Search results for: Sustainable Traditional architecture
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2819

Search results for: Sustainable Traditional architecture

89 Advanced Compound Coating for Delaying Corrosion of Fast-Dissolving Alloy in High Temperature and Corrosive Environment

Authors: Lei Zhao, Yi Song, Tim Dunne, Jiaxiang (Jason) Ren, Wenhan Yue, Lei Yang, Li Wen, Yu Liu

Abstract:

Fasting dissolving magnesium (DM) alloy technology has contributed significantly to the “Shale Revolution” in oil and gas industry. This application requires DM downhole tools dissolving initially at a slow rate, rapidly accelerating to a high rate after certain period of operation time (typically 8 h to 2 days), a contradicting requirement that can hardly be addressed by traditional Mg alloying or processing itself. Premature disintegration has been broadly reported in downhole DM tool from field trials. To address this issue, “temporary” thin polymers of various formulations are currently coated onto DM surface to delay its initial dissolving. Due to conveying parts, harsh downhole condition, and high dissolving rate of the base material, the current delay coatings relying on pure polymers are found to perform well only at low temperature (typical < 100 ℃) and parts without sharp edges or corners, as severe geometries prevent high quality thin film coatings from forming effectively. In this study, a coating technology combining Plasma Electrolytic Oxide (PEO) coatings with advanced thin film deposition has been developed, which can delay DM complex parts (with sharp corners) in corrosive fluid at 150 ℃ for over 2 days. Synergistic effects between porous hard PEO coating and chemical inert elastic-polymer sealing leads to its delaying dissolution improvement, and strong chemical/physical bonding between these two layers has been found to play essential role. Microstructure of this advanced coating and compatibility between PEO and various polymer selections has been thoroughly investigated and a model is also proposed to explain its delaying performance. This study could not only benefit oil and gas industry to unplug their High Temperature High Pressure (HTHP) unconventional resources inaccessible before, but also potentially provides a technical route for other industries (e.g., bio-medical, automobile, aerospace) where primer anti-corrosive protection on light Mg alloy is highly demanded.

Keywords: Dissolvable magnesium, coating, plasma electrolytic oxide, sealer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 515
88 Sustainable Hydrogel Nanocomposites Based on Grafted Chitosan and Clay for Effective Adsorption of Cationic Dye

Authors: H. Ferfera-Harrar, T. Benhalima, D. Lerari

Abstract:

Contamination of water, due to the discharge of untreated industrial wastewaters into the ecosystem, has become a serious problem for many countries. In this study, bioadsorbents based on chitosan-g-poly(acrylamide) and montmorillonite (MMt) clay (CTS-g-PAAm/MMt) hydrogel nanocomposites were prepared via free‐radical grafting copolymerization and crosslinking of acrylamide monomer (AAm) onto natural polysaccharide chitosan (CTS) as backbone, in presence of various contents of MMt clay as nanofiller. Then, they were hydrolyzed to obtain highly functionalized pH‐sensitive nanomaterials with uppermost swelling properties. Their structure characterization was conducted by X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) analyses. The adsorption performances of the developed nanohybrids were examined for removal of methylene blue (MB) cationic dye from aqueous solutions. The factors affecting the removal of MB, such as clay content, pH medium, adsorbent dose, initial dye concentration and temperature were explored. The adsorption process was found to be highly pH dependent. From adsorption kinetic results, the prepared adsorbents showed remarkable adsorption capacity and fast adsorption rate, mainly more than 88% of MB removal efficiency was reached after 50 min in 200 mg L-1 of dye solution. In addition, the incorporating of various content of clay has enhanced adsorption capacity of CTS-g-PAAm matrix from 1685 to a highest value of 1749 mg g-1 for the optimized nanocomposite containing 2 wt.% of MMt. The experimental kinetic data were well described by the pseudo-second-order model, while the equilibrium data were represented perfectly by Langmuir isotherm model. The maximum Langmuir equilibrium adsorption capacity (qm) was found to increase from 2173 mg g−1 until 2221 mg g−1 by adding 2 wt.% of clay nanofiller. Thermodynamic parameters revealed the spontaneous and endothermic nature of the process. In addition, the reusability study revealed that these bioadsorbents could be well regenerated with desorption efficiency overhead 87% and without any obvious decrease of removal efficiency as compared to starting ones even after four consecutive adsorption/desorption cycles, which exceeded 64%. These results suggest that the optimized nanocomposites are promising as low cost bioadsorbents.

Keywords: Chitosan, clay, dye adsorption, hydrogels nanocomposites.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 953
87 Impact of Fischer-Tropsch Wax on Ethylene Vinyl Acetate/Waste Crumb Rubber Modified Bitumen: An Energy-Sustainability Nexus

Authors: Keith D. Nare, Mohau J. Phiri, James Carson, Chris D. Woolard, Shanganyane P. Hlangothi

Abstract:

In an energy-intensive world, minimizing energy consumption is paramount to cost saving and reducing the carbon footprint. Improving mixture procedures utilizing warm mix additive Fischer-Tropsch (FT) wax in ethylene vinyl acetate (EVA) and modified bitumen highlights a greener and sustainable approach to modified bitumen. In this study, the impact of FT wax on optimized EVA/waste crumb rubber modified bitumen is assayed with a maximum loading of 2.5%. The rationale of the FT wax loading is to maintain the original maximum loading of EVA in the optimized mixture. The phase change abilities of FT wax enable EVA co-crystallization with the support of the elastomeric backbone of crumb rubber. Less than 1% loading of FT wax worked in the EVA/crumb rubber modified bitumen energy-sustainability nexus. Response surface methodology approach to the mixture design is implemented amongst the different loadings of FT wax, EVA for a consistent amount of crumb rubber and bitumen. Rheological parameters (complex shear modulus, phase angle and rutting parameter) were the factors used as performance indicators of the different optimized mixtures. The low temperature chemistry of the optimized mixtures is analyzed using elementary beam theory and the elastic-viscoelastic correspondence principle. Master curves and black space diagrams are developed and used to predict age-induced cracking of the different long term aged mixtures. Modified binder rheology reveals that the strain response is not linear and that there is substantial re-arrangement of polymer chains as stress is increased, this is based on the age state of the mixture and the FT wax and EVA loadings. Dominance of individual effects is evident over effects of synergy in co-interaction of EVA and FT wax. All-inclusive FT wax and EVA formulations were best optimized in mixture 4 with mixture 7 reflecting increase in ease of workability. Findings show that interaction chemistry of bitumen, crumb rubber EVA, and FT wax is first and second order in all cases involving individual contributions and co-interaction amongst the components of the mixture.

Keywords: Bitumen, crumb rubber, ethylene vinyl acetate, FT wax.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 903
86 Circular Economy Maturity Models: A Systematic Literature Review

Authors: D. Kreutzer, S. Müller-Abdelrazeq, I. Isenhardt

Abstract:

Resource scarcity, energy transition and the planned climate neutrality pose enormous challenges for manufacturing companies. In order to achieve these goals and a holistic sustainable development, the European Union has listed the circular economy as part of the Circular Economy Action Plan. In addition to a reduction in resource consumption, reduced emissions of greenhouse gases and a reduced volume of waste, the principles of the circular economy also offer enormous economic potential for companies, such as the generation of new circular business models. However, many manufacturing companies, especially small and medium-sized enterprises, do not have the necessary capacity to plan their transformation. They need support and strategies on the path to circular transformation because this change affects not only production but also the entire company. Maturity models offer an approach to determine the current status of companies’ transformation processes. In addition, companies can use the models to identify transformation strategies and thus promote the transformation process. While maturity models are established in other areas, e.g., IT or project management, only a few circular economy maturity models can be found in the scientific literature. The aim of this paper is to analyze the identified maturity models of the circular economy through a systematic literature review (SLR) and, besides other aspects, to check their completeness as well as their quality. For this purpose, circular economy maturity models at the company's (micro) level were identified from the literature, compared, and analyzed with regard to their theoretical and methodological structure. A specific focus was placed, on the one hand, on the analysis of the business units considered in the respective models and, on the other hand, on the underlying metrics and indicators in order to determine the individual maturity level of the entire company. The results of the literature review show, for instance, a significant difference in the number and types of indicators as well as their metrics. For example, most models use subjective indicators and very few objective indicators in their surveys. It was also found that there are rarely well-founded thresholds between the levels. Based on the generated results, concrete ideas and proposals for a research agenda in the field of circular economy maturity models are made.

