. This method is applied to the cable adjustment, replacement and reinforcement project for the Jiujiang Bridge as a guidance for the cable adjustment and reinforcement project of the bridge.

Keywords: Cable-stayed bridge, cable force-displacement, parameter identification, internal force state

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1493
82 Hydrodynamic Analysis with Heat Transfer in Solid Gas Fluidized Bed Reactor for Solar Thermal Applications

Authors: Sam Rasoulzadeh, Atefeh Mousavi

Abstract:

Fluidized bed reactors are known as highly exothermic and endothermic according to uniformity in temperature as a safe and effective mean for catalytic reactors. In these reactors, a wide range of catalyst particles can be used and by using a continuous operation proceed to produce in succession. Providing optimal conditions for the operation of these types of reactors will prevent the exorbitant costs necessary to carry out laboratory work. In this regard, a hydrodynamic analysis was carried out with heat transfer in the solid-gas fluidized bed reactor for solar thermal applications. The results showed that in the fluid flow the input of the reactor has a lower temperature than the outlet, and when the fluid is passing from the reactor, the heat transfer happens between cylinder and solar panel and fluid. It increases the fluid temperature in the outlet pump and also the kinetic energy of the fluid has been raised in the outlet areas.

Keywords: Heat transfer, solar reactor, fluidized bed reactor, CFD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 604
81 Failure Cases Analysis in Petrochemical Industry

Authors: S. W. Liu, J. H. Lv, W. Z. Wang

Abstract:

In recent years, the failure accidents in petrochemical industry have been frequent, and have posed great security problems in personnel and property. The improvement of petrochemical safety is highly requested in order to prevent re-occurrence of severe accident. This study focuses on surveying the failure cases occurred in petrochemical field, which were extracted from journals of engineering failure, including engineering failure analysis and case studies in engineering failure analysis. The relation of failure mode, failure mechanism, type of components, and type of materials was analyzed in this study. And the analytical results showed that failures occurred more frequently in vessels and piping among the petrochemical equipment. Moreover, equipment made of carbon steel and stainless steel accounts for the majority of failures compared to other materials. This may be related to the application of the equipment and the performance of the material. In addition, corrosion failures were the largest in number of occurrence in the failure of petrochemical equipment, in which stress corrosion cracking accounts for a large proportion. This may have a lot to do with the service environment of the petrochemical equipment. Therefore, it can be concluded that the corrosion prevention of petrochemical equipment is particularly important.

Keywords: Cases analysis, corrosion, failure, petrochemical industry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1345
80 Carbon Supported Cu and TiO2 Catalysts Applied for Ozone Decomposition

Authors: Katya Milenova, Penko Nikolov, Irina Stambolova, Plamen Nikolov, Vladimir Blaskov

Abstract:

In this article a comparison was made between Cu and TiO2 supported catalysts on activated carbon for ozone decomposition reaction. The activated carbon support in the case of TiO2/AC sample was prepared by physicochemical pyrolysis and for Cu/AC samples the supports are chemically modified carbons. The prepared catalysts were synthesized by impregnation method. The samples were annealed in two different regimes- in air and under vacuum. To examine adsorption efficiency of the samples BET method was used. All investigated catalysts supported on chemically modified carbons have higher specific surface area compared to the specific surface area of TiO2 supported catalysts, varying in the range 590÷620 m2/g. The method of synthesis of the precursors had influenced catalytic activity.

Keywords: Activated carbon, adsorption, copper, ozone decomposition, TiO2.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2609
79 Features of Soil Formation in the North of Western Siberia in Cryogenic Conditions

Authors: Tatiana V. Raudina, Sergey P. Kulizhskiy

Abstract:

A large part of Russia is located in permafrost areas. These areas are widely used because there are concentrated valuable natural resources. Therefore to explore of cryosols it is important due to the significant increase of anthropogenic stress as well as the problem of global climate change. In the north of Western Siberia permafrost phenomena is widespread. Permafrost as a factor of soil formation and cryogenesis as a process have a great impact on the soil formation of these areas. Based on the research results of permafrost-affected soils tundra landscapes formed in the central part of the Tazovskiy Peninsula in cryogenic conditions, data were obtained which characterize the morphological features of soils. The specificity of soil cover distribution and manifestation of soil-forming processes within the study area are noted. Permafrost features such as frost cracking, cryoturbation, thixotropy, movement of humus are formed. The formation of these features is increased with the development of the territory. As a consequence, there is a change in the components of the environment and the destruction of the soil cover.

