Search results for: Volterra integro-differential equations.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1279

Search results for: Volterra integro-differential equations.

229 Numerical Analysis of Oil-Water Transport in Horizontal Pipes Using 1D Transient Mathematical Model of Thermal Two-Phase Flows

Authors: Evgeniy Burlutskiy

Abstract:

The paper presents a one-dimensional transient mathematical model of thermal oil-water two-phase emulsion flows in pipes. The set of the mass, momentum and enthalpy conservation equations for the continuous fluid and droplet phases are solved. Two friction correlations for the continuous fluid phase to wall friction are accounted for in the model and tested. The aerodynamic drag force between the continuous fluid phase and droplets is modeled, too. The density and viscosity of both phases are assumed to be constant due to adiabatic experimental conditions. The proposed mathematical model is validated on the experimental measurements of oil-water emulsion flows in horizontal pipe [1,2]. Numerical analysis on single- and two-phase oil-water flows in a pipe is presented in the paper. The continuous oil flow having water droplets is simulated. Predictions, which are performed by using the presented model, show excellent agreement with the experimental data if the water fraction is equal or less than 10%. Disagreement between simulations and measurements is increased if the water fraction is larger than 10%.

Keywords: Mathematical model, Oil-Water, Pipe flows.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2249
228 Lattice Boltzmann Simulation of MHD Natural Convection in a Nanofluid-Filled Enclosure with Non-Uniform Heating on Both Side Walls

Authors: Imen Mejri, Ahmed Mahmoudi, Mohamed A. Abbassi, Ahmed Omri

Abstract:

This paper examines the natural convection in a square enclosure filled with a water-Al2O3 nanofluid and is subjected to a magnetic field. The side walls of the cavity have spatially varying sinusoidal temperature distributions. The horizontal walls are adiabatic. Lattice Boltzmann method (LBM) is applied to solve the coupled equations of flow and temperature fields. This study has been carried out for the pertinent parameters in the following ranges: Rayleigh number of the base fluid, Ra=103 to 106, Hartmann number varied from Ha=0 to 90, phase deviation (γ=0, π/4, π/2, 3π/4 and π) and the solid volume fraction of the nanoparticles between Ø = 0 and 6%. The results show that the heat transfer rate increases with an increase of the Rayleigh number but it decreases with an increase of the Hartmann number. For γ=π/2 and Ra=105 the magnetic field augments the effect of nanoparticles. At Ha=0, the greatest effects of nanoparticles are obtained at γ = 0 and π/4 for Ra=104 and 105 respectively.

 

Keywords: Lattice Boltzmann Method, magnetic field, Natural convection, nanofluid, Sinusoidal temperature distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2965
227 On the Mechanism Broadening of Optical Spectrum of a Solvated Electron in Ammonia

Authors: V.K. Mukhomorov

Abstract:

The solvated electron is self-trapped (polaron) owing to strong interaction with the quantum polarization field. If the electron and quantum field are strongly coupled then the collective localized state of the field and quasi-particle is formed. In such a formation the electron motion is rather intricate. On the one hand the electron oscillated within a rather deep polarization potential well and undergoes the optical transitions, and on the other, it moves together with the center of inertia of the system and participates in the thermal random walk. The problem is to separate these motions correctly, rigorously taking into account the conservation laws. This can be conveniently done using Bogolyubov-Tyablikov method of canonical transformation to the collective coordinates. This transformation removes the translational degeneracy and allows one to develop the successive approximation algorithm for the energy and wave function while simultaneously fulfilling the law of conservation of total momentum of the system. The resulting equations determine the electron transitions and depend explicitly on the translational velocity of the quasi-particle as whole. The frequency of optical transition is calculated for the solvated electron in ammonia, and an estimate is made for the thermal-induced spectral bandwidth.

Keywords: Canonical transformations, solvated electron, width of the optical spectrum.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1265
226 Numerical Simulation on Heat Transfer Enhancement in Channel by Triangular Ribs

Authors: Tuqa Abdulrazzaq, Hussein Togun, M. K. A. Ariffin, S. N. Kazi, NM Adam, S. Masuri

Abstract:

Turbulent heat transfer to fluid flow through channel with triangular ribs of different angles are presented in this paper. Ansys 14 ICEM and Ansys 14 Fluent are used for meshing process and solving Navier stokes equations respectively. In this investigation three angles of triangular ribs with the range of Reynolds number varied from 20000 to 60000 at constant surface temperature are considered. The results show that the Nusselt number increases with the increase of Reynolds number for all cases at constant surface temperature. According to the profile of local Nusselt number on ribs walled of channel, the peak is at the midpoint between the two ribs. The maximum value of average Nusselt number is obtained for triangular ribs of angel 60°and at Reynolds number of 60000 compared to the Nusselt number for the ribs of angel 90° and 45° and at same Reynolds number. The recirculation regions generated by the ribs corresponding to the velocity streamline show the largest recirculation region at triangular ribs of angle 60° which also provides the highest enhancement of heat transfer.