Keywords: Circular economy, maturity model, maturity assessment, systematic literature review.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 152
85 Vibroacoustic Modulation of Wideband Vibrations and Its Possible Application for Windmill Blade Diagnostics

Authors: Abdullah Alnutayfat, Alexander Sutin, Dong Liu

Abstract:

Wind turbine has become one of the most popular energy production methods. However, failure of blades and maintenance costs evolve into significant issues in the wind power industry, so it is essential to detect the initial blade defects to avoid the collapse of the blades and structure. This paper aims to apply modulation of high-frequency blade vibrations by low-frequency blade rotation, which is close to the known Vibro-Acoustic Modulation (VAM) method. The high-frequency wideband blade vibration is produced by the interaction of the surface blades with the environment air turbulence, and the low-frequency modulation is produced by alternating bending stress due to gravity. The low-frequency load of rotational wind turbine blades ranges between 0.2-0.4 Hz and can reach up to 2 Hz for strong wind. The main difference between this study and previous ones on VAM methods is the use of a wideband vibration signal from the blade's natural vibrations. Different features of the VAM are considered using a simple model of breathing crack. This model considers the simple mechanical oscillator, where the parameters of the oscillator are varied due to low-frequency blade rotation. During the blade's operation, the internal stress caused by the weight of the blade modifies the crack's elasticity and damping. The laboratory experiment using steel samples demonstrates the possibility of VAM using a probe wideband noise signal. A cycle load with a small amplitude was used as a pump wave to damage the tested sample, and a small transducer generated a wideband probe wave. The received signal demodulation was conducted using the Detecting of Envelope Modulation on Noise (DEMON) approach. In addition, the experimental results were compared with the modulation index (MI) technique regarding the harmonic pump wave. The wideband and traditional VAM methods demonstrated similar sensitivity for earlier detection of invisible cracks. Importantly, employing a wideband probe signal with the DEMON approach speeds up and simplifies testing since it eliminates the need to conduct tests repeatedly for various harmonic probe frequencies and to adjust the probe frequency.

Keywords: Damage detection, turbine blades, Vibro-Acoustic Structural Health Monitoring, SHM, Detecting of Envelope Modulation on Noise.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 368
84 Effect of White Kwao Extract (Pueraria mirifica) on in vitro Development and Implantation Rate of Mouse Embryo

Authors: Sansani Rungrattawatchai

Abstract:

The White Kwao (Pueraria mirifica), a potent phytoestrogenic medicinal plant, has long been use in Thailand as a traditional folkmedicine. However, no scientific information of the direct effect of White Kwao on the development of mammalian embryo was available. Therefore, the purpose of this study was to investigate the effect of White Kwao extract on the in vitro development and implantation rate of mouse embryos. This study was designed into two experiments. In the first experiment, the two-cell stage mouse embryos were collected from the oviduct of superovulated mature female mice, and randomly cultured in three different media, the M16, M16 supplemented with 0.52μg esthinylestradiol-17β, and M16 supplemented with 10 mg/ml White Kwao extract. The culture was incubated in CO2 incubator at 37 oC . After the embryos were cultivated, the developments of embryos were observed every 24 hours for 5 days. The development rate of embryos from the two-cell stage to blastocyst stage in the media was with White Kwao was significantly higher (p<0.05) than those of the control group (68.50% versus 43.50%) but did not differ from the positive control group (68.50% versus 57.66%). In the second experiment, hatched blastocysts, which obtained from three different media, were differently labeled the nuclei with two polynucleotide-specific fluorochromes, the propidium iodide (PI) and the bisbenzimide. The results showed that the number of trophectoderm cells in the blastocysts that cultivated in the media with White Kwao did not significantly differ from the control (80.00 versus 70 cells) and the positive control group (80.00 versus 112.50 cells). The average number of inner cell mass in the White Kwao treated group did not significantly differ from the control group (20.50 versus 16.00 cells) and the positive control group (20.50 versus 20.50 cells). The total cell number including the trophectoderm and the inner cell mass of the individual hatched blastocyst was evaluated. The cell number in the blastocysts obtained from the media with the White Kwao did not significantly differ from the control (94.25 + 9.50 versus 92.33 + 4.05) and the positive control group (94.25 + 9.50 versus 110.33 + 9.16). The results demonstrated that the White Kwao treatment group did have a stimulating effect on the in vitro development of mouse embryos. The exact mechanism that White Kwao stimulated mouse embryo development is not known. The suspect mechanism may in a manner similar to the mechanism that of estrogen stimulated the development of the mouse embryos. Futher studies are needed to transfer the blastocyst into the endometrium of pseudopreagnancy mice to evaluate the effect of White Kwao on implantation

Keywords: White Kwao (Pueraria mirifica), blastocyst.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1597
83 Study The Effects of Conventional and Low Input Production System on Energy Efficiency of Silybum marianum L.

Authors: M. Haj Seyed Hadi, M. Darzi, E. Sharifi Ashoorabadi

Abstract:

Medicinal plants are most suitable crops for ecological production systems because of their role in human health and the aim of sustainable agriculture to improve ecosystem efficiency and its products quality. Calculations include energy output (contents of energy in seed) and energy inputs (consumption of fertilizers, pesticides, labor, machines, fuel and electricity). The ratio of output of the production to inputs is called the energy outputs / inputs ratio or energy efficiency. One way to quantify essential parts of agricultural development is the energy flow method. The output / input energy ratio is proposed as the most comprehensive single factor in pursuing the objective of sustainability. Sylibum marianum L. is one of the most important medicinal plants in Iran and has effective role on health of growing population in Iran. The objective of this investigation was to find out energy efficiency in conventional and low input production system of Milk thistle. This investigation was carried out in the spring of 2005 – 2007 in the Research Station of Rangelands in Hamand - Damavand region of IRAN. This experiment was done in split-split plot based on randomized complete block design with 3 replications. Treatments were 2 production systems (Conventional and Low input system) in the main plots, 3 planting time (25 of March, 4 and 14 of April) in the sub plots and 2 seed types (Improved and Native of Khoozestan) in the sub-sub plots. Results showed that in conventional production system energy efficiency, because of higher inputs and less seed yield, was less than low input production system. Seed yield was 1199.5 and 1888 kg/ha in conventional and low input systems, respectively. Total energy inputs and out puts for conventional system was 10068544.5 and 7060515.9 kcal. These amounts for low input system were 9533885.6 and 11113191.8 kcal. Results showed that energy efficiency for seed production in conventional and low input system was 0.7 and 1.16, respectively. So, milk thistle seed production in low input system has 39.6 percent higher energy efficiency than conventional production system. Also, higher energy efficiency were found in sooner planting time (25 of March) and native seed of Khoozestan.

