Search results for: Surface Enhanced Raman Scattering
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2874

Search results for: Surface Enhanced Raman Scattering

294 Preparation and Cutting Performance of Boron-Doped Diamond Coating on Cemented Carbide Cutting Tools with High Cobalt Content

Authors: Zhaozhi Liu, Feng Xu, Junhua Xu, Xiaolong Tang, Ying Liu, Dunwen Zuo

Abstract:

Chemical vapor deposition (CVD) diamond coated cutting tool has excellent cutting performance, it is the most ideal tool for the processing of nonferrous metals and alloys, composites, nonmetallic materials and other difficult-to-machine materials efficiently and accurately. Depositing CVD diamond coating on the cemented carbide with high cobalt content can improve its toughness and strength, therefore, it is very important to research on the preparation technology and cutting properties of CVD diamond coated cemented carbide cutting tool with high cobalt content. The preparation technology of boron-doped diamond (BDD) coating has been studied and the coated drills were prepared. BDD coating were deposited on the drills by using the optimized parameters and the SEM results show that there are no cracks or collapses in the coating. Cutting tests with the prepared drills against the silumin and aluminum base printed circuit board (PCB) have been studied. The results show that the wear amount of the coated drill is small and the machined surface has a better precision. The coating does not come off during the test, which shows good adhesion and cutting performance of the drill.

Keywords: Cemented carbide with high cobalt content, CVD boron-doped diamond, cutting test, drill.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2668
293 A Deep Learning Framework for Polarimetric SAR Change Detection Using Capsule Network

Authors: Sanae Attioui, Said Najah

Abstract:

The Earth's surface is constantly changing through forces of nature and human activities. Reliable, accurate, and timely change detection is critical to environmental monitoring, resource management, and planning activities. Recently, interest in deep learning algorithms, especially convolutional neural networks, has increased in the field of image change detection due to their powerful ability to extract multi-level image features automatically. However, these networks are prone to drawbacks that limit their applications, which reside in their inability to capture spatial relationships between image instances, as this necessitates a large amount of training data. As an alternative, Capsule Network has been proposed to overcome these shortcomings. Although its effectiveness in remote sensing image analysis has been experimentally verified, its application in change detection tasks remains very sparse. Motivated by its greater robustness towards improved hierarchical object representation, this study aims to apply a capsule network for PolSAR image Change Detection. The experimental results demonstrate that the proposed change detection method can yield a significantly higher detection rate compared to methods based on convolutional neural networks.

Keywords: Change detection, capsule network, deep network, Convolutional Neural Networks, polarimetric synthetic aperture radar images, PolSAR images.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 423
292 Solar Radiation Time Series Prediction

Authors: Cameron Hamilton, Walter Potter, Gerrit Hoogenboom, Ronald McClendon, Will Hobbs

Abstract:

A model was constructed to predict the amount of solar radiation that will make contact with the surface of the earth in a given location an hour into the future. This project was supported by the Southern Company to determine at what specific times during a given day of the year solar panels could be relied upon to produce energy in sufficient quantities. Due to their ability as universal function approximators, an artificial neural network was used to estimate the nonlinear pattern of solar radiation, which utilized measurements of weather conditions collected at the Griffin, Georgia weather station as inputs. A number of network configurations and training strategies were utilized, though a multilayer perceptron with a variety of hidden nodes trained with the resilient propagation algorithm consistently yielded the most accurate predictions. In addition, a modeled direct normal irradiance field and adjacent weather station data were used to bolster prediction accuracy. In later trials, the solar radiation field was preprocessed with a discrete wavelet transform with the aim of removing noise from the measurements. The current model provides predictions of solar radiation with a mean square error of 0.0042, though ongoing efforts are being made to further improve the model’s accuracy.

Keywords: Artificial Neural Networks, Resilient Propagation, Solar Radiation, Time Series Forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2706
291 Analysis of Hard Turning Process of AISI D3-Thermal Aspects

Authors: B. Varaprasad, C. Srinivasa Rao

Abstract:

In the manufacturing sector, hard turning has emerged as vital machining process for cutting hardened steels. Besides many advantages of hard turning operation, one has to implement to achieve close tolerances in terms of surface finish, high product quality, reduced machining time, low operating cost and environmentally friendly characteristics. In the present study, three-dimensional CAE (Computer Aided Engineering) based simulation of  hard turning by using commercial software DEFORM 3D has been compared to experimental results of  stresses, temperatures and tool forces in machining of AISI D3 steel using mixed Ceramic inserts (CC6050). In the present analysis, orthogonal cutting models are proposed, considering several processing parameters such as cutting speed, feed, and depth of cut. An exhaustive friction modeling at the tool-work interfaces is carried out. Work material flow around the cutting edge is carefully modeled with adaptive re-meshing simulation capability. In process simulations, feed rate and cutting speed are constant (i.e.,. 0.075 mm/rev and 155 m/min), and analysis is focused on stresses, forces, and temperatures during machining. Close agreement is observed between CAE simulation and experimental values.