Keywords: Ribs channel, Turbulent flow, Heat transfer enhancement, Recirculation flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3162
225 Studies on Lucrative Design of Waste Heat Recovery System for Air Conditioners

Authors: Ashwin Bala, K. Panthalaraja Kumaran, S. Prithviraj, R. Pradeep, J. Udhayakumar, S. Ajith

Abstract:

In this paper comprehensive studies have been carried out for the design optimization of a waste heat recovery system for effectively utilizing the domestic air conditioner heat energy for producing hot water. Numerical studies have been carried for the geometry optimization of a waste heat recovery system for domestic air conditioners. Numerical computations have been carried out using a validated 2d pressure based, unsteady, 2nd-order implicit, SST k-ω turbulence model. In the numerical study, a fully implicit finite volume scheme of the compressible, Reynolds-Averaged, Navier- Stokes equations is employed. At identical inflow and boundary conditions various geometries were tried and effort has been taken for proposing the best design criteria. Several combinations of pipe line shapes viz., straight and spiral with different number of coils for the radiator have been attempted and accordingly the design criteria has been proposed for the waste heat recovery system design. We have concluded that, within the given envelope, the geometry optimization is a meaningful objective for getting better performance of waste heat recovery system for air conditioners.

Keywords: Air-conditioning system, Energy conversion system, Hot water production from waste heat, Waste heat recovery system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2694
224 Simulation of Non-Linear Behavior of Shear Wall under Seismic Loading

Authors: M. A. Ghorbani, M. Pasbani Khiavi

Abstract:

The seismic response of steel shear wall system considering nonlinearity effects using finite element method is investigated in this paper. The non-linear finite element analysis has potential as usable and reliable means for analyzing of civil structures with the availability of computer technology. In this research the large displacements and materially nonlinear behavior of shear wall is presented with developing of finite element code. A numerical model based on the finite element method for the seismic analysis of shear wall is presented with developing of finite element code in this research. To develop the finite element code, the standard Galerkin weighted residual formulation is used. Two-dimensional plane stress model and total Lagrangian formulation was carried out to present the shear wall response and the Newton-Raphson method is applied for the solution of nonlinear transient equations. The presented model in this paper can be developed for analysis of civil engineering structures with different material behavior and complicated geometry.

Keywords: Finite element, steel shear wall, nonlinear, earthquake

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1790
223 Generalized Mathematical Description and Simulation of Grid-Tied Thyristor Converters

Authors: V. S. Klimash, Ye Min Thu

Abstract:

Thyristor rectifiers, inverters grid-tied, and AC voltage regulators are widely used in industry, and on electrified transport, they have a lot in common both in the power circuit and in the control system. They have a common mathematical structure and switching processes. At the same time, the rectifier, but the inverter units and thyristor regulators of alternating voltage are considered separately both theoretically and practically. They are written about in different books as completely different devices. The aim of this work is to combine them into one class based on the unity of the equations describing electromagnetic processes, and then, to show this unity on the mathematical model and experimental setup. Based on research from mathematics to the product, a conclusion is made about the methodology for the rapid conduct of research and experimental design work, preparation for production and serial production of converters with a unified bundle. In recent years, there has been a transition from thyristor circuits and transistor in modular design. Showing the example of thyristor rectifiers and AC voltage regulators, we can conclude that there is a unity of mathematical structures and grid-tied thyristor converters.