Keywords: energy efficiency, milk thistle, production system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1587
82 Machine Translation Analysis of Chinese Dish Names

Authors: Xinyu Zhang, Olga Torres-Hostench

Abstract:

This article presents a comparative study evaluating and comparing the quality of machine translation (MT) output of Chinese gastronomy nomenclature. Chinese gastronomic culture is experiencing an increased international acknowledgment nowadays. The nomenclature of Chinese gastronomy not only reflects a specific aspect of culture, but it is related to other areas of society such as philosophy, traditional medicine, etc. Chinese dish names are composed of several types of cultural references, such as ingredients, colors, flavors, culinary techniques, cooking utensils, toponyms, anthroponyms, metaphors, historical tales, among others. These cultural references act as one of the biggest difficulties in translation, in which the use of translation techniques is usually required. Regarding the lack of Chinese food-related translation studies, especially in Chinese-Spanish translation, and the current massive use of MT, the quality of the MT output of Chinese dish names is questioned. Fifty Chinese dish names with different types of cultural components were selected in order to complete this study. First, all of these dish names were translated by three different MT tools (Google Translate, Baidu Translate and Bing Translator). Second, a questionnaire was designed and completed by 12 Chinese online users (Chinese graduates of a Hispanic Philology major) in order to find out user preferences regarding the collected MT output. Finally, human translation techniques were observed and analyzed to identify what translation techniques would be observed more often in the preferred MT proposals. The result reveals that the MT output of the Chinese gastronomy nomenclature is not of high quality. It would be recommended not to trust the MT in occasions like restaurant menus, TV culinary shows, etc. However, the MT output could be used as an aid for tourists to have a general idea of a dish (the main ingredients, for example). Literal translation turned out to be the most observed technique, followed by borrowing, generalization and adaptation, while amplification, particularization and transposition were infrequently observed. Possibly because that the MT engines at present are limited to relate equivalent terms and offer literal translations without taking into account the whole context meaning of the dish name, which is essential to the application of those less observed techniques. This could give insight into the post-editing of the Chinese dish name translation. By observing and analyzing translation techniques in the proposals of the machine translators, the post-editors could better decide which techniques to apply in each case so as to correct mistakes and improve the quality of the translation.

Keywords: Chinese dish names, cultural references, machine translation, translation techniques.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1278
81 A Comparison of Inverse Simulation-Based Fault Detection in a Simple Robotic Rover with a Traditional Model-Based Method

Authors: Murray L. Ireland, Kevin J. Worrall, Rebecca Mackenzie, Thaleia Flessa, Euan McGookin, Douglas Thomson

Abstract:

Robotic rovers which are designed to work in extra-terrestrial environments present a unique challenge in terms of the reliability and availability of systems throughout the mission. Should some fault occur, with the nearest human potentially millions of kilometres away, detection and identification of the fault must be performed solely by the robot and its subsystems. Faults in the system sensors are relatively straightforward to detect, through the residuals produced by comparison of the system output with that of a simple model. However, faults in the input, that is, the actuators of the system, are harder to detect. A step change in the input signal, caused potentially by the loss of an actuator, can propagate through the system, resulting in complex residuals in multiple outputs. These residuals can be difficult to isolate or distinguish from residuals caused by environmental disturbances. While a more complex fault detection method or additional sensors could be used to solve these issues, an alternative is presented here. Using inverse simulation (InvSim), the inputs and outputs of the mathematical model of the rover system are reversed. Thus, for a desired trajectory, the corresponding actuator inputs are obtained. A step fault near the input then manifests itself as a step change in the residual between the system inputs and the input trajectory obtained through inverse simulation. This approach avoids the need for additional hardware on a mass- and power-critical system such as the rover. The InvSim fault detection method is applied to a simple four-wheeled rover in simulation. Additive system faults and an external disturbance force and are applied to the vehicle in turn, such that the dynamic response and sensor output of the rover are impacted. Basic model-based fault detection is then employed to provide output residuals which may be analysed to provide information on the fault/disturbance. InvSim-based fault detection is then employed, similarly providing input residuals which provide further information on the fault/disturbance. The input residuals are shown to provide clearer information on the location and magnitude of an input fault than the output residuals. Additionally, they can allow faults to be more clearly discriminated from environmental disturbances.

Keywords: Fault detection, inverse simulation, rover, ground robot.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 906
80 Pose-Dependency of Machine Tool Structures: Appearance, Consequences, and Challenges for Lightweight Large-Scale Machines

Authors: S. Apprich, F. Wulle, A. Lechler, A. Pott, A. Verl

Abstract:

Large-scale machine tools for the manufacturing of large work pieces, e.g. blades, casings or gears for wind turbines, feature pose-dependent dynamic behavior. Small structural damping coefficients lead to long decay times for structural vibrations that have negative impacts on the production process. Typically, these vibrations are handled by increasing the stiffness of the structure by adding mass. This is counterproductive to the needs of sustainable manufacturing as it leads to higher resource consumption both in material and in energy. Recent research activities have led to higher resource efficiency by radical mass reduction that is based on controlintegrated active vibration avoidance and damping methods. These control methods depend on information describing the dynamic behavior of the controlled machine tools in order to tune the avoidance or reduction method parameters according to the current state of the machine. This paper presents the appearance, consequences and challenges of the pose-dependent dynamic behavior of lightweight large-scale machine tool structures in production. It starts with the theoretical introduction of the challenges of lightweight machine tool structures resulting from reduced stiffness. The statement of the pose-dependent dynamic behavior is corroborated by the results of the experimental modal analysis of a lightweight test structure. Afterwards, the consequences of the pose-dependent dynamic behavior of lightweight machine tool structures for the use of active control and vibration reduction methods are explained. Based on the state of the art of pose-dependent dynamic machine tool models and the modal investigation of an FE-model of the lightweight test structure, the criteria for a pose-dependent model for use in vibration reduction are derived. The description of the approach for a general posedependent model of the dynamic behavior of large lightweight machine tools that provides the necessary input to the aforementioned vibration avoidance and reduction methods to properly tackle machine vibrations is the outlook of the paper.

Keywords: Dynamic behavior, lightweight, machine tool, pose-dependency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2788
79 Evaluation of a Remanufacturing for Lithium Ion Batteries from Electric Cars

Authors: Achim Kampker, Heiner H. Heimes, Mathias Ordung, Christoph Lienemann, Ansgar Hollah, Nemanja Sarovic

Abstract:

Electric cars with their fast innovation cycles and their disruptive character offer a high degree of freedom regarding innovative design for remanufacturing. Remanufacturing increases not only the resource but also the economic efficiency by a prolonged product life time. The reduced power train wear of electric cars combined with high manufacturing costs for batteries allow new business models and even second life applications. Modular and intermountable designed battery packs enable the replacement of defective or outdated battery cells, allow additional cost savings and a prolongation of life time. This paper discusses opportunities for future remanufacturing value chains of electric cars and their battery components and how to address their potentials with elaborate designs. Based on a brief overview of implemented remanufacturing structures in different industries, opportunities of transferability are evaluated. In addition to an analysis of current and upcoming challenges, promising perspectives for a sustainable electric car circular economy enabled by design for remanufacturing are deduced. Two mathematical models describe the feasibility of pursuing a circular economy of lithium ion batteries and evaluate remanufacturing in terms of sustainability and economic efficiency. Taking into consideration not only labor and material cost but also capital costs for equipment and factory facilities to support the remanufacturing process, cost benefit analysis prognosticate that a remanufacturing battery can be produced more cost-efficiently. The ecological benefits were calculated on a broad database from different research projects which focus on the recycling, the second use and the assembly of lithium ion batteries. The results of this calculations show a significant improvement by remanufacturing in all relevant factors especially in the consumption of resources and greenhouse warming potential. Exemplarily suitable design guidelines for future remanufacturing lithium ion batteries, which consider modularity, interfaces and disassembly, are used to illustrate the findings. For one guideline, potential cost improvements were calculated and upcoming challenges are pointed out.