Keywords: Hard-turning, computer-aided engineering, computational machining, finite element method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1310
290 An Evaluation of Land Use Control in Hokkaido, Japan

Authors: Kayoko Yamamoto

Abstract:

This study focuses on an evaluation of Hokkaido which is the northernmost and largest prefecture by surface area in Japan and particularly on two points: the rivalry between all kinds of land use such as urban land and agricultural and forestry land in various cities and their surrounding areas and the possibilities for forestry biomass in areas other than those mentioned above and grasps which areas require examination of the nature of land use control and guidance through conducting land use analysis at the district level using GIS (Geographic Information Systems). The results of analysis in this study demonstrated that it is essential to divide the whole of Hokkaido into two areas: those within delineated city planning areas and those outside of delineated city planning areas and to conduct an evaluation of each land use control. In delineated urban areas, particularly urban areas, it is essential to re-examine land use from the point of view of compact cities or smart cities along with conducting an evaluation of land use control that focuses on issues of rivalry between all kinds of land use such as urban land and agricultural and forestry land. In areas outside of delineated urban areas, it is desirable to aim to build a specific community recycling range based on forest biomass utilization by conducting an evaluation of land use control concerning the possibilities for forest biomass focusing particularly on forests within and outside of city planning areas.

Keywords: Land Use Control, Urbanization, Forestry Biomass, Geographic Information Systems (GIS), Hokkaido

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2491
289 Control of Braking Force under Loaded and Empty Conditions on Two Wheeler

Authors: M. S. Manikandan, K. V. Nithish Kumar, M. Krishnamoorthi, V. Ganesh

Abstract:

The Automobile Braking System has a crucial role for safety of the passenger and riding quality of the vehicle. The braking force mainly depends on normal reaction on the wheel and the co-efficient of friction between the tire and the road surface. Whenever a vehicle is loaded, the normal reaction on the rear wheel is increased. Thus the amount of braking force required to halt the vehicle with minimum stopping distance, is based on the pillion load on the vehicle. In this work, in order to vary the braking force in two wheelers, the mechanical leverage which operates the master cylinder is varied based on the pillion load. Thus the amount of braking force developed between ground and tire is varied. This optimum braking force on the disc brake helps in attaining the minimum vehicle stopping distance. In addition to that, it also helps in preventing sliding. Thus the system results in reducing the stopping distance of the two wheelers and providing a better braking efficiency than the conventional braking system.

Keywords: Braking force, Master cylinder, Mechanical leverage, Minimum stopping distance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6144
288 Characterization of Two Hybrid Welding Techniques on SA 516 Grade 70 Weldments

Authors: M. T. Z. Butt, T. Ahmad, N. A. Siddiqui

Abstract:

Commercially SA 516 Grade 70 is frequently used for the manufacturing of pressure vessels, boilers and storage tanks etc. in fabrication industry. Heat input is the major parameter during welding that may bring significant changes in the microstructure as well as the mechanical properties. Different welding technique has different heat input rate per unit surface area. Materials with large thickness are dealt with different combination of welding techniques to achieve required mechanical properties. In the present research two schemes: Scheme 1: SMAW (Shielded Metal Arc Welding) & GTAW (Gas Tungsten Arc Welding) and Scheme 2: SMAW & SAW (Submerged Arc Welding) of hybrid welding techniques have been studied. The purpose of these schemes was to study hybrid welding effect on the microstructure and mechanical properties of the weldment, heat affected zone and base metal area. It is significant to note that the thickness of base plate was 12 mm, also welding conditions and parameters were set according to ASME Section IX. It was observed that two different hybrid welding techniques performed on two different plates demonstrated that the mechanical properties of both schemes are more or less similar. It means that the heat input, welding techniques and varying welding operating conditions & temperatures did not make any detrimental effect on the mechanical properties. Hence, the hybrid welding techniques mentioned in the present study are favorable to implicate for the industry using the plate thickness around 12 mm thick.

Keywords: Grade 70, GTAW, hybrid welding, SAW, SMAW.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1271
287 An Experimental Study on the Optimum Installation of Fire Detector for Early Stage Fire Detecting in Rack-Type Warehouses

Authors: Ki Ok Choi, Sung Ho Hong, Dong Suck Kim, Don Mook Choi

Abstract:

Rack type warehouses are different from general buildings in the kinds, amount, and arrangement of stored goods, so the fire risk of rack type warehouses is different from those buildings. The fire pattern of rack type warehouses is different in combustion characteristic and storing condition of stored goods. The initial fire burning rate is different in the surface condition of materials, but the running time of fire is closely related with the kinds of stored materials and stored conditions. The stored goods of the warehouse are consisted of diverse combustibles, combustible liquid, and so on. Fire detection time may be delayed because the residents are less than office and commercial buildings. If fire detectors installed in rack type warehouses are inadaptable, the fire of the warehouse may be the great fire because of delaying of fire detection. In this paper, we studied what kinds of fire detectors are optimized in early detecting of rack type warehouse fire by real-scale fire tests. The fire detectors used in the tests are rate of rise type, fixed type, photo electric type, and aspirating type detectors. We considered optimum fire detecting method in rack type warehouses suggested by the response characteristic and comparative analysis of the fire detectors.