Keywords: Direct current, alternating current, rectifier, AC voltage regulator, generalized mathematical model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 968
222 Implementation of State-Space and Super-Element Techniques for the Modeling and Control of Smart Structures with Damping Characteristics

Authors: Nader Ghareeb, R¨udiger Schmidt

Abstract:

Minimizing the weight in flexible structures means reducing material and costs as well. However, these structures could become prone to vibrations. Attenuating these vibrations has become a pivotal engineering problem that shifted the focus of many research endeavors. One technique to do that is to design and implement an active control system. This system is mainly composed of a vibrating structure, a sensor to perceive the vibrations, an actuator to counteract the influence of disturbances, and finally a controller to generate the appropriate control signals. In this work, two different techniques are explored to create two different mathematical models of an active control system. The first model is a finite element model with a reduced number of nodes and it is called a super-element. The second model is in the form of state-space representation, i.e. a set of partial differential equations. The damping coefficients are calculated and incorporated into both models. The effectiveness of these models is demonstrated when the system is excited by its first natural frequency and an active control strategy is developed and implemented to attenuate the resulting vibrations. Results from both modeling techniques are presented and compared.

Keywords: Finite element analysis, super-element, state-space model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 786
221 Developing a New Relationship between Undrained Shear Strength and Over-Consolidation Ratio

Authors: Wael M Albadri, Hassnen M Jafer, Ehab H Sfoog

Abstract:

Relationship between undrained shear strength (Su) and over consolidation ratio (OCR) of clay soil (marine clay) is very important in the field of geotechnical engineering to estimate the settlement behaviour of clay and to prepare a small scale physical modelling test. In this study, a relationship between shear strength and OCR parameters was determined using the laboratory vane shear apparatus and the fully automatic consolidated apparatus. The main objective was to establish non-linear correlation formula between shear strength and OCR and comparing it with previous studies. Therefore, in order to achieve this objective, three points were chosen to obtain 18 undisturbed samples which were collected with an increasing depth of 1.0 m to 3.5 m each 0.5 m. Clay samples were prepared under undrained condition for both tests. It was found that the OCR and shear strength are inversely proportional at similar depth and at same undrained conditions. However, a good correlation was obtained from the relationships where the R2 values were very close to 1.0 using polynomial equations. The comparison between the experimental result and previous equation from other researchers produced a non-linear correlation which has a similar pattern with this study.

Keywords: Shear strength, over-consolidation ratio, vane shear test, clayey soil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2100
220 Analysis of Thermal Deformation of a Rough Slider and Its Asperities and Its Impact on Load Generation in Parallel Sliders

Authors: Prawal Sinha, Getachew Adamu

Abstract:

Heating is inevitable in any bearing operation. This leads to not only the thinning of the lubricant but also could lead to a thermal deformation of the bearing. The present work is an attempt to analyze the influence of thermal deformation on the thermohydrodynamic lubrication of infinitely long tilted pad slider rough bearings. As a consequence of heating the slider is deformed and is assumed to take a parabolic shape. Also the asperities expand leading to smaller effective film thickness. Two different types of surface roughness are considered: longitudinal roughness and transverse roughness. Christensen-s stochastic approach is used to derive the Reynolds-type equations. Density and viscosity are considered to be temperature dependent. The modified Reynolds equation, momentum equation, continuity equation and energy equation are decoupled and solved using finite difference method to yield various bearing characteristics. From the numerical simulations it is observed that the performance of the bearing is significantly affected by the thermal distortion of the slider and asperities and even the parallel sliders seem to carry some load.

Keywords: Thermal Deformation, Tilted pad slider bearing, longitudinal roughness, transverse roughness, load capacity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1826
219 A Numerical Framework to Investigate Intake Aerodynamics Behavior in Icing Conditions

Authors: Ali Mirmohammadi, Arash Taheri, Meysam Mohammadi-Amin

Abstract:

One of the major parts of a jet engine is air intake, which provides proper and required amount of air for the engine to operate. There are several aerodynamic parameters which should be considered in design, such as distortion, pressure recovery, etc. In this research, the effects of lip ice accretion on pitot intake performance are investigated. For ice accretion phenomenon, two supervised multilayer neural networks (ANN) are designed, one for ice shape prediction and another one for ice roughness estimation based on experimental data. The Fourier coefficients of transformed ice shape and parameters include velocity, liquid water content (LWC), median volumetric diameter (MVD), spray time and temperature are used in neural network training. Then, the subsonic intake flow field is simulated numerically using 2D Navier-Stokes equations and Finite Volume approach with Hybrid mesh includes structured and unstructured meshes. The results are obtained in different angles of attack and the variations of intake aerodynamic parameters due to icing phenomenon are discussed. The results show noticeable effects of ice accretion phenomenon on intake behavior.