Keywords: Gleyed and nongleyed soils, permafrost, soil cryogenesis (pedocryogenesis), soil-forming macroprocesses.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2015
78 Crack Width Evaluation for Flexural RC Members with Axial Tension

Authors: Sukrit Ghorai

Abstract:

Proof of controlling crack width is a basic condition for securing suitable performance in serviceability limit state. The cracking in concrete can occur at any time from the casting of time to the years after the concrete has been set in place. Most codes struggle with offering procedure for crack width calculation. There is lack in availability of design charts for designers to compute crack width with ease. The focus of the study is to utilize design charts and parametric equations in calculating crack width with minimum error. The paper contains a simplified procedure to calculate crack width for reinforced concrete (RC) sections subjected to bending with axial tensile force following the guidelines of Euro code [DS EN-1992-1-1 & DS EN-1992-1-2]. Numerical examples demonstrate the application of the suggested procedure. Comparison with parallel analytical tools supports the validity of result and show the percentage deviation of crack width in both the procedures. The technique is simple, user friendly and ready to evolve for a greater spectrum of section sizes and materials.

Keywords: Concrete structures, crack width calculation, serviceability limit state, structural design, bridge engineering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6612
77 Characterization of Cement Mortar Based on Fine Quartz

Authors: K. Arroudj, M. Lanez, M. N. Oudjit

Abstract:

The introduction of siliceous mineral additions in cement production allows, in addition to the ecological and economic gain, improvement of concrete performance. This improvement is mainly due to the fixing of Portlandite, released during the hydration of cement, by fine siliceous, forming denser calcium silicate hydrates and therefore a more compact cementitious matrix. This research is part of the valuation of the Dune Sand (DS) in the cement industry in Algeria. The high silica content of DS motivated us to study its effect, at ground state, on the properties of mortars in fresh and hardened state. For this purpose, cement pastes and mortars based on ground dune sand (fine quartz) has been analyzed with a replacement to cement of 15%, 20% and 25%. This substitution has reduced the amount of heat of hydration and avoids any risk of initial cracking. In addition, the grinding of the dune sand provides amorphous thin populations adsorbed at the surface of the crystal particles of quartz. Which gives to ground quartz pozzolanic character. This character results an improvement of mechanical strength of mortar (66 MPa in the presence of 25% of ground quartz).

Keywords: Mineralogical structure, Pozzolanic reactivity, quartz, mechanical strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 975
76 Photo Catalytic Oxidation Degradation of Volatile Organic Compound with Nano-TiO2/LDPE Composite Film

Authors: Kowit Suwannahong, Wipada Sanongra, Jittiporn Kruenate, Sarun Phibanchon, Siriuma Jawjit, Wipawee Khamwichit

Abstract:

The photocatalytic activity efficiency of TiO2 for the degradation of Toluene in photoreactor can be enhanced by nano- TiO2/LDPE composite film. Since the amount of TiO2 affected the efficiency of the photocatalytic activity, this work was mainly concentrated on the effort to embed the high amount of TiO2 in the Polyethylene matrix. The developed photocatalyst was characterized by XRD, UV-Vis spectrophotometer and SEM. The SEM images revealed the high homogeneity of the deposition of TiO2 on the polyethylene matrix. The XRD patterns interpreted that TiO2 embedded in the PE matrix exhibited mainly in anatase form. In addition, the photocatalytic results show that the toluene removal efficiencies of 30±5%, 49±4%, 68±5%, 42±6% and 33±5% were obtained when using the catalyst loading at 0%, 10%, 15%, 25% and 50% (wt. cat./wt. film), respectively.