Keywords: Fire detector, rack, response characteristic, warehouse.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 933
286 Internal Structure Formation in High Strength Fiber Concrete during Casting

Authors: Olga Kononova, Andrejs Krasnikovs , Videvuds Lapsa, Jurijs Kalinka, Angelina Galushchak

Abstract:

Post cracking behavior and load –bearing capacity of the steel fiber reinforced high-strength concrete (SFRHSC) are dependent on the number of fibers are crossing the weakest crack (bridged the crack) and their orientation to the crack surface. Filling the mould by SFRHSC, fibers are moving and rotating with the concrete matrix flow till the motion stops in each internal point of the concrete body. Filling the same mould from the different ends SFRHSC samples with the different internal structures (and different strength) can be obtained. Numerical flow simulations (using Newton and Bingham flow models) were realized, as well as single fiber planar motion and rotation numerical and experimental investigation (in viscous flow) was performed. X-ray pictures for prismatic samples were obtained and internal fiber positions and orientations were analyzed. Similarly fiber positions and orientations in cracked cross-section were recognized and were compared with numerically simulated. Structural SFRHSC fracture model was created based on single fiber pull-out laws, which were determined experimentally. Model predictions were validated by 15x15x60cm prisms 4 point bending tests.

Keywords: fibers, orientation, high strength concrete, flow

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1402
285 Investigation of Bubble Growth during Nucleate Boiling Using CFD

Authors: K. Jagannath, Akhilesh Kotian, S. S. Sharma, Achutha Kini U., P. R. Prabhu

Abstract:

Boiling process is characterized by the rapid formation of vapour bubbles at the solid–liquid interface (nucleate boiling) with pre-existing vapour or gas pockets. Computational fluid dynamics (CFD) is an important tool to study bubble dynamics. In the present study, CFD simulation has been carried out to determine the bubble detachment diameter and its terminal velocity. Volume of fluid method is used to model the bubble and the surrounding by solving single set of momentum equations and tracking the volume fraction of each of the fluids throughout the domain. In the simulation, bubble is generated by allowing water-vapour to enter a cylinder filled with liquid water through an inlet at the bottom. After the bubble is fully formed, the bubble detaches from the surface and rises up during which the bubble accelerates due to the net balance between buoyancy force and viscous drag. Finally when these forces exactly balance each other, it attains a constant terminal velocity. The bubble detachment diameter and the terminal velocity of the bubble are captured by the monitor function provided in FLUENT. The detachment diameter and the terminal velocity obtained are compared with the established results based on the shape of the bubble. A good agreement is obtained between the results obtained from simulation and the equations in comparison with the established results.

Keywords: Bubble growth, computational fluid dynamics, detachment diameter, terminal velocity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2073
284 Evaluation of Heterogeneity of Paint Coating on Metal Substrate Using Laser Infrared Thermography and Eddy Current

Authors: S. Mezghani, E. Perrin, J. L Bodnar, J. Marthe, B. Cauwe, V. Vrabie

Abstract:

Non contact evaluation of the thickness of paint coatings can be attempted by different destructive and nondestructive methods such as cross-section microscopy, gravimetric mass measurement, magnetic gauges, Eddy current, ultrasound or terahertz. Infrared thermography is a nondestructive and non-invasive method that can be envisaged as a useful tool to measure the surface thickness variations by analyzing the temperature response. In this paper, the thermal quadrupole method for two layered samples heated up with a pulsed excitation is firstly used. By analyzing the thermal responses as a function of thermal properties and thicknesses of both layers, optimal parameters for the excitation source can be identified. Simulations show that a pulsed excitation with duration of ten milliseconds allows obtaining a substrate-independent thermal response. Based on this result, an experimental setup consisting of a near-infrared laser diode and an Infrared camera was next used to evaluate the variation of paint coating thickness between 60 μm and 130 μm on two samples. Results show that the parameters extracted for thermal images are correlated with the estimated thicknesses by the Eddy current methods. The laser pulsed thermography is thus an interesting alternative nondestructive method that can be moreover used for nonconductive substrates.

Keywords: Nondestructive, paint coating, thickness, infrared thermography, laser, heterogeneity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2023
283 Recycled Plastic Fibers for Minimizing Plastic Shrinkage Cracking of Cement Based Mortar

Authors: B.S. Al-Tulaian, M. J. Al-Shannag, A.M. Al-Hozaimy

Abstract:

The development of new construction materials using  recycled plastic is important to both the construction and the plastic  recycling industries. Manufacturing of fibers from industrial or  postconsumer plastic waste is an attractive approach with such  benefits as concrete performance enhancement, and reduced needs  for land filling. The main objective of this study is to investigate the  effect of Plastic fibers obtained locally from recycled waste on plastic  shrinkage cracking of ordinary cement based mortar. Parameters  investigated include: fiber length ranging from 20 to 50mm, and fiber  volume fraction ranging from 0% to 1.5% by volume. The test results  showed significant improvement in crack arresting mechanism and  substantial reduction in the surface area of cracks for the mortar  reinforced with recycled plastic fibers compared to plain mortar.  Furthermore, test results indicated that there was a slight decrease in  compressive strength of mortar reinforced with different lengths and  contents of recycled fibers compared to plain mortar. This study  suggests that adding more than 1% of RP fibers to mortar, can be  used effectively for controlling plastic shrinkage cracking of cement  based mortar, and thus results in waste reduction and resources  conservation.