Keywords: Artificial Neural Network, Ice Accretion, IntakeAerodynamics, Design Parameters, Finite Volume Method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2160
218 Gyrotactic Microorganisms Mixed Convection Nanofluid Flow along an Isothermal Vertical Wedge in Porous Media

Authors: A. Mahdy

Abstract:

The main objective of the present article is to explore the state of mixed convection nanofluid flow of gyrotactic microorganisms from an isothermal vertical wedge in porous medium. In our pioneering investigation, the easiest possible boundary conditions have been employed, in other words when the temperature, the nanofluid and motile microorganisms’ density have been considered to be constant on the wedge wall. Adding motile microorganisms to the nanofluid tends to enhance microscale mixing, mass transfer, and improve the nanofluid stability. Upon the Oberbeck–Boussinesq approximation and non-similarity transmutation, the paradigm of nonlinear equations are obtained and tackled numerically by using the R.K. Gill and shooting methods to obtain the dimensionless velocity, temperature, nanoparticle concentration and motile microorganisms density together with the reduced Sherwood, Nusselt, and numbers. Bioconvection parameters have strong effect upon the motile microorganism, heat, and volume fraction of nanoparticle transport rates. In the case when bioconvection is neglected, the obtained computations were found in very good agreement with the previous published data.

Keywords: Bioconvection, wedge, gyrotactic microorganisms, porous media, nanofluid, mixed.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1488
217 Thermophysical and Heat Transfer Performance of Covalent and Noncovalent Functionalized Graphene Nanoplatelet-Based Water Nanofluids in an Annular Heat Exchanger

Authors: Hamed K. Arzani, Ahmad Amiri, Hamid K. Arzani, Salim Newaz Kazi, Ahmad Badarudin

Abstract:

The new design of heat exchangers utilizing an annular distributor opens a new gateway for realizing higher energy optimization. To realize this goal, graphene nanoplatelet-based water nanofluids with promising thermophysical properties were synthesized in the presence of covalent and noncovalent functionalization. Thermal conductivity, density, viscosity and specific heat capacity were investigated and employed as a raw data for ANSYS-Fluent to be used in two-phase approach. After validation of obtained results by analytical equations, two special parameters of convective heat transfer coefficient and pressure drop were investigated. The study followed by studying other heat transfer parameters of annular pass in the presence of graphene nanopletelesbased water nanofluids at different weight concentrations, input powers and temperatures. As a result, heat transfer performance and friction loss are predicted for both synthesized nanofluids.

Keywords: Heat transfer, nanofluid, turbulent flow, forced convection flow, graphene nanoplatelet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2116
216 Topology of Reverse Von-Kármán Vortex Street in the Wake of a Swimming Whale Shark

Authors: Arash Taheri

Abstract:

In this paper, effects of the ventral body planform of a swimming whale shark on the formation of ‘reverse von-Kármán vortex street’ behind the aquatic animal are studied using Fluid-Structure Interaction (FSI) approach. In this regard, incompressible Navier-Stokes equations around the whale shark’s body with a prescribed deflection dynamics are solved with the aid of Boundary Data Immersion Method (BDIM) and Implicit Large Eddy Simulation (ILES) turbulence treatment by WaterLily.jl solver; fully-written in Julia programming language. The whale shark flow simulations here are performed at high Reynolds number, i.e. 1.4 107 corresponding to the swimming of a 10 meter-whale shark at an average speed of 5 km/h. For comparison purposes, vortical flow generation behind a silky shark with a streamlined forehead eidonomy is also simulated at high Reynolds number, Re = 2 106, corresponding to the swimming of a 2 meter-silky shark at an average speed of 3.6 km/h. The results depict formation of distinct wake topologies behind the swimming sharks depending on the travelling wave oscillating amplitudes.

Keywords: Whale shark, vortex street, BDIM, FSI, functional eidonomy, bionics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 947
215 Instability of Ties in Compression

Authors: T. Cornelius

Abstract:

Masonry cavity walls are loaded by wind pressure and vertical load from upper floors. These loads results in bending moments and compression forces in the ties connecting the outer and the inner wall in a cavity wall. Large cavity walls are furthermore loaded by differential movements from the temperature gradient between the outer and the inner wall, which results in critical increase of the bending moments in the ties. Since the ties are loaded by combined compression and moment forces, the loadbearing capacity is derived from instability equilibrium equations. Most of them are iterative, since exact instability solutions are complex to derive, not to mention the extra complexity introducing dimensional instability from the temperature gradients. Using an inverse variable substitution and comparing an exact theory with an analytical instability solution a method to design tie-connectors in cavity walls was developed. The method takes into account constraint conditions limiting the free length of the wall tie, and the instability in case of pure compression which gives an optimal load bearing capacity. The model is illustrated with examples from praxis.