Keywords: Circular economy, electric mobility, lithium ion batteries, remanufacturing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5276
78 Screening of Antagonistic/Synergistic Effect between Lactic Acid Bacteria (LAB) and Yeast Strains Isolated from Kefir

Authors: Mihriban Korukluoglu, Goksen Arik, Cagla Erdogan, Selen Kocakoglu

Abstract:

Kefir is a traditional fermented refreshing beverage which is known for its valuable and beneficial properties for human health. Mainly yeast species, lactic acid bacteria (LAB) strains and fewer acetic acid bacteria strains live together in a natural matrix named “kefir grain”, which is formed from various proteins and polysaccharides. Different microbial species live together in slimy kefir grain and it has been thought that synergetic effect could take place between microorganisms, which belong to different genera and species. In this research, yeast and LAB were isolated from kefir samples obtained from Uludag University Food Engineering Department. The cell morphology of isolates was screened by microscopic examination. Gram reactions of bacteria isolates were determined by Gram staining method, and as well catalase activity was examined. After observing the microscopic/morphological and physical, enzymatic properties of all isolates, they were divided into the groups as LAB and/or yeast according to their physicochemical responses to the applied examinations. As part of this research, the antagonistic/synergistic efficacy of the identified five LAB and five yeast strains to each other were determined individually by disk diffusion method. The antagonistic or synergistic effect is one of the most important properties in a co-culture system that different microorganisms are living together. The synergistic effect should be promoted, whereas the antagonistic effect is prevented to provide effective culture for fermentation of kefir. The aim of this study was to determine microbial interactions between identified yeast and LAB strains, and whether their effect is antagonistic or synergistic. Thus, if there is a strain which inhibits or retards the growth of other strains found in Kefir microflora, this circumstance shows the presence of antagonistic effect in the medium. Such negative influence should be prevented, whereas the microorganisms which have synergistic effect on each other should be promoted by combining them in kefir grain. Standardisation is the most desired property for industrial production. Each microorganism found in the microbial flora of a kefir grain should be identified individually. The members of the microbial community found in the glue-like kefir grain may be redesigned as a starter culture regarding efficacy of each microorganism to another in kefir processing. The main aim of this research was to shed light on more effective production of kefir grain and to contribute a standardisation of kefir processing in the food industry.

Keywords: Antagonistic effect, kefir, lactic acid bacteria (LAB), synergistic, yeast.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1469
77 An Exploratory Approach of the Latin American Migrants’ Urban Space Transformation of Antofagasta City, Chile

Authors: Carolina Arriagada, Yasna Contreras

Abstract:

Since mid-2000, the migratory flows of Latin American migrants to Chile have been increasing constantly. There are two reasons that would explain why Chile is presented as an attractive country for the migrants. On the one hand, traditional centres of migrants’ attraction such as the United States and Europe have begun to close their borders. On the other hand, Chile exhibits relative economic and political stability, which offers greater job opportunities and better standard of living when compared to the migrants’ origin country. At the same time, the neoliberal economic model of Chile, developed under an extractive production of the natural resources, has privatized the urban space. The market regulates the growth of the fragmented and segregated cities. Then, the vulnerable population, most of the time, is located in the periphery and in the marginal areas of the urban space. In this aspect, the migrants have begun to occupy those degraded and depressed areas of the city. The problem raised is that the increase of the social spatial segregation could be also attributed to the migrants´ occupation of the marginal urban places of the city. The aim of this investigation is to carry out an analysis of the migrants’ housing strategies, which are transforming the marginal areas of the city. The methodology focused on the urban experience of the migrants, through the observation of spatial practices, ways of living and networks configuration in order to transform the marginal territory. The techniques applied in this study are semi–structured interviews in-depth interviews. The study reveals that the migrants housing strategies for living in the marginal areas of the city are built on a paradox way. On the one hand, the migrants choose proximity to their place of origin, maintaining their identity and customs. On the other hand, the migrants choose proximity to their social and familiar places, generating sense of belonging. In conclusion, the migration as international displacements under a globalized economic model increasing socio spatial segregation in cities is evidenced, but the transformation of the marginal areas is a fundamental resource of their integration migratory process. The importance of this research is that it is everybody´s responsibility not only the right to live in a city without any discrimination but also to integrate the citizens within the social urban space of a city.

Keywords: Inhabit, migrations, social spatial segregation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 827
76 Probabilistic Life Cycle Assessment of the Nano Membrane Toilet

Authors: A. Anastasopoulou, A. Kolios, T. Somorin, A. Sowale, Y. Jiang, B. Fidalgo, A. Parker, L. Williams, M. Collins, E. J. McAdam, S. Tyrrel

Abstract:

Developing countries are nowadays confronted with great challenges related to domestic sanitation services in view of the imminent water scarcity. Contemporary sanitation technologies established in these countries are likely to pose health risks unless waste management standards are followed properly. This paper provides a solution to sustainable sanitation with the development of an innovative toilet system, called Nano Membrane Toilet (NMT), which has been developed by Cranfield University and sponsored by the Bill & Melinda Gates Foundation. The particular technology converts human faeces into energy through gasification and provides treated wastewater from urine through membrane filtration. In order to evaluate the environmental profile of the NMT system, a deterministic life cycle assessment (LCA) has been conducted in SimaPro software employing the Ecoinvent v3.3 database. The particular study has determined the most contributory factors to the environmental footprint of the NMT system. However, as sensitivity analysis has identified certain critical operating parameters for the robustness of the LCA results, adopting a stochastic approach to the Life Cycle Inventory (LCI) will comprehensively capture the input data uncertainty and enhance the credibility of the LCA outcome. For that purpose, Monte Carlo simulations, in combination with an artificial neural network (ANN) model, have been conducted for the input parameters of raw material, produced electricity, NOX emissions, amount of ash and transportation of fertilizer. The given analysis has provided the distribution and the confidence intervals of the selected impact categories and, in turn, more credible conclusions are drawn on the respective LCIA (Life Cycle Impact Assessment) profile of NMT system. Last but not least, the specific study will also yield essential insights into the methodological framework that can be adopted in the environmental impact assessment of other complex engineering systems subject to a high level of input data uncertainty.

Keywords: Sanitation systems, nano membrane toilet, LCA, stochastic uncertainty analysis, Monte Carlo Simulations, artificial neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 938
75 TheAnalyzer: Clustering-Based System for Improving Business Productivity by Analyzing User Profiles to Enhance Human-Computer Interaction

Authors: D. S. A. Nanayakkara, K. J. P. G. Perera

Abstract:

E-commerce platforms have revolutionized the shopping experience, offering convenient ways for consumers to make purchases. To improve interactions with customers and optimize marketing strategies, it is essential for businesses to understand user behavior, preferences, and needs on these platforms. This paper focuses on recommending businesses to customize interactions with users based on their behavioral patterns, leveraging data-driven analysis and machine learning techniques. Businesses can improve engagement and boost the adoption of e-commerce platforms by aligning behavioral patterns with user goals of usability and satisfaction. We propose TheAnalyzer, a clustering-based system designed to enhance business productivity by analyzing user-profiles and improving human-computer interaction. TheAnalyzer seamlessly integrates with business applications, collecting relevant data points based on users' natural interactions without additional burdens such as questionnaires or surveys. It defines five key user analytics as features for its dataset, which are easily captured through users' interactions with e-commerce platforms. This research presents a study demonstrating the successful distinction of users into specific groups based on the five key analytics considered by TheAnalyzer. With the assistance of domain experts, customized business rules can be attached to each group, enabling TheAnalyzer to influence business applications and provide an enhanced personalized user experience. The outcomes are evaluated quantitatively and qualitatively, demonstrating that utilizing TheAnalyzer’s capabilities can optimize business outcomes, enhance customer satisfaction, and drive sustainable growth. The findings of this research contribute to the advancement of personalized interactions in e-commerce platforms. By leveraging user behavioral patterns and analyzing both new and existing users, businesses can effectively tailor their interactions to improve customer satisfaction, loyalty and ultimately drive sales.