Keywords: Photocatalytic oxidation, Toluene, nano-TiO2/LDPE composite film.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2551
75 Investigating the Properties of Asphalt and Asphalt Mixture Based on the Effect of Waste Toner

Authors: P. I. Itoua, D. Sun, S. Shen

Abstract:

This study aimed at investigating the properties of asphalt and mix asphalt based on the effects of waste toner sources (WT1 and WT2) with 8% dosage waste toner powders (WT). The test results included penetration, softening points, ductility, G*sinδ, G*/sinδ, Ideal cracking test (IDEAL-CT), and Ideal shear rutting test (IDEAL-RT). The results showed that the base binder with WT2 had a significantly higher viscosity value compared to the WT1 modified binder, and thus, higher energy for mixing and compaction is needed. Furthermore, the results of penetration, softening points, G*sinδ, and G*/sinδ were all affected by waste toner type. In terms of asphalt mixture, the IDEAL-RT test revealed that the addition of waste toner improved the rutting resistance of the asphalt mixture regardless of toner type. Further, CTindex values for waste toner-modified asphalt mixtures show no significant difference. Above all, WT-modified asphalt mixtures produced by the wet process have better rutting performance.

Keywords: Waste toner, waste toner-modified asphalt, asphalt mixture properties, IDEAL-RT test, IDEAL-CT test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 57
74 A Review of Methanol Production from Methane Oxidation via Non-Thermal Plasma Reactor

Authors: M. Khoshtinat, N. A. S. Amin, I. Noshadi

Abstract:

Direct conversion of methane to methanol by partial oxidation in a thermal reactor has a poor yield of about 2% which is less than the expected economical yield of about 10%. Conventional thermal catalytic reactors have been proposed to be superseded by plasma reactors as a promising approach, due to strength of the electrical energy which can break C-H bonds of methane. Among the plasma techniques, non-thermal dielectric barrier discharge (DBD) plasma chemical process is one of the most future promising technologies in synthesizing methanol. The purpose of this paper is presenting a brief review of CH4 oxidation with O2 in DBD plasma reactors based on the recent investigations. For this reason, the effect of various parameters of reactor configuration, feed ratio, applied voltage, residence time (gas flow rate), type of applied catalyst, pressure and reactor wall temperature on methane conversion and methanol selectivity are discussed.

Keywords: Dielectric barrier discharge, methane, methanol, partial oxidation, Plasma.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2883
73 One-Pot Facile Synthesis of N-Doped Graphene Synthesized from Paraphenylenediamine as Metal-Free Catalysts for the Oxygen Reduction Used for Alkaline Fuel Cells

Authors: Leila Samiee, Amir Yadegari, Saeedeh Tasharrofi

Abstract:

In the work presented here, nitrogen-doped graphene materials were synthesized and used as metal-free electrocatalysts for oxygen reduction reaction (ORR) under alkaline conditions. Paraphenylenediamine was used as N precursor. The N-doped graphene was synthesized under hydrothermal treatment at 200°C. All the materials have been characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM) and X-ray photo-electron spectroscopy (XPS). Moreover, for electrochemical evaluation of samples, Rotating Disk electrode (RDE) and Cyclic Voltammetry techniques (CV) were employed. The resulting material exhibits an outstanding catalytic activity for the oxygen reduction reaction (ORR) as well as excellent resistance towards methanol crossover effects, indicating their promising potential as ORR electrocatalysts for alkaline fuel cells.