Keywords: Masonry, tie connectors, cavity wall, instability, differential movements, combined bending and compression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1655
214 Simplified Equations for Rigidity and Lateral Deflection for Reinforced Concrete Cantilever Shear Walls

Authors: Anas M. Fares

Abstract:

Reinforced concrete shear walls are the most frequently used forms of lateral resisting structural elements. These walls may take many forms due to their functions and locations in the building. In Palestine, the most lateral resisting forces construction forms is the cantilever shear walls system. It is thus of prime importance to study the rigidity of these walls. The virtual work theorem is used to derive the total lateral deflection of cantilever shear walls due to flexural and shear deformation. The case of neglecting the shear deformation in the walls is also studied, and it is found that the wall height to length aspect ratio (H/B) plays a major role in calculating the lateral deflection and the rigidity of such walls. When the H/B is more than or equal to 3.7, the shear deformation may be neglected from the calculation of the lateral deflection. Moreover, the walls with the same material properties, same lateral load value, and same aspect ratio, shall have the same of both the lateral deflection and the rigidity. Finally, an equation to calculate the total rigidity and total deflection of such walls is derived by using the virtual work theorem for a cantilever beam.

Keywords: Cantilever shear walls, flexural deformation, lateral deflection, lateral loads, reinforced concrete shear walls, rigidity, shear deformation, virtual work theorem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4902
213 Numerical Study of Laminar Mixed Convection Heat Transfer of a Nanofluid in a Concentric Annular Tube Using Two-Phase Mixture Model

Authors: Roghayyeh Motallebzadeh, Shahin Hajizadeh, Mohammad Reza Ghasemi

Abstract:

Laminar mixed Convection heat transfer of a nanofluid with prescribed constant heat flux on the inner wall of horizontal annular tube has been studied numerically based on two-phase mixture model in different Rayleigh Numbers and Azimuth angles. Effects of applying of different volume fractions of Al2O3 nanoparticles in water as a base fluid on hydrodynamic and thermal behaviors of the fluid flow such as axial velocity, secondary flow, temperature, heat transfer coefficient and friction coefficient at the inner and outer wall region, has been investigated. Conservation equations in elliptical form has been utilized and solved in three dimensions for a steady flow. It is observed that, there is a good agreement between results in this work and previously published experimental and numerical works on mixed convection in horizontal annulus. These particles cause to increase convection heat transfer coefficient of the fluid, meanwhile there is no considerable effect on friction coefficient.

Keywords: Buoyancy force, Laminar mixed convection, Mixture model, Nanofluid, Two-phase.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2772
212 Investigation of Syngas Production from Waste Gas and Ratio Adjustment using a Fischer-Tropsch Synthesis Reactor

Authors: E.Darzi

Abstract:

In this study, a reformer model simulation to use refinery (Farashband refinery, Iran) waste natural gas. In the petroleum and allied sectors where natural gas is being encountered (in form of associated gas) without prior preparation for its positive use, its combustion (which takes place in flares, an equipment through which they are being disposed) has become a great problem because of its associated environmental problems in form of gaseous emission. The proposed model is used to product syngas from waste natural gas. A detailed steady model described by a set of ordinary differential and algebraic equations was developed to predict the behavior of the overall process. The proposed steady reactor model was validated against process data of a reformer synthesis plant recorded and a good agreement was achieved. H2/CO ratio has important effect on Fischer- Tropsch synthesis reactor product and we try to achieve this parameter with best designing reformer reactor. We study different kind of reformer reactors and then select auto thermal reforming process of natural gas in a fixed bed reformer that adjustment H2/CO ratio with CO2 and H2O injection. Finally a strategy was proposed for prevention of extra natural gas to atmosphere.

Keywords: Fischer-Tropsch, injection, reformer, syngas, waste natural gas.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1692
211 Conjugate Heat transfer over an Unsteady Stretching Sheet Mixed Convection with Magnetic Effect

Authors: Kai-Long Hsiao

Abstract:

A conjugate heat transfer for steady two-dimensional mixed convection with magnetic hydrodynamic (MHD) flow of an incompressible quiescent fluid over an unsteady thermal forming stretching sheet has been studied. A parameter, M, which is used to represent the dominance of the magnetic effect has been presented in governing equations. The similar transformation and an implicit finite-difference method have been used to analyze the present problem. The numerical solutions of the flow velocity distributions, temperature profiles, the wall unknown values of f''(0) and '(θ (0) for calculating the heat transfer of the similar boundary-layer flow are carried out as functions of the unsteadiness parameter (S), the Prandtl number (Pr), the space-dependent parameter (A) and temperature-dependent parameter (B) for heat source/sink and the magnetic parameter (M). The effects of these parameters have also discussed. At the results, it will produce greater heat transfer effect with a larger Pr and M, S, A, B will reduce heat transfer effects. At last, conjugate heat transfer for the free convection with a larger G has a good heat transfer effect better than a smaller G=0.