Keywords: Data clustering, data standardization, dimensionality reduction, human-computer interaction, user profiling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 158
74 Biospeckle Supported Fruit Bruise Detection

Authors: Adilson M. Enes, Juliana A. Fracarolli, Inácio M. Dal Fabbro, Silvestre Rodrigues

Abstract:

This research work proposed a study of fruit bruise detection by means of a biospeckle method, selecting the papaya fruit (Carica papaya) as testing body. Papaya is recognized as a fruit of outstanding nutritional qualities, showing high vitamin A content, calcium, carbohydrates, exhibiting high popularity all over the world, considering consumption and acceptability. The commercialization of papaya faces special problems which are associated to bruise generation during harvesting, packing and transportation. Papaya is classified as climacteric fruit, permitting to be harvested before the maturation is completed. However, by one side bruise generation is partially controlled once the fruit flesh exhibits high mechanical firmness. By the other side, mechanical loads can set a future bruise at that maturation stage, when it can not be detected yet by conventional methods. Mechanical damages of fruit skin leave an entrance door to microorganisms and pathogens, which will cause severe losses of quality attributes. Traditional techniques of fruit quality inspection include total soluble solids determination, mechanical firmness tests, visual inspections, which would hardly meet required conditions for a fully automated process. However, the pertinent literature reveals a new method named biospeckle which is based on the laser reflectance and interference phenomenon. The laser biospeckle or dynamic speckle is quantified by means of the Moment of Inertia, named after its mechanical counterpart due to similarity between the defining formulae. Biospeckle techniques are able to quantify biological activities of living tissues, which has been applied to seed viability analysis, vegetable senescence and similar topics. Since the biospeckle techniques can monitor tissue physiology, it could also detect changes in the fruit caused by mechanical damages. The proposed technique holds non invasive character, being able to generate numerical results consistent with an adequate automation. The experimental tests associated to this research work included the selection of papaya fruit at different maturation stages which were submitted to artificial mechanical bruising tests. Damages were visually compared with the frequency maps yielded by the biospeckle technique. Results were considered in close agreement.

Keywords: Biospeckle, papaya, mechanical damages, vegetable bruising.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2523
73 Impact of Long Term Application of Municipal Solid Waste on Physicochemical and Microbial Parameters and Heavy Metal Distribution in Soils in Accordance to Its Agricultural Uses

Authors: Rinku Dhanker, Suman Chaudhary, Tanvi Bhatia, Sneh Goyal

Abstract:

Municipal Solid Waste (MSW), being a rich source of organic materials, can be used for agricultural applications as an important source of nutrients for soil and plants. This is also an alternative beneficial management practice for MSW generated in developing countries. In the present study, MSW treated soil samples from last four to six years at farmer’s field in Rohtak and Gurgaon states (Haryana, India) were collected. The samples were analyzed for all-important agricultural parameters and compared with the control untreated soil samples. The treated soil at farmer’s field showed increase in total N by 48 to 68%, P by 45.7 to 51.3%, and K by 60 to 67% compared to untreated soil samples. Application of sewage sludge at different sites led to increase in microbial biomass C by 60 to 68% compared to untreated soil. There was significant increase in total Cu, Cr, Ni, Fe, Pb, and Zn in all sewage sludge amended soil samples; however, concentration of all the metals were still below the current permitted (EU) limits. To study the adverse effect of heavy metals accumulation on various soil microbial activities, the sewage sludge samples (from wastewater treatment plant at Gurgaon) were artificially contaminated with heavy metal concentration above the EU limits. They were then applied to soil samples with different rates (0.5 to 4.0%) and incubated for 90 days under laboratory conditions. The samples were drawn at different intervals and analyzed for various parameters like pH, EC, total N, P, K, microbial biomass C, carbon mineralization, and diethylenetriaminepentaacetic acid (DTPA) exactable heavy metals. The results were compared to the uncontaminated sewage sludge. The increasing level of sewage sludge from 0.5 to 4% led to build of organic C and total N, P and K content at the early stages of incubation. But, organic C was decreased after 90 days because of decomposition of organic matter. Biomass production was significantly increased in both contaminated and uncontaminated sewage soil samples, but also led to slight increases in metal accumulation and their bioavailability in soil. The maximum metal concentrations were found in treatment with 4% of contaminated sewage sludge amendment.

Keywords: Heavy metals, municipal sewage sludge, sustainable agriculture, soil fertility, quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1259
72 Identification of 332G>A Polymorphism in Exon 3 of the Leptin Gene and Partially Effects on Body Size and Tail Dimension in Sanjabi Sheep

Authors: Roya Bakhtiar, Alireza Abdolmohammadi, Hadi Hajarian, Zahra Nikousefat, Davood, Kalantar-Neyestanaki

Abstract:

The objective of the present study was to determine the polymorphism in the leptin (332G>A) and its association with biometric traits in Sanjabi sheep. For this purpose, blood samples from 96 rams were taken, and tail length, width tail, circumference tail, body length, body width, and height were simultaneously recorded. PCR was performed using specific primer to amplify 463 bp fragment including exon 3 of leptin gene, and PCR products were digested by Cail restriction enzymes. The 332G>A (at 332th nucleotide of exon 3 leptin gene) that caused an amino acid change from Arg to Gln was detected by Cail (CAGNNNCTG) endonuclease, as the endonuclease cannot cut this region if G nucleotide is located in this position. Three genotypes including GG (463), GA (463, 360and 103 bp) and GG (360 bp and 103 bp) were identified after digestion by enzyme. The estimated frequencies of three genotypes including GG, GA, and AA for 332G>A locus were 0.68, 0.29 and 0.03 and those were 0.18 and 0.82 for A and G alleles, respectively. In the current study, chi-square test indicated that 332G>A positions did not deviate from the Hardy–Weinberg (HW) equilibrium. The most important reason to show HW equation was that samples used in this study belong to three large local herds with a traditional breeding system having random mating and without selection. Shannon index amount was calculated which represent an average genetic variation in Sanjabi rams. Also, heterozygosity estimated by Nei index indicated that genetic diversity of mutation in the leptin gene is moderate. Leptin gene polymorphism in the 332G>A had significant effect on body length (P<0.05) trait, and individuals with GA genotype had significantly the higher body length compared to other individuals. Although animals with GA genotype had higher body width, this difference was not statistically significant (P>0.05). This non-synonymous SNP resulted in different amino acid changes at codon positions111(R/Q). As leptin activity is localized, at least in part, in domains between amino acid residues 106-1406, it is speculated that the detected SNP at position 332 may affect the activity of leptin and may lead to different biological functions. Based to our results, due to significant effect of leptin gene polymorphism on body size traits, this gene may be used a candidate gene for improving these traits.

Keywords: Body size, Leptin gene, PCR-RFLP, Sanjabi sheep.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1145
71 Analyzing the Perception of Social Networking Sites as a Learning Tool among University Students: Case Study of a Business School in India

Authors: Bhaskar Basu

Abstract:

Universities and higher education institutes are finding it increasingly difficult to engage students fruitfully through traditional pedagogic tools. Web 2.0 technologies comprising social networking sites (SNSs) offer a platform for students to collaborate and share information, thereby enhancing their learning experience. Despite the potential and reach of SNSs, its use has been limited in academic settings promoting higher education. The purpose of this paper is to assess the perception of social networking sites among business school students in India and analyze its role in enhancing quality of student experiences in a business school leading to the proposal of an agenda for future research. In this study, more than 300 students of a reputed business school were involved in a survey of their preferences of different social networking sites and their perceptions and attitudes towards these sites. A questionnaire with three major sections was designed, validated and distributed among  a sample of students, the research method being descriptive in nature. Crucial questions were addressed to the students concerning time commitment, reasons for usage, nature of interaction on these sites, and the propensity to share information leading to direct and indirect modes of learning. It was further supplemented with focus group discussion to analyze the findings. The paper notes the resistance in the adoption of new technology by a section of business school faculty, who are staunch supporters of the classical “face-to-face” instruction. In conclusion, social networking sites like Facebook and LinkedIn provide new avenues for students to express themselves and to interact with one another. Universities could take advantage of the new ways  in which students are communicating with one another. Although interactive educational options such as Moodle exist, social networking sites are rarely used for academic purposes. Using this medium opens new ways of academically-oriented interactions where faculty could discover more about students' interests, and students, in turn, might express and develop more intellectual facets of their lives. hitherto unknown intellectual facets.  This study also throws up the enormous potential of mobile phones as a tool for “blended learning” in business schools going forward.