 

Keywords: Mortar, plastic, shrinkage cracking, compressive strength, RF recycled fibers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3030
282 Seismic Performance of Slopes Subjected to Earthquake Mainshock Aftershock Sequences

Authors: Alisha Khanal, Gokhan Saygili

Abstract:

It is commonly observed that aftershocks follow the mainshock. Aftershocks continue over a period of time with a decreasing frequency and typically there is not sufficient time for repair and retrofit between a mainshock–aftershock sequence. Usually, aftershocks are smaller in magnitude; however, aftershock ground motion characteristics such as the intensity and duration can be greater than the mainshock due to the changes in the earthquake mechanism and location with respect to the site. The seismic performance of slopes is typically evaluated based on the sliding displacement predicted to occur along a critical sliding surface. Various empirical models are available that predict sliding displacement as a function of seismic loading parameters, ground motion parameters, and site parameters but these models do not include the aftershocks. The seismic risks associated with the post-mainshock slopes ('damaged slopes') subjected to aftershocks is significant. This paper extends the empirical sliding displacement models for flexible slopes subjected to earthquake mainshock-aftershock sequences (a multi hazard approach). A dataset was developed using 144 pairs of as-recorded mainshock-aftershock sequences using the Pacific Earthquake Engineering Research Center (PEER) database. The results reveal that the combination of mainshock and aftershock increases the seismic demand on slopes relative to the mainshock alone; thus, seismic risks are underestimated if aftershocks are neglected.

Keywords: Seismic slope stability, sliding displacement, mainshock, aftershock, landslide, earthquake.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 839
281 Vacuum Membrane Distillation for Desalination of Ground Water by using Flat Sheet Membrane

Authors: Bhausaheb L. Pangarkar, M.G. Sane, Saroj B. Parjane, Mahendra Guddad

Abstract:

The possibility of producing drinking water from brackish ground water using Vacuum membrane distillation (VMD) process was studied. It is a rising technology for seawater or brine desalination process. The process simply consists of a flat sheet hydrophobic micro porous PTFE membrane and diaphragm vacuum pump without a condenser for the water recovery or trap. In this work, VMD performance was investigated for aqueous NaCl solution and natural ground water. The influence of operational parameters such as feed flow rate (30 to 55 l/h), feed temperature (313 to 333 K), feed salt concentration (5000 to 7000 mg/l) and permeate pressure (1.5 to 6 kPa) on the membrane distillation (MD) permeation flux have been investigated. The maximum flux reached to 28.34 kg/m2 h at feed temperature, 333 K; vacuum pressure, 1.5 kPa; feed flow rate, 55 l/h and feed salt concentration, 7000 mg/l. The negligible effects in the reduction of permeate flux found over 150 h experimental run for salt water. But for the natural ground water application over 75 h, scale deposits observed on the membrane surface and 29% reduction in the permeate flux over 75 h. This reduction can be eliminated by acidification of feed water. Hence, promote the research attention in apply of VMD for the ground water purification over today-s conventional RO operation.

Keywords: VMD, hydrophobic PTFE flat membrane, desalination, ground water

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3228
280 Artificial Intelligent Approach for Machining Titanium Alloy in a Nonconventional Process

Authors: Md. Ashikur Rahman Khan, M. M. Rahman, K. Kadirgama

Abstract:

Artificial neural networks (ANN) are used in distinct researching fields and professions, and are prepared by cooperation of scientists in different fields such as computer engineering, electronic, structure, biology and so many different branches of science. Many models are built correlating the parameters and the outputs in electrical discharge machining (EDM) concern for different types of materials. Up till now model for Ti-5Al-2.5Sn alloy in the case of electrical discharge machining performance characteristics has not been developed. Therefore, in the present work, it is attempted to generate a model of material removal rate (MRR) for Ti-5Al-2.5Sn material by means of Artificial Neural Network. The experimentation is performed according to the design of experiment (DOE) of response surface methodology (RSM). To generate the DOE four parameters such as peak current, pulse on time, pulse off time and servo voltage and one output as MRR are considered. Ti-5Al-2.5Sn alloy is machined with positive polarity of copper electrode. Finally the developed model is tested with confirmation test. The confirmation test yields an error as within the agreeable limit. To investigate the effect of the parameters on performance sensitivity analysis is also carried out which reveals that the peak current having more effect on EDM performance.

Keywords: Ti-5Al-2.5Sn, material removal rate, copper tungsten, positive polarity, artificial neural network, multi-layer perceptron.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2354
279 Analysis of a Self-Acting Air Journal Bearing: Effect of Dynamic Deformation of Bump Foil

Authors: H. Bensouilah, H. Boucherit, M. Lahmar

Abstract:

A theoretical investigation on the effects of both steady-state and dynamic deformations of the foils on the dynamic performance characteristics of a self-acting air foil journal bearing operating under small harmonic vibrations is proposed. To take into account the dynamic deformations of foils, the perturbation method is used for determining the gas-film stiffness and damping coefficients for given values of excitation frequency, compressibility number, and compliance factor of the bump foil. The nonlinear stationary Reynolds’ equation is solved by means of the Galerkins’ finite element formulation while the finite differences method are used to solve the first order complex dynamic equations resulting from the perturbation of the nonlinear transient compressible Reynolds’ equation. The stiffness of a bump is uniformly distributed throughout the bearing surface (generation I bearing). It was found that the dynamic properties of the compliant finite length journal bearing are significantly affected by the compliance of foils especially whenthe dynamic deformation of foils is considered in addition to the static one by applying the principle of superposition.