Keywords: Finite-difference method, Conjugate heat transfer, Unsteady Stretching Sheet, MHD, Mixed convection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1537
210 Effects of Rarefaction and Compressibility on Fluid Flow at Slip Flow Regime by Direct Simulation of Roughness

Authors: M. Hakak Khadem, M. Shams, S. Hossainpour

Abstract:

A two dimensional numerical simulation has been performed for incompressible and compressible fluid flow through microchannels in slip flow regime. The Navier-Stokes equations have been solved in conjunction with Maxwell slip conditions for modeling flow field associated with slip flow regime. The wall roughness is simulated with triangular microelements distributed on wall surfaces to study the effects of roughness on fluid flow. Various Mach and Knudsen numbers are used to investigate the effects of rarefaction as well as compressibility. It is found that rarefaction has more significant effect on flow field in microchannels with higher relative roughness. It is also found that compressibility has more significant effects on Poiseuille number when relative roughness increases. In addition, similar to incompressible models the increase in average fRe is more significant at low Knudsen number flows but the increase of Poiseuille number duo to relative roughness is sharper for compressible models. The numerical results have also validated with some available theoretical and experimental relations and good agreements have been seen.

Keywords: Relative roughness, slip flow, Poiseuille number.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1362
209 Natural Frequency Analysis of a Porous Functionally Graded Shaft System

Authors: Natural Frequency Analysis of a Porous Functionally Graded Shaft System

Abstract:

The vibration characteristics of a functionally graded (FG) rotor model having porosities and micro-voids is investigated using three-dimensional finite element analysis. The FG shaft is mounted with a steel disc located at the midspan. The shaft ends are supported on isotropic bearings. The FG material is composed of a metallic (stainless-steel) and ceramic phase (zirconium oxide) as its constituent phases. The layer wise material property variation is governed by power law. Material property equations are developed for the porosity modelling. Python code is developed to assign the material properties to each layer including the effect of porosities. ANSYS commercial software is used to extract the natural frequencies and whirl frequencies for the FG shaft system. The obtained results show the influence of porosity volume fraction and power-law index, on the vibration characteristics of the ceramic-based FG shaft system.

Keywords: Finite element method, functionally graded material, porosity volume fraction, power law.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 733
208 Nonlinear Analysis of Shear Wall Using Finite Element Model

Authors: M. A. Ghorbani, M. Pasbani Khiavi, F. Rezaie Moghaddam

Abstract:

In the analysis of structures, the nonlinear effects due to large displacement, large rotation and materially-nonlinear are very important and must be considered for the reliable analysis. The non-linear fmite element analysis has potential as usable and reliable means for analyzing of civil structures with the availability of computer technology. In this research the large displacements and materially nonlinear behavior of shear wall is presented with developing of fmite element code using the standard Galerkin weighted residual formulation. Two-dimensional plane stress model was carried out to present the shear wall response. Total Lagangian formulation, which is computationally more effective, is used in the formulation of stiffness matrices and the Newton-Raphson method is applied for the solution of nonlinear transient equations. The details of the program formulation are highlighted and the results of the analyses are presented, along with a comparison of the response of the structure with Ansys software results. The presented model in this paper can be developed for nonlinear analysis of civil engineering structures with different material behavior and complicated geometry.

Keywords: Finite element, large displacements, materially nonlinear, shear wall.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1699
207 Thermal Performance Analysis of Nanofluids in Microchannel Heat Sinks

Authors: Manay E., Sahin B., Yilmaz M., Gelis K.