Keywords: Business school, India, learning, social media, social networking, university.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1381
70 Potential of Detailed Environmental Data Produced by Information and Communication Technology Tools for Better Consideration of Microclimatology Issues in Urban Planning to Promote Active Mobility

Authors: Živa Ravnikar, Alfonso Bahillo Martinez, Barbara Goličnik Marušić

Abstract:

Climate change mitigation has been formally adopted and announced by countries over the globe, where cities are targeting carbon neutrality through various more or less successful, systematic, and fragmentary actions. The article is based on the fact that environmental conditions affect human comfort and the usage of space. Urban planning can, with its sustainable solutions, not only support climate mitigation in terms of a planet reduction of global warming but as well enabling natural processes that in the immediate vicinity produce environmental conditions that encourage people to walk or cycle. However, the article draws attention to the importance of integrating climate consideration into urban planning, where detailed environmental data play a key role, enabling urban planners to improve or monitor environmental conditions on cycle paths. In a practical aspect, this paper tests a particular ICT tool, a prototype used for environmental data. Data gathering was performed along the cycling lanes in Ljubljana (Slovenia), where the main objective was to assess the tool's data applicable value within the planning of comfortable cycling lanes. The results suggest that such transportable devices for in-situ measurements can help a researcher interpret detailed environmental information, characterized by fine granularity and precise data spatial and temporal resolution. Data can be interpreted within human comfort zones, where graphical representation is in the form of a map, enabling the link of the environmental conditions with a spatial context. The paper also provides preliminary results in terms of the potential of such tools for identifying the correlations between environmental conditions and different spatial settings, which can help urban planners to prioritize interventions in places. The paper contributes to multidisciplinary approaches as it demonstrates the usefulness of such fine-grained data for better consideration of microclimatology in urban planning, which is a prerequisite for creating climate-comfortable cycling lanes promoting active mobility.

Keywords: Information and communication technology tools, urban planning, human comfort, microclimate, cycling lanes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 409
69 Using Daily Light Integral Concept to Construct the Ecological Plant Design Strategy of Urban Landscape

Authors: Chuang-Hung Lin, Cheng-Yuan Hsu, Jia-Yan Lin

Abstract:

It is an indispensible strategy to adopt greenery approach on architectural bases so as to improve ecological habitats, decrease heat-island effect, purify air quality, and relieve surface runoff as well as noise pollution, all of which are done in an attempt to achieve sustainable environment. How we can do with plant design to attain the best visual quality and ideal carbon dioxide fixation depends on whether or not we can appropriately make use of greenery according to the nature of architectural bases. To achieve the goal, it is a need that architects and landscape architects should be provided with sufficient local references. Current greenery studies focus mainly on the heat-island effect of urban with large scale. Most of the architects still rely on people with years of expertise regarding the adoption and disposition of plantation in connection with microclimate scale. Therefore, environmental design, which integrates science and aesthetics, requires fundamental research on landscape environment technology divided from building environment technology. By doing so, we can create mutual benefits between green building and the environment. This issue is extremely important for the greening design of the bases of green buildings in cities and various open spaces. The purpose of this study is to establish plant selection and allocation strategies under different building sunshade levels. Initially, with the shading of sunshine on the greening bases as the starting point, the effects of the shades produced by different building types on the greening strategies were analyzed. Then, by measuring the PAR (photosynthetic active radiation), the relative DLI (daily light integral) was calculated, while the DLI Map was established in order to evaluate the effects of the building shading on the established environmental greening, thereby serving as a reference for plant selection and allocation. The discussion results were to be applied in the evaluation of environment greening of greening buildings and establish the “right plant, right place” design strategy of multi-level ecological greening for application in urban design and landscape design development, as well as the greening criteria to feedback to the eco-city greening buildings.

Keywords: Daily light integral, plant design, urban open space.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1906
68 A Study of Semantic Analysis of LED Illustrated Traffic Directional Arrow in Different Style

Authors: Chia-Chen Wu, Chih-Fu Wu, Pey-Weng Lien, Kai-Chieh Lin

Abstract:

In the past, the most comprehensively adopted light source was incandescent light bulbs, but with the appearance of LED light sources, traditional light sources have been gradually replaced by LEDs because of its numerous superior characteristics. However, many of the standards do not apply to LEDs as the two light sources are characterized differently. This also intensifies the significance of studies on LEDs. As a Kansei design study investigating the visual glare produced by traffic arrows implemented with LEDs, this study conducted a semantic analysis on the styles of traffic arrows used in domestic and international occasions. The results will be able to reduce drivers’ misrecognition that results in the unsuccessful arrival at the destination, or in traffic accidents. This study started with a literature review and surveyed the status quo before conducting experiments that were divided in two parts. The first part involved a screening experiment of arrow samples, where cluster analysis was conducted to choose five representative samples of LED displays. The second part was a semantic experiment on the display of arrows using LEDs, where the five representative samples and the selected ten adjectives were incorporated. Analyzing the results with Quantification Theory Type I, it was found that among the composition of arrows, fletching was the most significant factor that influenced the adjectives. In contrast, a “no fletching” design was more abstract and vague. It lacked the ability to convey the intended message and might bear psychological negative connotation including “dangerous,” “forbidden,” and “unreliable.” The arrow design consisting of “> shaped fletching” was found to be more concrete and definite, showing positive connotation including “safe,” “cautious,” and “reliable.” When a stimulus was placed at a farther distance, the glare could be significantly reduced; moreover, the visual evaluation scores would be higher. On the contrary, if the fletching and the shaft had a similar proportion, looking at the stimuli caused higher evaluation at a closer distance. The above results will be able to be applied to the design of traffic arrows by conveying information definitely and rapidly. In addition, drivers’ safety could be enhanced by understanding the cause of glare and improving visual recognizability.

Keywords: LED, arrow, Kansei research, preferred imagery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1910
67 Eco-Design of Multifunctional System Based on a Shape Memory Polymer and ZnO Nanoparticles for Sportswear

Authors: Inês Boticas, Diana P. Ferreira, Ana Eusébio, Carlos Silva, Pedro Magalhães, Ricardo Silva, Raul Fangueiro

Abstract:

Since the beginning of the 20th century, sportswear has a major contribution to the impact of fashion on our lives. Nowadays, the embracing of sportswear fashion/looks is undoubtedly noticeable, as the modern consumer searches for high comfort and linear aesthetics for its clothes. This compromise lead to the arise of the athleisure trend. Athleisure surges as a new style area that combines both wearability and fashion sense, differentiated from the archetypal sportswear, usually associated to “gym clothes”. Additionally, the possibility to functionalize and implement new technologies have shifted and progressively empowers the connection between the concepts of physical activities practice and well-being, allowing clothing to be more interactive and responsive with its surroundings. In this study, a design inspired in retro and urban lifestyle was envisioned, engineering textile structures that can respond to external stimuli. These structures are enhanced to be responsive to heat, water vapor and humidity, integrating shape memory polymers (SMP) to improve the breathability and heat-responsive behavior of the textiles and zinc oxide nanoparticles (ZnO NPs) to heighten the surface hydrophobic properties. The best results for hydrophobic exhibited superhydrophobic behavior with water contact angle (WAC) of more than 150 degrees. For the breathability and heat-response properties, SMP-coated samples showed an increase in water vapour permeability values of about 50% when compared with non SMP-coated samples. These innovative technological approaches were endorsed to design innovative clothing, in line with circular economy and eco-design principles, by assigning a substantial degree of mutability and versatility to the clothing. The development of a coat and shirt, in which different parts can be purchased separately to create multiple products, aims to combine the technicality of both the fabrics used and the making of the garments. This concept translates itself into a real constructive mechanism through the symbiosis of high-tech functionalities and the timeless design that follows the athleisure aesthetics.