Keywords: Elasto-aerodynamic lubrication, Air foil bearing, Steady-state deformation, Dynamic deformation, Stiffness and damping coefficients, Perturbation method, Fluid-structure interaction, Galerk infinite element method, Finite difference method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2716
278 Continuous Plug Flow and Discrete Particle Phase Coupling Using Triangular Parcels

Authors: Anders Schou Simonsen, Thomas Condra, Kim Sørensen

Abstract:

Various processes are modelled using a discrete phase, where particles are seeded from a source. Such particles can represent liquid water droplets, which are affecting the continuous phase by exchanging thermal energy, momentum, species etc. Discrete phases are typically modelled using parcel, which represents a collection of particles, which share properties such as temperature, velocity etc. When coupling the phases, the exchange rates are integrated over the cell, in which the parcel is located. This can cause spikes and fluctuating exchange rates. This paper presents an alternative method of coupling a discrete and a continuous plug flow phase. This is done using triangular parcels, which span between nodes following the dynamics of single droplets. Thus, the triangular parcels are propagated using the corner nodes. At each time step, the exchange rates are spatially integrated over the surface of the triangular parcels, which yields a smooth continuous exchange rate to the continuous phase. The results shows that the method is more stable, converges slightly faster and yields smooth exchange rates compared with the steam tube approach. However, the computational requirements are about five times greater, so the applicability of the alternative method should be limited to processes, where the exchange rates are important. The overall balances of the exchanged properties did not change significantly using the new approach.

Keywords: CFD, coupling, discrete phase, parcel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 562
277 Thermal Cracking Approach Investigation to Improve Biodiesel Properties

Authors: Roghaieh Parvizsedghy, Seyyed Mojtaba Sadrameli

Abstract:

Biodiesel as an alternative diesel fuel is steadily gaining more attention and significance. However, there are some drawbacks while using biodiesel regarding its properties that requires it to be blended with petrol based diesel and/or additives to improve the fuel characteristics. This study analyses thermal cracking as an alternative technology to improve biodiesel characteristics in which, FAME based biodiesel produced by transesterification of castor oil is fed into a continuous thermal cracking reactor at temperatures range of 450-500°C and flowrate range of 20-40 g/hr. Experiments designed by response surface methodology and subsequent statistical studies show that temperature and feed flowrate significantly affect the products yield. Response surfaces were used to study the impact of temperature and flowrate on the product properties. After each experiment, the produced crude bio-oil was distilled and diesel cut was separated. As shorter chain molecules are produced through thermal cracking, the distillation curve of the diesel cut fitted more with petrol based diesel curve in comparison to the biodiesel. Moreover, the produced diesel cut properties adequately pose within property ranges defined by the related standard of petrol based diesel. Cold flow properties, high heating value as the main drawbacks of the biodiesel are improved by this technology. Thermal cracking decreases kinematic viscosity, Flash point and cetane number. 

Keywords: Biodiesel, castor oil, fuel properties, thermal cracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3625
276 Oscillatory Electroosmotic Flow of Power-Law Fluids in a Microchannel

Authors: Rubén Bãnos, José Arcos, Oscar Bautista, Federico Méndez

Abstract:

The Oscillatory electroosmotic flow (OEOF) in power law fluids through a microchannel is studied numerically. A time-dependent external electric field (AC) is suddenly imposed at the ends of the microchannel which induces the fluid motion. The continuity and momentum equations in the x and y direction for the flow field were simplified in the limit of the lubrication approximation theory (LAT), and then solved using a numerical scheme. The solution of the electric potential is based on the Debye-H¨uckel approximation which suggest that the surface potential is small,say, smaller than 0.025V and for a symmetric (z : z) electrolyte. Our results suggest that the velocity profiles across the channel-width are controlled by the following dimensionless parameters: the angular Reynolds number, Reω, the electrokinetic parameter, ¯κ, defined as the ratio of the characteristic length scale to the Debye length, the parameter λ which represents the ratio of the Helmholtz-Smoluchowski velocity to the characteristic length scale and the flow behavior index, n. Also, the results reveal that the velocity profiles become more and more non-uniform across the channel-width as the Reω and ¯κ are increased, so oscillatory OEOF can be really useful in micro-fluidic devices such as micro-mixers.

Keywords: Oscillatory electroosmotic flow, Non-Newtonian fluids, power-law model, low zeta potentials.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 819
275 Air Handling Units Power Consumption Using Generalized Additive Model for Anomaly Detection: A Case Study in a Singapore Campus

Authors: Ju Peng Poh, Jun Yu Charles Lee, Jonathan Chew Hoe Khoo

Abstract:

The emergence of digital twin technology, a digital replica of physical world, has improved the real-time access to data from sensors about the performance of buildings. This digital transformation has opened up many opportunities to improve the management of the building by using the data collected to help monitor consumption patterns and energy leakages. One example is the integration of predictive models for anomaly detection. In this paper, we use the GAM (Generalised Additive Model) for the anomaly detection of Air Handling Units (AHU) power consumption pattern. There is ample research work on the use of GAM for the prediction of power consumption at the office building and nation-wide level. However, there is limited illustration of its anomaly detection capabilities, prescriptive analytics case study, and its integration with the latest development of digital twin technology. In this paper, we applied the general GAM modelling framework on the historical data of the AHU power consumption and cooling load of the building between Jan 2018 to Aug 2019 from an education campus in Singapore to train prediction models that, in turn, yield predicted values and ranges. The historical data are seamlessly extracted from the digital twin for modelling purposes. We enhanced the utility of the GAM model by using it to power a real-time anomaly detection system based on the forward predicted ranges. The magnitude of deviation from the upper and lower bounds of the uncertainty intervals is used to inform and identify anomalous data points, all based on historical data, without explicit intervention from domain experts. Notwithstanding, the domain expert fits in through an optional feedback loop through which iterative data cleansing is performed. After an anomalously high or low level of power consumption detected, a set of rule-based conditions are evaluated in real-time to help determine the next course of action for the facilities manager. The performance of GAM is then compared with other approaches to evaluate its effectiveness. Lastly, we discuss the successfully deployment of this approach for the detection of anomalous power consumption pattern and illustrated with real-world use cases.

Keywords: Anomaly detection, digital twin, Generalised Additive Model, Power Consumption Model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 435
274 An Investigation to Study the Moisture Dependency of Ground Enhancement Compound

Authors: Arunima Shukla, Vikas Almadi, Devesh Jaiswal, Sunil Saini, Bhusan S. Patil

Abstract:

Lightning protection consists of three main parts; mainly air termination system, down conductor, and earth termination system. Earth termination system is the most important part as earth is the sink and source of charges. Therefore, even when the charges are captured and delivered to the ground, and an easy path is not provided to the charges, earth termination system would lead to problems. Soil has significantly different resistivities ranging from 10 Ωm for wet organic soil to 10000 Ωm for bedrock. Different methods have been discussed and used conventionally such as deep-ground-well method and altering the length of the rod. Those methods are not considered economical. Therefore, it was a general practice to use charcoal along with salt to reduce the soil resistivity. Bentonite is worldwide acceptable material, that had led our interest towards study of bentonite at first. It was concluded that bentonite is a clay which is non-corrosive, environment friendly. Whereas bentonite is suitable only when there is moisture present in the soil, as in the absence of moisture, cracks will appear on the surface which will provide an open passage to the air, resulting into increase in the resistivity. Furthermore, bentonite without moisture does not have enough bonding property, moisture retention, conductivity, and non-leachability. Therefore, bentonite was used along with the other backfill material to overcome the dependency of bentonite on moisture. Different experiments were performed to get the best ratio of bentonite and carbon backfill. It was concluded that properties will highly depend on the quantity of bentonite and carbon-based backfill material.

Keywords: Backfill material, bentonite, conducting soil, grounding material, low resistivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 365
273 A Novel Approach for Coin Identification using Eigenvalues of Covariance Matrix, Hough Transform and Raster Scan Algorithms

Authors: J. Prakash, K. Rajesh

Abstract:

In this paper we present a new method for coin identification. The proposed method adopts a hybrid scheme using Eigenvalues of covariance matrix, Circular Hough Transform (CHT) and Bresenham-s circle algorithm. The statistical and geometrical properties of the small and large Eigenvalues of the covariance matrix of a set of edge pixels over a connected region of support are explored for the purpose of circular object detection. Sparse matrix technique is used to perform CHT. Since sparse matrices squeeze zero elements and contain only a small number of non-zero elements, they provide an advantage of matrix storage space and computational time. Neighborhood suppression scheme is used to find the valid Hough peaks. The accurate position of the circumference pixels is identified using Raster scan algorithm which uses geometrical symmetry property. After finding circular objects, the proposed method uses the texture on the surface of the coins called texton, which are unique properties of coins, refers to the fundamental micro structure in generic natural images. This method has been tested on several real world images including coin and non-coin images. The performance is also evaluated based on the noise withstanding capability.

Keywords: Circular Hough Transform, Coin detection, Covariance matrix, Eigenvalues, Raster scan Algorithm, Texton.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1843
272 Significance of Bike-Frame Geometric Factors for Cycling Efficiency and Muscle Activation

Authors: Luen Chow Chan

Abstract:

With the advocacy of green transportation and green traveling, cycling has become increasingly popular nowadays. Physiology and bike design are key factors for the influence of cycling efficiency. Therefore, this study aimed to investigate the significance of bike-frame geometric factors on cycling efficiency and muscle activation for different body sizes of non-professional Asian male cyclists. Participants who represented various body sizes, as measured by leg and back lengths, carried out cycling tests using a tailor-assembled road bike with different ergonomic design configurations including seat-height adjustments (i.e., 96%, 100%, and 104% of trochanteric height) and bike frame sizes (i.e., small and medium frames) for an assessable distance of 1 km. A specific power meter and self-developed adaptable surface electromyography (sEMG) were used to measure average pedaling power and cadence generated and muscle activation, respectively. The results showed that changing the seat height was far more significant than the body and bike frame sizes. The sEMG data evidently provided a better understanding of muscle activation as a function of different seat heights. Therefore, the interpretation of this study is that the major bike ergonomic design factor dominating the cycling efficiency of Asian participants with different body sizes was the seat height.