Abstract:

In the present study, the pressure drop and laminar convection heat transfer characteristics of nanofluids in microchannel heat sink with square duct are numerically investigated. The water based nanofluids created with Al2O3 and CuO particles in four different volume fractions of 0%, 0.5%, 1%, 1.5% and 2% are used to analyze their effects on heat transfer and the pressure drop. Under the laminar, steady-state flow conditions, the finite volume method is used to solve the governing equations of heat transfer. Mixture Model is considered to simulate the nanofluid flow. For verification of used numerical method, the results obtained from numerical calculations were compared with the results in literature for both pure water and the nanofluids in different volume fractions. The distributions of the particles in base fluid are assumed to be uniform. The results are evaluated in terms of Nusselt number, the pressure drop and heat transfer enhancement. Analysis shows that the nanofluids enhance heat transfer while the Reynolds number and the volume fractions are increasing. The best overall enhancement was obtained at φ=%2 and Re=100 for CuO-water nanofluid.

Keywords: Microchannel Heat Sink, Nanofluid, Heat transfer enhancement, pressure drop

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3533
206 Multisymplectic Geometry and Noether Symmetries for the Field Theories and the Relativistic Mechanics

Authors: H. Loumi-Fergane, A. Belaidi

Abstract:

The problem of symmetries in field theory has been analyzed using geometric frameworks, such as the multisymplectic models by using in particular the multivector field formalism. In this paper, we expand the vector fields associated to infinitesimal symmetries which give rise to invariant quantities as Noether currents for classical field theories and relativistic mechanic using the multisymplectic geometry where the Poincaré-Cartan form has thus been greatly simplified using the Second Order Partial Differential Equation (SOPDE) for multi-vector fields verifying Euler equations. These symmetries have been classified naturally according to the construction of the fiber bundle used.  In this work, unlike other works using the analytical method, our geometric model has allowed us firstly to distinguish the angular moments of the gauge field obtained during different transformations while these moments are gathered in a single expression and are obtained during a rotation in the Minkowsky space. Secondly, no conditions are imposed on the Lagrangian of the mechanics with respect to its dependence in time and in qi, the currents obtained naturally from the transformations are respectively the energy and the momentum of the system.

Keywords: Field theories, relativistic mechanics, Lagrangian formalism, multisymplectic geometry, symmetries, Noether theorem, conservation laws.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1300
205 Effects Edge end Free-free Boundary Conditions for Analysis Free Vibration of Functionally Graded Cylindrical Shell with Ring based on Third Order Shear Deformation Theory using Hamilton's Principle

Authors: M.R.Isvandzibaei, P.J.Awasare

Abstract:

In this paper a study on the vibration of thin cylindrical shells with ring supports and made of functionally graded materials (FGMs) composed of stainless steel and nickel is presented. Material properties vary along the thickness direction of the shell according to volume fraction power law. The cylindrical shells have ring supports which are arbitrarily placed along the shell and impose zero lateral deflections. The study is carried out based on third order shear deformation shell theory (T.S.D.T). The analysis is carried out using Hamilton-s principle. The governing equations of motion of FGM cylindrical shells are derived based on shear deformation theory. Results are presented on the frequency characteristics, influence of ring support position and the influence of boundary conditions. The present analysis is validated by comparing results with those available in the literature.

Keywords: Vibration, FGM, Cylindrical shell, Hamilton'sprinciple, Ring support.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1468
204 Conduction Accompanied With Transient Radiative Heat Transfer Using Finite Volume Method

Authors: A. Ashok, K.Satapathy, B. Prerana Nashine

Abstract:

The objective of this research work is to investigate for one dimensional transient radiative transfer equations with conduction using finite volume method. Within the infrastructure of finite-volume, we obtain the conservative discretization of the terms in order to preserve the overall conservative property of finitevolume schemes. Coupling of conductive and radiative equation resulting in fluxes is governed by the magnitude of emissivity, extinction coefficient, and temperature of the medium as well as geometry of the problem. The problem under consideration has been solved, for a slab dominating radiation coupled with transient conduction based on finite volume method. The boundary conditions are also chosen so as to give a good model of the discretized form of radiation transfer equation. The important feature of the present method is flexibility in specifying the control angles in the FVM, while keeping the simplicity in the solution procedure. Effects of various model parameters are examined on the distributions of temperature, radiative and conductive heat fluxes and incident radiation energy etc. The finite volume method is considered to effectively evaluate the propagation of radiation intensity through a participating medium.