Keywords: Breathability, sportswear and casual clothing, sustainable design, superhydrophobicity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 989
66 Interactive Garments: Flexible Technologies for Textile Integration

Authors: Anupam Bhatia

Abstract:

Upon reviewing the literature and the pragmatic work done in the field of E- textiles, it is observed that the applications of wearable technologies have found a steady growth in the field of military, medical, industrial, sports; whereas fashion is at a loss to know how to treat this technology and bring it to market. The purpose of this paper is to understand the practical issues of integration of electronics in garments; cutting patterns for mass production, maintaining the basic properties of textiles and daily maintenance of garments that hinder the wide adoption of interactive fabric technology within Fashion and leisure wear. To understand the practical hindrances an experimental and laboratory approach is taken. “Techno Meets Fashion” has been an interactive fashion project where sensor technologies have been embedded with textiles that result in set of ensembles that are light emitting garments, sound sensing garments, proximity garments, shape memory garments etc. Smart textiles, especially in the form of textile interfaces, are drastically underused in fashion and other lifestyle product design. Clothing and some other textile products must be washable, which subjects to the interactive elements to water and chemical immersion, physical stress, and extreme temperature. The current state of the art tends to be too fragile for this treatment. The process for mass producing traditional textiles becomes difficult in interactive textiles. As cutting patterns from larger rolls of cloth and sewing them together to make garments breaks and reforms electronic connections in an uncontrolled manner. Because of this, interactive fabric elements are integrated by hand into textiles produced by standard methods. The Arduino has surely made embedding electronics into textiles much easier than before; even then electronics are not integral to the daily wear garments. Soft and flexible interfaces of MEMS (micro sensors and Micro actuators) can be an option to make this possible by blending electronics within E-textiles in a way that’s seamless and still retains functions of the circuits as well as the garment. Smart clothes, which offer simultaneously a challenging design and utility value, can be only mass produced if the demands of the body are taken care of i.e. protection, anthropometry, ergonomics of human movement, thermo- physiological regulation.

Keywords: Ambient Intelligence, Proximity Sensors, Shape Memory Materials, Sound sensing garments, Wearable Technology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3222
65 High Strength, High Toughness Polyhydroxybutyrate-Co-Valerate Based Biocomposites

Authors: S. Z. A. Zaidi, A. Crosky

Abstract:

Biocomposites is a field that has gained much scientific attention due to the current substantial consumption of non-renewable resources and the environmentally harmful disposal methods required for traditional polymer composites. Research on natural fiber reinforced polyhydroxyalkanoates (PHAs) has gained considerable momentum over the past decade. There is little work on PHAs reinforced with unidirectional (UD) natural fibers and little work on using epoxidized natural rubber (ENR) as a toughening agent for PHA-based biocomposites. In this work, we prepared polyhydroxybutyrate-co-valerate (PHBV) biocomposites reinforced with UD 30 wt.% flax fibers and evaluated the use of ENR with 50% epoxidation (ENR50) as a toughening agent for PHBV biocomposites. Quasi-unidirectional flax/PHBV composites were prepared by hand layup, powder impregnation followed by compression molding.  Toughening agents – polybutylene adiphate-co-terephthalate (PBAT) and ENR50 – were cryogenically ground into powder and mechanically mixed with main matrix PHBV to maintain the powder impregnation process. The tensile, flexural and impact properties of the biocomposites were measured and morphology of the composites examined using optical microscopy (OM) and scanning electron microscopy (SEM). The UD biocomposites showed exceptionally high mechanical properties as compared to the results obtained previously where only short fibers have been used. The improved tensile and flexural properties were attributed to the continuous nature of the fiber reinforcement and the increased proportion of fibers in the loading direction. The improved impact properties were attributed to a larger surface area for fiber-matrix debonding and for subsequent sliding and fiber pull-out mechanisms to act on, allowing more energy to be absorbed. Coating cryogenically ground ENR50 particles with PHBV powder successfully inhibits the self-healing nature of ENR-50, preventing particles from coalescing and overcoming problems in mechanical mixing, compounding and molding. Cryogenic grinding, followed by powder impregnation and subsequent compression molding is an effective route to the production of high-mechanical-property biocomposites based on renewable resources for high-obsolescence applications such as plastic casings for consumer electronics.

Keywords: Natural fibers, natural rubber, polyhydroxyalkanoates, unidirectional.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1129
64 Co-Creational Model for Blended Learning in a Flipped Classroom Environment Focusing on the Combination of Coding and Drone-Building

Authors: A. Schuchter, M. Promegger

Abstract:

The outbreak of the COVID-19 pandemic has shown us that online education is so much more than just a cool feature for teachers – it is an essential part of modern teaching. In online math teaching, it is common to use tools to share screens, compute and calculate mathematical examples, while the students can watch the process. On the other hand, flipped classroom models are on the rise, with their focus on how students can gather knowledge by watching videos and on the teacher’s use of technological tools for information transfer. This paper proposes a co-educational teaching approach for coding and engineering subjects with the help of drone-building to spark interest in technology and create a platform for knowledge transfer. The project combines aspects from mathematics (matrices, vectors, shaders, trigonometry), physics (force, pressure and rotation) and coding (computational thinking, block-based programming, JavaScript and Python) and makes use of collaborative-shared 3D Modeling with clara.io, where students create mathematics knowhow. The instructor follows a problem-based learning approach and encourages their students to find solutions in their own time and in their own way, which will help them develop new skills intuitively and boost logically structured thinking. The collaborative aspect of working in groups will help the students develop communication skills as well as structural and computational thinking. Students are not just listeners as in traditional classroom settings, but play an active part in creating content together by compiling a Handbook of Knowledge (called “open book”) with examples and solutions. Before students start calculating, they have to write down all their ideas and working steps in full sentences so other students can easily follow their train of thought. Therefore, students will learn to formulate goals, solve problems, and create a ready-to use product with the help of “reverse engineering”, cross-referencing and creative thinking. The work on drones gives the students the opportunity to create a real-life application with a practical purpose, while going through all stages of product development.