Keywords: Bike frame sizes, cadence rate, pedaling power, seat height.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 817
271 Automated, Objective Assessment of Pilot Performance in Simulated Environment

Authors: Maciej Zasuwa, Grzegorz Ptasinski, Antoni Kopyt

Abstract:

Nowadays flight simulators offer tremendous possibilities for safe and cost-effective pilot training, by utilization of powerful, computational tools. Due to technology outpacing methodology, vast majority of training related work is done by human instructors. It makes assessment not efficient, and vulnerable to instructors’ subjectivity. The research presents an Objective Assessment Tool (gOAT) developed at the Warsaw University of Technology, and tested on SW-4 helicopter flight simulator. The tool uses database of the predefined manoeuvres, defined and integrated to the virtual environment. These were implemented, basing on Aeronautical Design Standard Performance Specification Handling Qualities Requirements for Military Rotorcraft (ADS-33), with predefined Mission-Task-Elements (MTEs). The core element of the gOAT enhanced algorithm that provides instructor a new set of information. In details, a set of objective flight parameters fused with report about psychophysical state of the pilot. While the pilot performs the task, the gOAT system automatically calculates performance using the embedded algorithms, data registered by the simulator software (position, orientation, velocity, etc.), as well as measurements of physiological changes of pilot’s psychophysiological state (temperature, sweating, heart rate). Complete set of measurements is presented on-line to instructor’s station and shown in dedicated graphical interface. The presented tool is based on open source solutions, and flexible for editing. Additional manoeuvres can be easily added using guide developed by authors, and MTEs can be changed by instructor even during an exercise. Algorithm and measurements used allow not only to implement basic stress level measurements, but also to reduce instructor’s workload significantly. Tool developed can be used for training purpose, as well as periodical checks of the aircrew. Flexibility and ease of modifications allow the further development to be wide ranged, and the tool to be customized. Depending on simulation purpose, gOAT can be adjusted to support simulator of aircraft, helicopter, or unmanned aerial vehicle (UAV).

Keywords: Automated assessment, flight simulator, human factors, pilot training.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 761
270 Separation of Composites for Recycling: Measurement of Electrostatic Charge of Carbon and Glass Fiber Particles

Authors: J. Thirunavukkarasu, M. Poulet, T. Turner, S. Pickering

Abstract:

Composite waste from manufacturing can consist of different fiber materials, including blends of different fiber. Commercially, the recycling of composite waste is currently limited to carbon fiber waste and recycling glass fiber waste is currently not economically viable due to the low cost of virgin glass fiber and the reduced mechanical properties of the recovered fibers. For this reason, the recycling of hybrid fiber materials, where carbon fiber is blended with glass fibers, cannot be processed economically. Therefore, a separation method is required to remove the glass fiber materials during the recycling process. An electrostatic separation method is chosen for this work because of the significant difference between carbon and glass fiber electrical properties. In this study, an experimental rig has been developed to measure the electrostatic charge achievable as the materials are passed through a tube. A range of particle lengths (80-100 µm, 6 mm and 12 mm), surface state conditions (0%SA, 2%SA and 6%SA), and several tube wall materials have been studied. A polytetrafluoroethylene (PTFE) tube and recycled fiber without sizing agent were identified as the most suitable parameters for the electrical separation method. It was also found that shorter fiber lengths helped to encourage particle flow and attain higher charge values. These findings can be used to develop a separation process to enable the cost-effective recycling of hybrid fiber composite waste. 

Keywords: electrostatic charging, hybrid fiber composite, recycling, short fiber composites

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 595
269 Tool Wear of Aluminum/Chromium/Tungsten-Based-Coated Cemented Carbide Tools in Cutting Sintered Steel

Authors: Tadahiro Wada, Hiroyuki Hanyu

Abstract:

In this study, to clarify the effectiveness of an aluminum/chromium/tungsten-based-coated tool for cutting sintered steel, tool wear was experimentally investigated. The sintered steel was turned with the (Al60,Cr25,W15)N-, (Al60,Cr25,W15)(C,N)- and (Al64,Cr28,W8)(C,N)-coated cemented carbide tools according to the physical vapor deposition (PVD) method. Moreover, the tool wear of the aluminum/chromium/tungsten-based-coated item was compared with that of the (Al,Cr)N coated tool. Furthermore, to clarify the tool wear mechanism of the aluminum/chromium/tungsten-coating film for cutting sintered steel, Scanning Electron Microscope observation and Energy Dispersive x-ray Spectroscopy mapping analysis were conducted on the abraded surface. The following results were obtained: (1) The wear progress of the (Al64,Cr28,W8)(C,N)-coated tool was the slowest among that of the five coated tools. (2) Adding carbon (C) to the aluminum/chromium/tungsten-based-coating film was effective for improving the wear-resistance. (3) The main wear mechanism of the (Al60,Cr25,W15)N-, the (Al60,Cr25,W15)(C,N)- and the (Al64,Cr28,W8)(C,N)-coating films was abrasive wear.