Keywords: Radiative transfer equation, finite volume method, conduction, transient radiation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1507
203 Mathematical Modelling and Numerical Simulation of Maisotsenko Cycle

Authors: Rasikh Tariq, Fatima Z. Benarab

Abstract:

Evaporative coolers has a minimum potential to reach the wet-bulb temperature of intake air which is not enough to handle a large cooling load; therefore, it is not a feasible option to overcome cooling requirement of a building. The invention of Maisotsenko (M) cycle has led evaporative cooling technology to reach the sub-wet-bulb temperature of the intake air; therefore, it brings an innovation in evaporative cooling techniques. In this work, we developed a mathematical model of the Maisotsenko based air cooler by applying energy and mass balance laws on different air channels. The governing ordinary differential equations are discretized and simulated on MATLAB. The temperature and the humidity plots are shown in the simulation results. A parametric study is conducted by varying working air inlet conditions (temperature and humidity), inlet air velocity, geometric parameters and water temperature. The influence of these aforementioned parameters on the cooling effectiveness of the HMX is reported.  Results have shown that the effectiveness of the M-Cycle is increased by increasing the ambient temperature and decreasing absolute humidity. An air velocity of 0.5 m/sec and a channel height of 6-8mm is recommended.

Keywords: Renewable energy, indirect evaporative cooling, Maisotsenko cycle, HMX, mathematical model, numerical simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1217
202 DC-Link Voltage Control of DC-DC Boost Converter-Inverter System with PI Controller

Authors: Thandar Aung, Tun Lin Naing

Abstract:

In this paper, the DC-link voltage control of DC-DC boost converter–inverter system is proposed. The mathematical model is developed from four different sub-circuits that depended on the switch positions. The developed differential equations are combined to develop the dynamic model. Transfer function is generated from the switched function model. Fluctuation of DC-link voltage causes connected loads malfunction. For this problem, a kind of traditional controller, the PI controller is applied to achieve constant DC-link voltage. The PI controller gains are obtained based on transfer function step response. The simulation work has been studied by using MATLAB/Simulink software and hardware prototype is implemented with a low-cost microcontroller Arduino Nano. Experimental results are collected by using ArduinoIO library package. Closed-loop DC-link voltage control system is tested with various line and load disturbances. It is found that the experimental results give equal responses with the simulation results.

Keywords: ArduinoIO library package, boost converter-inverter system, low cost microcontroller, PI controller, switched function model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1351
201 Novel SNC-NN-MRAS Based Speed Estimator for Sensor-Less Vector Controlled IM Drives

Authors: A.Venkadesan, S.Himavathi, A.Muthuramalingam

Abstract:

Rotor Flux based Model Reference Adaptive System (RF-MRAS) is the most popularly used conventional speed estimation scheme for sensor-less IM drives. In this scheme, the voltage model equations are used for the reference model. This encounters major drawbacks at low frequencies/speed which leads to the poor performance of RF-MRAS. Replacing the reference model using Neural Network (NN) based flux estimator provides an alternate solution and addresses such drawbacks. This paper identifies an NN based flux estimator using Single Neuron Cascaded (SNC) Architecture. The proposed SNC-NN model replaces the conventional voltage model in RF-MRAS to form a novel MRAS scheme named as SNC-NN-MRAS. Through simulation the proposed SNC-NN-MRAS is shown to be promising in terms of all major issues and robustness to parameter variation. The suitability of the proposed SNC-NN-MRAS based speed estimator and its advantages over RF-MRAS for sensor-less induction motor drives is comprehensively presented through extensive simulations.

Keywords: Sensor-less operation, vector-controlled IM drives, SNC-NN-MRAS, single neuron cascaded architecture, RF-MRAS, artificial neural network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1835
200 Flow Characteristics and Heat Transfer Enhancement in 2D Corrugated Channels

Authors: Veli Ozbolat, Nehir Tokgoz, Besir Sahin

Abstract:

Present study numerically investigates the flow field and heat transfer of water in two dimensional sinusoidal and rectangular corrugated wall channels. Simulations are performed for fully developed flow conditions at inlet sections of the channels that have 12 waves. The temperature of the input fluid is taken to be less than that temperature of wavy walls. The governing continuity, momentum and energy equations are numerically solved using finite volume method based on SIMPLE technique. The investigation covers Reynolds number in the rage of 100-1000. The effects of the distance between upper and lower corrugated walls are studied by varying Hmin/Hmax ratio from 0.3 to 0.5 for keeping wave length and wave amplitude values fixed for both geometries. The effects of the wall geometry, Reynolds number and the distance between walls on the flow characteristics, the local Nusselt number and heat transfer are studied. It is found that heat transfer enhancement increases by usage of corrugated horizontal walls in an appropriate Reynolds number regime and channel height.

Keywords: Corrugated Channel, CFD, Flow Characteristics, Heat Transfer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3263