Keywords: Flipped classroom, co-creational education, coding, making, drones, co-education, ARCS-model, problem-based learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 450
63 Systematic Mapping Study of Digitization and Analysis of Manufacturing Data

Authors: R. Clancy, M. Ahern, D. O’Sullivan, K. Bruton

Abstract:

The manufacturing industry is currently undergoing a digital transformation as part of the mega-trend Industry 4.0. As part of this phase of the industrial revolution, traditional manufacturing processes are being combined with digital technologies to achieve smarter and more efficient production. To successfully digitally transform a manufacturing facility, the processes must first be digitized. This is the conversion of information from an analogue format to a digital format. The objective of this study was to explore the research area of digitizing manufacturing data as part of the worldwide paradigm, Industry 4.0. The formal methodology of a systematic mapping study was utilized to capture a representative sample of the research area and assess its current state. Specific research questions were defined to assess the key benefits and limitations associated with the digitization of manufacturing data. Research papers were classified according to the type of research and type of contribution to the research area. Upon analyzing 54 papers identified in this area, it was noted that 23 of the papers originated in Germany. This is an unsurprising finding as Industry 4.0 is originally a German strategy with supporting strong policy instruments being utilized in Germany to support its implementation. It was also found that the Fraunhofer Institute for Mechatronic Systems Design, in collaboration with the University of Paderborn in Germany, was the most frequent contributing Institution of the research papers with three papers published. The literature suggested future research directions and highlighted one specific gap in the area. There exists an unresolved gap between the data science experts and the manufacturing process experts in the industry. The data analytics expertise is not useful unless the manufacturing process information is utilized. A legitimate understanding of the data is crucial to perform accurate analytics and gain true, valuable insights into the manufacturing process. There lies a gap between the manufacturing operations and the information technology/data analytics departments within enterprises, which was borne out by the results of many of the case studies reviewed as part of this work. To test the concept of this gap existing, the researcher initiated an industrial case study in which they embedded themselves between the subject matter expert of the manufacturing process and the data scientist. Of the papers resulting from the systematic mapping study, 12 of the papers contributed a framework, another 12 of the papers were based on a case study, and 11 of the papers focused on theory. However, there were only three papers that contributed a methodology. This provides further evidence for the need for an industry-focused methodology for digitizing and analyzing manufacturing data, which will be developed in future research.

Keywords: Analytics, digitization, industry 4.0, manufacturing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 666
62 Biomechanical Modeling, Simulation, and Comparison of Human Arm Motion to Mitigate Astronaut Task during Extra Vehicular Activity

Authors: B. Vadiraj, S. N. Omkar, B. Kapil Bharadwaj, Yash Vardhan Gupta

Abstract:

During manned exploration of space, missions will require astronaut crewmembers to perform Extra Vehicular Activities (EVAs) for a variety of tasks. These EVAs take place after long periods of operations in space, and in and around unique vehicles, space structures and systems. Considering the remoteness and time spans in which these vehicles will operate, EVA system operations should utilize common worksites, tools and procedures as much as possible to increase the efficiency of training and proficiency in operations. All of the preparations need to be carried out based on studies of astronaut motions. Until now, development and training activities associated with the planned EVAs in Russian and U.S. space programs have relied almost exclusively on physical simulators. These experimental tests are expensive and time consuming. During the past few years a strong increase has been observed in the use of computer simulations due to the fast developments in computer hardware and simulation software. Based on this idea, an effort to develop a computational simulation system to model human dynamic motion for EVA is initiated. This study focuses on the simulation of an astronaut moving the orbital replaceable units into the worksites or removing them from the worksites. Our physics-based methodology helps fill the gap in quantitative analysis of astronaut EVA by providing a multisegment human arm model. Simulation work described in the study improves on the realism of previous efforts, incorporating joint stops to account for the physiological limits of range of motion. To demonstrate the utility of this approach human arm model is simulated virtually using ADAMS/LifeMOD® software. Kinematic mechanism for the astronaut’s task is studied from joint angles and torques. Simulation results obtained is validated with numerical simulation based on the principles of Newton-Euler method. Torques determined using mathematical model are compared among the subjects to know the grace and consistency of the task performed. We conclude that due to uncertain nature of exploration-class EVA, a virtual model developed using multibody dynamics approach offers significant advantages over traditional human modeling approaches.

Keywords: Extra vehicular activity, biomechanics, inverse kinematics, human body modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2781
61 Bioleaching for Efficient Copper Ore Recovery

Authors: Zh. Karaulova, D. Baizhigitov

Abstract:

At the Aktogay deposit, the oxidized ore section has been developed since 2015; by now, the reserves of easily enriched ore are decreasing, and a large number of copper-poor, difficult-to-enrich ores has been accumulated in the dumps of the KAZ Minerals Aktogay deposit, which is unprofitable to mine using the traditional mining methods. Hence, another technology needs to be implemented, which will significantly expand the raw material base of copper production in Kazakhstan and ensure the efficient use of natural resources. Heap and dump bacterial recovery are the most acceptable technologies for processing low-grade secondary copper sulfide ores. Test objects were the copper ores of Aktogay deposit and chemolithotrophic bacteria Leptospirillum ferrooxidans (L.f.), Acidithiobacillus caldus (A.c.), Sulfobacillus acidophilus (S.a.), represent mixed cultures utilized in bacterial oxidation systems. They can stay active in the 20-40 °C temperature range. Biocatalytic acceleration was achieved as a result of bacteria oxidizing iron sulfides to form iron sulfate, which subsequently underwent chemical oxidation to become sulfate oxide. The following results have been achieved at the initial stage: the goal was to grow and maintain the life activity of bacterial cultures under laboratory conditions. These bacteria grew the best within the pH 1,2-1,8 range with light stirring and in an aerated environment. The optimal growth temperature was 30-33 оC. The growth rate decreased by one-half for each 4-5 °C fall in temperature from 30 °C. At best, the number of bacteria doubled every 24 hours. Typically, the maximum concentration of cells that can be grown in ferrous solution is about 107/ml. A further step researched in this case was the adaptation of microorganisms to the environment of certain metals. This was followed by mass production of inoculum and maintenance for their further cultivation on a factory scale. This was done by adding sulfide concentrate, allowing the bacteria to convert the ferrous sulfate as indicated by the Eh (> 600 mV), then diluting to double the volume and adding concentrate to achieve the same metal level. This process was repeated until the desired metal level and volumes were achieved. The final stage of bacterial recovery was the transportation and irrigation of secondary sulfide copper ores of the oxidized ore section. In conclusion, the project was implemented at the Aktogay mine since the bioleaching process was prolonged. Besides, the method of bacterial recovery might compete well with existing non-biological methods of extraction of metals from ores.

Keywords: Bacterial recovery, copper ore, bioleaching, bacterial inoculum.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 85
60 Complexity of Operation and Maintenance in Irrigation Network Management-A Case of the Dez Scheme in the Greater Dezful, Iran

Authors: Najaf Hedayat

Abstract:

Food and fibre production in arid and semi-arid regions has emerged as one of the major challenges for various socio-economic and political reasons such as the food security and self-sufficiency. Productive use of the renewable water resources has risen on top ofthe decision-making agenda. For this reason, efficient operation and maintenance of modern irrigation and drainage schemes become part and parcel and indispensible reality in agricultural policy making arena. The aim of this paper is to investigate the complexity of operating and maintaining such schemes, mainly focussing on challenges which enhance and opportunities that impedsustainable food and fibre production. The methodology involved using secondary data complemented byroutine observations and stakeholders views on issues that influence the O&M in the Dez command area. The SPSS program was used as an analytical framework for data analysis and interpretation.Results indicate poor application efficiency in most croplands, much of which is attributed to deficient operation of conveyance and distribution canals. These in turn, are reportedly linked to inadequate maintenance of the pumping stations and hydraulic structures like turnouts,flumes and other control systems particularly in the secondary and tertiary canals. Results show that the aforementioned deficiencies have been the major impediment to establishing regular flow toward the farm gates which subsequently undermine application efficiency and tillage operationsat farm level. Results further show that accumulative impact of such deficiencies has been the major causes of poorcrop yield and quality that deem production system in these croplands uneconomic. Results further show that the present state might undermine the sustainability of agricultural system in the command area. The overall conclusion being that present water management is unlikely to be responsive to challenges that the sector faces. And in the absence of coherent measures to shift the status quo situation in favour of more productive resource use, it would be hard to fulfil the objectives of the National Economic and Socio-cultural Development Plans.

Keywords: renewable water resources, Dez scheme, irrigationand drainage, sustainable crop production, O&M

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1583