Keywords: Cutting, physical vapor deposition coating method, tool wear, tool wear mechanism, sintered steel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1628
268 A Highly Efficient Process Applying Sige Film to Generate Quasi-Beehive Si Nanostructure for the Growth of Platinum Nanopillars with High Emission Property for the Applications of X-Ray Tube

Authors: Pin-Hsu Kao, Wen-Shou Tseng, Hung-Ming Tai, Yuan-Ming Chang, Jenh-Yih Juang

Abstract:

We report a lithography-free approach to fabricate the biomimetics, quasi-beehive Si nanostructures (QBSNs), on Si-substrates. The self-assembled SiGe nanoislands via the strain induced surface roughening (Asaro-Tiller-Grinfeld instability) during in-situ annealing play a key role as patterned sacrifice regions for subsequent reactive ion etching (RIE) process performed for fabricating quasi-beehive nanostructures on Si-substrates. As the measurements of field emission, the bare QBSNs show poor field emission performance, resulted from the existence of the native oxide layer which forms an insurmountable barrier for electron emission. In order to dramatically improve the field emission characteristics, the platinum nanopillars (Pt-NPs) were deposited on QBSNs to form Pt-NPs/QBSNs heterostructures. The turn-on field of Pt-NPs/QBSNs is as low as 2.29 V/μm (corresponding current density of 1 μA/cm2), and the field enhancement factor (β-value) is significantly increased to 6067. More importantly, the uniform and continuous electrons excite light emission, due to the surrounding filed emitters from Pt-NPs/QBSNs, can be easily obtained. This approach does not require an expensive photolithographic process and possesses great potential for applications.

Keywords: Biomimetics, quasi-beehive Si, SiGe nanoislands, platinum nanopillars, field emission.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1750
267 Generation of Catalytic Films of Zeolite Y and ZSM-5 on FeCrAlloy Metal

Authors: Rana Th. A. Al-Rubaye, Arthur A. Garforth

Abstract:

This work details the generation of thin films of structured zeolite catalysts (ZSM–5 and Y) onto the surface of a metal substrate (FeCrAlloy) using in-situ hydrothermal synthesis. In addition, the zeolite Y is post-synthetically modified by acidified ammonium ion exchange to generate US-Y. Finally the catalytic activity of the structured ZSM-5 catalyst films (Si/Al = 11, thickness 146 0m) and structured US–Y catalyst film (Si/Al = 8, thickness 230m) were compared with the pelleted powder form of ZSM–5 and USY catalysts of similar Si/Al ratios. The structured catalyst films have been characterised using a range of techniques, including X-ray diffraction (XRD), Electron microscopy (SEM), Energy Dispersive X–ray analysis (EDX) and Thermogravimetric Analysis (TGA). The transition from oxide-onalloy wires to hydrothermally synthesised uniformly zeolite coated surfaces was followed using SEM and XRD. In addition, the robustness of the prepared coating was confirmed by subjecting these to thermal cycling (ambient to 550oC). The cracking of n–heptane over the pellets and structured catalysts for both ZSM–5 and Y zeolite showed very similar product selectivities for similar amounts of catalyst with an apparent activation energy of around 60 kJ mol-1. This paper demonstrates that structured catalysts can be manufactured with excellent zeolite adherence and when suitably activated/modified give comparable cracking results to the pelleted powder forms. These structured catalysts will improve temperature distribution in highly exothermic and endothermic catalysed processes.

Keywords: FeCrAlloy, Structured catalyst, and Zeolite Y, Zeolite ZSM-5.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3137
266 Wildfires Assessed by Remote Sense Images and Burned Land Monitoring

Authors: M. C. Proença

Abstract:

The tools described in this paper enable the location of burned areas where took place the annihilation of natural habitats and establishes a baseline for major changes in forest ecosystems during recovery. Moreover, the result allows the follow up of the surface fuel loading, allowing the evaluation and guidance of restoration measures to remote areas by phased time planning. This case study implements the evaluation of burned areas that suffered successive wildfires in Portugal mainland during the summer of 2017, killing more than 60 people. The goal is to show that this evaluation can be done with remote sense data free of charges in a simple laptop, with open-source software, describing the not-so-simple methodology step by step, to make it accessible for local workers in the areas attained, where the availability of information is essential for the immediate planning of mitigation measures, such as restoring road access, allocate funds for the recovery of human dwellings and assess further needs for restoration of the ecological system. Wildfires also devastate forest ecosystems having a direct impact on vegetation cover and killing or driving away the animal population, besides loss of all crops in rural areas that are essential as local resources. The economic interests are also attained, as the pinewood burned becomes useless for the noblest applications, so its value decreases, and resin extraction ends for several years.

Keywords: Image processing, remote sensing, wildfires, burned areas, SENTINEL-2.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1453
265 Fruit Growing in Romania and Its Role for Rural Communities’ Development

Authors: Maria Toader, Gheorghe Valentin Roman

Abstract:

The importance of fruit trees and bushes growing for Romania is due the concordance that exists between the different ecological conditions in natural basins, and the requirements of different species and varieties. There are, in Romania, natural areas dedicated to the main trees species: plum, apple, pear, cherry, sour cherry, finding optimal conditions for harnessing the potential of fruitfulness, making fruit quality both in terms of ratio commercial, and content in active principles. The share of fruits crops in the world economy of agricultural production is due primarily to the role of fruits in nourishment for human, and in the prevention and combating of diseases, in increasing the national income of cultivator countries and to improve comfort for human life. For Romania, the perspectives of the sector are positive, and are due to European funding opportunities, which provide farmers a specialized program that meets the needs of development and modernization of fruit growing industry, cultivation technology and equipment, organization and grouping of producers, creating storage facilities, conditioning, marketing and the joint use of fresh fruit. This paper shows the evolution of fruit growing, in Romania compared to other states. The document presents the current situation of the main tree species both in terms of surface but also of the productions and the role that this activity may have for the development of rural communities.

Keywords: Fruit growing, fruits trees, productivity, rural development.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1327