Keywords: Alkaline fuel cell, graphene, metal-free catalyst, paraphenylenediamine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1690
72 Review of Carbon Materials: Application in Alternative Energy Sources and Catalysis

Authors: Marita Pigłowska, Beata Kurc, Maciej Galiński

Abstract:

The application of carbon materials in the branches of the electrochemical industry shows an increasing tendency each year due to the many interesting properties they possess. These are, among others, a well-developed specific surface, porosity, high sorption capacity, good adsorption properties, low bulk density, electrical conductivity and chemical resistance. All these properties allow for their effective use, among others in supercapacitors, which can store electric charges of the order of 100 F due to carbon electrodes constituting the capacitor plates. Coals (including expanded graphite, carbon black, graphite carbon fibers, activated carbon) are commonly used in electrochemical methods of removing oil derivatives from water after tanker disasters, e.g., phenols and their derivatives by their electrochemical anodic oxidation. Phenol can occupy practically the entire surface of carbon material and leave the water clean of hydrophobic impurities. Regeneration of such electrodes is also not complicated, it is carried out by electrochemical methods consisting in unblocking the pores and reducing resistances, and thus their reactivation for subsequent adsorption processes. Graphite is commonly used as an anode material in lithium-ion cells, while due to the limited capacity it offers (372 mAh g-1), new solutions are sought that meet both capacitive, efficiency and economic criteria. Increasingly, biodegradable materials, green materials, biomass, waste (including agricultural waste) are used in order to reuse them and reduce greenhouse effects and, above all, to meet the biodegradability criterion necessary for the production of lithium-ion cells as chemical power sources. The most common of these materials are cellulose, starch, wheat, rice, and corn waste, e.g., from agricultural, paper and pharmaceutical production. Such products are subjected to appropriate treatments depending on the desired application (including chemical, thermal, electrochemical). Starch is a biodegradable polysaccharide that consists of polymeric units such as amylose and amylopectin that build an ordered (linear) and amorphous (branched) structure of the polymer. Carbon is also used as a catalyst. Elemental carbon has become available in many nano-structured forms representing the hybridization combinations found in the primary carbon allotropes, and the materials can be enriched with a large number of surface functional groups. There are many examples of catalytic applications of coal in the literature, but the development of this field has been hampered by the lack of a conceptual approach combining structure and function and a lack of understanding of material synthesis. In the context of catalytic applications, the integrity of carbon environmental management properties and parameters such as metal conductivity range and bond sequence management should be characterized. Such data, along with surface and textured information, can form the basis for the provision of network support services.

Keywords: carbon materials, catalysis, BET, capacitors, lithium ion cell

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1051
71 Effects of Temperature on Resilient Modulus of Dense Asphalt Mixtures Incorporating Steel Slag Subjected to Short Term Oven Ageing

Authors: Meor O. Hamzah, Teoh C. Yi

Abstract:

As the resources for naturally occurring aggregates diminished at an ever increasing rate, researchers are keen to utilize recycled materials in road construction in harmony with sustainable development. Steel slag, a waste product from the steel making industry, is one of the recycled materials reported to exhibit great potential to replace naturally occurring aggregates in asphalt mixtures. This paper presents the resilient modulus properties of steel slag asphalt mixtures subjected to short term oven ageing (STOA). The resilient modulus test was carried out to evaluate the stiffness of asphalt mixtures at 10ºC, 25ºC and 40ºC. Previous studies showed that stiffness changes in asphalt mixture played an important role in inflicting pavement distress particularly cracking and rutting that are common at low and high temperatures respectively. Temperature was found to significantly influence the resilient modulus of asphalt mixes. The resilient modulus of the asphalt specimens tested decreased by more than 90% when the test temperature increased from 10°C to 40°C.

Keywords: Granite, Resilient Modulus, Steel Slag, Temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2813
70 Bond Strength between Concrete and AR-Glass Roving with Variables of Development Length

Authors: Jongho Park, Taekyun Kim, Jinwoong Choi, Sungnam Hong, Sun-Kyu Park

Abstract:

Recently, the climate change is the one of the main problems. This abnormal phenomenon is consisted of the scorching heat, heavy rain and snowfall, and cold wave that will be enlarged abnormal climate change repeatedly. Accordingly, the width of temperature change is increased more and more by abnormal climate, and it is the main factor of cracking in the reinforced concrete. The crack of the reinforced concrete will affect corrosion of steel re-bar which can decrease durability of the structure easily. Hence, the elimination of the durability weakening factor (steel re-bar) is needed. Textile which weaves the carbon, AR-glass and aramid fiber has been studied actively for exchanging the steel re-bar in the Europe for about 15 years because of its good durability. To apply textile as the concrete reinforcement, the bond strength between concrete and textile will be investigated closely. Therefore, in this paper, pull-out test was performed with change of development length of textile. Significant load and stress was increasing at D80. But, bond stress decreased by increasing development length.

Keywords: Bond strength, climate change, pull-out test, replacement of reinforcement material, textile.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1422
69 Plastic Waste Utilization as Asphalt Binder Modifier in Asphalt Concrete Pavement

Authors: H. Naghawi, R. Al-Ajarmeh, R. Allouzi, A. AlKlub, K. Masarwah, A. AL-Quraini, M. Abu-Sarhan

Abstract:

The main objective of this paper is to evaluate the use of plastic waste as a low cost asphalt binder modifier. For this purpose Marshall mix design procedure was used. Marshall mix design procedure seeks to select the Optimum Binder Content (OBC) to be added to a specific aggregate blend resulting in a mixture that satisfies the desired properties of strength and durability. In order to evaluate the plastic waste modified (PWM) asphalt mixtures, the OBC for the conventional asphalt mix was first identified, and then different percentages of crushed plastic waste by weight of the identified OBC were tested. Marshall test results for the modified asphalt mixtures were analyzed to find the optimum PWM content. Finally, the static indirect tensile strength (IDT) was determined for all mixtures using the splitting tensile test. It was found that PWM content of 7.43% by weight of OBC is recommended as the optimum PWM content needed for enhancing the performance of asphalt mixtures. It enhanced stability by 42.56%, flow by 89.91% and strength by 13.54%. This would lead to a more durable pavement by improving the pavement resistance to fatigue cracking and rutting.

Keywords: Binder content modifier, Marshall test, plastic waste, polyethylene terephthalate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1356
68 Comparative Sulphate Resistance of Pozzolanic Cement Mortars

Authors: Mahmud Abba Tahir

Abstract:

This is report on experiment out to compare the sulphate resistance of sand mortar made with five different pozzolanic cement. The pozzolanic cement were prepared by blending powered burnt bricks from the Adamawa, Makurdi, Kano, Kaduna and Niger bricks factories with ordinary Portland cement in the ratio 1:4. Sand –pozzolanic cement mortars of mix ratio 1:6 and 1:3 with water-cement ratio of 0.65 and 0.40 respectively were used to prepare cubes and bars specimens. 150 mortar cubes of size 70mm x 70mm x 70mm and 35 mortar bars of 15mm x 15mm x 100mm dimensions were cast and cured for 28 days. The cured specimens then immersed in the solutions of K2SO4, (NH4)2SO4 and water for 28 days and then tested. The compressive strengths of cubes in water increased by 34% while those in the sulphate solutions decreased. Strength decreases of the cubes, cracking and warping of bars immersed in K2SO4 were less than those in (NH4)2SO4. Specimens made with Niger and Makurdi pulverized burnt bricks experienced less effect of the sulphates and can therefore be used as pozzolan in mortar and concrete to resist sulphate.

Keywords: Burnt bricks powder, comparative, pozzolanic cement, sulphates.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 799
67 Simulation of the Flow in a Packed-Bed with and without a Static Mixer by Using CFD Technique

Authors: Phavanee Narataruksa, Karn Pana-Suppamassadu, Sabaithip TungkamaniRungrote Kokoo, Prayut Jiamrittiwong

Abstract:

The major focus of this work was to characterize hydrodynamics in a packed-bed with and without static mixer by using Computational Fluid Dynamic (CFD). The commercial software: COMSOL MULTIPHYSICSTM Version 3.3 was used to simulate flow fields of mixed-gas reactants i.e. CO and H2. The packed-bed was a single tube with the inside diameter of 0.8 cm and the length of 1.2 cm. The static mixer was inserted inside the tube. The number of twisting elements was 1 with 0.8 cm in diameter and 1.2 cm in length. The packed-bed with and without static mixer were both packed with approximately 700 spherical structures representing catalyst pellets. Incompressible Navier-Stokes equations were used to model the gas flow inside the beds at steady state condition, in which the inlet Reynolds Number (Re) was 2.31. The results revealed that, with the insertion of static mixer, the gas was forced to flow radially inward and outward between the central portion of the tube and the tube wall. This could help improving the overall performance of the packed-bed, which could be utilized for heterogeneous catalytic reaction such as reforming and Fischer- Tropsch reactions.

Keywords: Packed Bed, Static Mixer, Computational Fluid Dynamic (CFD).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2666
66 Hydrogen Embrittlement in a Coupled Mass Diffusion with Stress near a Blunting Crack Tip for AISI 4135 Pressure Vessel

Authors: H. Dehghan, E. Mahdavi, M. M. Heyhat

Abstract:

In pressure vessels contain hydrogen, the role of hydrogen will be important because of hydrogen cracking problem. It is difficult to predict what is happened in metallurgical field spite of a lot of studies have been searched. The main role in controlling the mass diffusion as driving force is related to stress. In this study, finite element analysis is implemented to estimate material-s behavior associated with hydrogen embrittlement. For this purpose, one model of a pressure vessel is introduced that it has definite boundary and initial conditions. In fact, finite element is employed to solve the sequentially coupled mass diffusion with stress near a crack front in a pressure vessel. Modeling simulation intergrarnular fracture of AISI 4135 steel due to hydrogen is investigated. So, distribution of hydrogen and stress are obtained and they indicate that their maximum amounts occur near the crack front. This phenomenon is happened exactly the region between elastic and plastic field. Therefore, hydrogen is highly mobile and can diffuse through crystal lattice so that this zone is potential to trap high volume of hydrogen. Consequently, crack growth and fast fracture will be happened.

Keywords: Stress Intensity Factor, Mass Diffusion, FEM, Pressure Vessel

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3033
65 Cloning of a β-Glucosidase Gene (BGL1) from Traditional Starter Yeast Saccharomycopsis fibuligera BMQ 908 and Expression in Pichia pastoris

Authors: Le Thuy Mai, Vu Nguyen Thanh

Abstract:

β-Glucosidase is an important enzyme for production of ethanol from lignocellulose. With hydrolytic activity on cellooligosaccharides, especially cellobiose, β-glucosidase removes product inhibitory effect on cellulases and forms fermentable sugars. In this study, β-glucosidase encoding gene (BGL1) from traditional starter yeast Saccharomycosis fibuligera BMQ908 was cloned and expressed in Pichia pastoris. BGL1 of S. fibuligera BMQ 908 shared 98% nucleotide homology with the closest GenBank sequence (M22475) but identity in amino-acid sequences of catalytic domains. Recombinant plasmid pPICZαA/BGL1 containing the sequence encoding BGL1 mature protein and α-factor secretion signal was constructed and transformed into methylotrophic yeast P. pastoris by electroporation. The recombinant strain produced single extracellular protein with molecular weight of 120 kDa and cellobiase activity of 60 IU/ml. The optimum pH of the recombinant β-glucosidase was 5.0 and the optimum temperature was 50°C.

Keywords: β-Glucosidase, Pichia pastoris, Saccharomycopsisfibuligera, recombinant enzyme.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4921
64 Simulating the Interaction between Groundwater and Brittle Failure in Open Pit Slopes

Authors: Janisse Vivas, Doug Stead, Davide Elmo, Charles Hunt

Abstract:

This paper presents the results of a study on the influence of varying percentages of rock bridges along a basal surface defining a biplanar failure mode. A pseudo-coupled-hydromechanical brittle fracture analysis is adopted using the state-of-the-art code Slope Model. Model results show that rock bridge failure is strongly influenced by the incorporation of groundwater pressures. The models show that groundwater pressure can promote total failure of a 5% rock bridge along the basal surface. Once the percentage of the rock bridges increases to 10 and 15%, although, the rock bridges are broken, full interconnection of the surface defining the basal surface of the biplanar mode does not occur. Increased damage is caused when the rock bridge is located at the daylighting end of the basal surface in proximity to the blast damage zone. As expected, some cracking damage is experienced in the blast damage zone, where properties representing a good quality controlled damage blast technique were assumed. Model results indicate the potential increase of permeability towards the blast damage zone.

Keywords: Slope model, lattice spring, blasting damage zone.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2048
63 How Efficiency of Password Attack Based on a Keyboard

Authors: Hsien-cheng Chou, Fei-pei Lai, Hung-chang Lee

Abstract:

At present, dictionary attack has been the basic tool for recovering key passwords. In order to avoid dictionary attack, users purposely choose another character strings as passwords. According to statistics, about 14% of users choose keys on a keyboard (Kkey, for short) as passwords. This paper develops a framework system to attack the password chosen from Kkeys and analyzes its efficiency. Within this system, we build up keyboard rules using the adjacent and parallel relationship among Kkeys and then use these Kkey rules to generate password databases by depth-first search method. According to the experiment results, we find the key space of databases derived from these Kkey rules that could be far smaller than the password databases generated within brute-force attack, thus effectively narrowing down the scope of attack research. Taking one general Kkey rule, the combinations in all printable characters (94 types) with Kkey adjacent and parallel relationship, as an example, the derived key space is about 240 smaller than those in brute-force attack. In addition, we demonstrate the method's practicality and value by successfully cracking the access password to UNIX and PC using the password databases created

Keywords: Brute-force attack, dictionary attack, depth-firstsearch, password attack.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3439
62 Iron(III)-Tosylate Doped PEDOT and PEG: A Nanoscale Conductivity Study of an Electrochemical System with Biosensing Applications

Authors: Giulio Rosati, Luciano Sappia, Rossana Madrid, Noemi Rozlòsnik

Abstract:

The addition of PEG of different molecular weights has important effects on the physical, electrical and electrochemical properties of iron(III)-tosylate doped PEDOT. This particular polymer can be easily spin coated over plastic discs, optimizing thickness and uniformity of the PEDOT-PEG films. The conductivity and morphological analysis of the hybrid PEDOT-PEG polymer by 4-point probe (4PP), 12-point probe (12PP), and conductive AFM (C-AFM) show strong effects of the PEG doping. Moreover, the conductive films kinetics at the nanoscale, in response to different bias voltages, change radically depending on the PEG molecular weight. The hybrid conductive films show also interesting electrochemical properties, making the PEDOT PEG doping appealing for biosensing applications both for EIS-based and amperometric affinity/catalytic biosensors.

Keywords: Atomic force microscopy, biosensors, four-point probe, nano-films, PEDOT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1313
61 Dye-Sensitized Solar Cell by Plasma Spray

Authors: C.C. Chen, C.C. Wei, S.H. Chen, S.J. Hsieh, W.G. Diau

Abstract:

This paper aims to scale up Dye-sensitized Solar Cell (DSSC) production using a commonly available industrial material – stainless steel - and industrial plasma equipment. A working DSSC electrode formed by (1) coating titania nanotube (TiO2 NT) film on 304 stainless steel substrate using a plasma spray technique; then, (2) filling the nano-pores of the TiO2 NT film using a TiF4 sol-gel method. A DSSC device consists of an anode absorbed photosensitive dye (N3), a transparent conductive cathode with platinum (Pt) nano-catalytic particles adhered to its surface, and an electrolytic solution sealed between the anode and the transparent conductive cathode. The photo-current conversion efficiency of the DSSC sample was tested under an AM 1.5 Solar Simulator. The sample has a short current (Isc) of 0.83 mA cm-2, open voltage (Voc) of 0.81V, filling factor (FF) of 0.52, and conversion efficiency (η) of 2.18% on a 0.16 cm2 DSSC work-piece.

Keywords: DSSC, Spray, stainless steel, TiO2 NT, efficiency

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2120