Search results for: Stainless Wire Mesh
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 500

Search results for: Stainless Wire Mesh

470 Study of Intergranular Corrosion in Austenitic Stainless Steels Using Electrochemical Impedance Spectroscopy

Authors: Satish Kolli, Adriana Ferancova, David Porter, Jukka Kömi

Abstract:

Electrochemical impedance spectroscopy (EIS) has been used to detect sensitization in austenitic stainless steels that are heat treated in the temperature regime 600-820 °C to produce different degrees of sensitization in the material. The tests were conducted at five different DC potentials in the transpassive region. The quantitative determination of degree of sensitization has been done using double loop electrochemical potentiokinetic reactivation tests (DL-EPR). The correlation between EIS Nyquist diagrams and DL-EPR degree of sensitization values has been studied. The EIS technique can be used as a qualitative tool in determining the intergranular corrosion in austenitic stainless steels that are heat treated at a given temperature.

Keywords: Electrochemical impedance spectroscopy, intergranular corrosion, sensitization, stainless steel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 810
469 Local Mesh Co-Occurrence Pattern for Content Based Image Retrieval

Authors: C. Yesubai Rubavathi, R. Ravi

Abstract:

This paper presents the local mesh co-occurrence patterns (LMCoP) using HSV color space for image retrieval system. HSV color space is used in this method to utilize color, intensity and brightness of images. Local mesh patterns are applied to define the local information of image and gray level co-occurrence is used to obtain the co-occurrence of LMeP pixels. Local mesh co-occurrence pattern extracts the local directional information from local mesh pattern and converts it into a well-mannered feature vector using gray level co-occurrence matrix. The proposed method is tested on three different databases called MIT VisTex, Corel, and STex. Also, this algorithm is compared with existing methods, and results in terms of precision and recall are shown in this paper.

Keywords: Content-based image retrieval system, HSV color space, gray level co-occurrence matrix, local mesh pattern.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2171
468 Natural Gas Sweetening by Wetted-Wire Column

Authors: Sarah Taheri, Shahram Ghanbari Pakdehi, Arash Rezaei

Abstract:

Natural gas usually includes H2S component which is very toxic, hazardous and corrosive to environment, human being and process equipments, respectively. Therefore, sweetening of the gas (separation of H2S) is inevitable. To achieve this purpose, using packed-bed columns with liquid absorbents such as MEA or DEA is very common. Due to some problems of usual packed columns especially high pressure drop of gas phase, a novel kind of them called wetted-wire column (WWC) has been invented. The column decreases the pressure drop significantly and improves the absorption efficiency. The packings are very thin rods (like wire) and as long as column. The column has 100 wires with a triangular arrangement and counter current flows of gas and liquid phases. The observation showed that at the same conditions, the absorption performance was quite comparable to conventional packed-bed towers and a very low pressure drop.

Keywords: H2S, Natural gas, separation, wetted-wire column (WWC).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1959
467 Characteristics Analysis of Voltage Sag and Voltage Swell in Multi-Grounded Four-Wire Power Distribution Systems

Authors: Jamal Moshtagh, Hassan Pourvali Souraki

Abstract:

In North America, Most power distribution systems employ a four-wire multi-grounded neutral (MGN) design. This paper has explained the inherent characteristics of multi-grounded three-phase four-wire distribution systems under unbalanced situations. As a result, the mechanism of voltage swell and voltage sag in MGN feeders becomes difficult to understand. The simulation tool that has been used in this paper is MATLAB under Windows software. In this paper the equivalent model of a full-scale multigrounded distribution system implemented by MATLAB is introduced. The results are expected to help utility engineers to understand the impact of MGN on distribution system operations.

Keywords: Distribution systems, multi- grounded, neutral, three-phase four-wire, ground.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2098
466 The Pitch Diameter of Pipe Taper Thread Measurement and Uncertainty Using Three-Wire Probe

Authors: J. Kloypayan, W. Pimpakan

Abstract:

The pipe taper thread measurement and uncertainty  normally used the four-wire probe according to the JIS B 0262.  Besides, according to the EA-10/10 standard, the pipe thread could be  measured using the three-wire probe. This research proposed to use  the three-wire probe measuring the pitch diameter of the pipe taper  thread. The measuring accessory component was designed and made,  then, assembled to one side of the ULM 828 CiM machine.  Therefore, this machine could be used to measure and calibrate both  the pipe thread and the pipe taper thread. The equations and the  expanded uncertainty for pitch diameter measurement were  formulated. After the experiment, the results showed that the pipe  taper thread had the pitch diameter equal to 19.165mm and the  expanded uncertainty equal to 1.88µm. Then, the experiment results  were compared to the results from the National Institute of Metrology  Thailand. The equivalence ratio from the comparison showed that  both results were related. Thus, the proposed method of using the  three-wire probe measured the pitch diameter of the pipe taper thread  was acceptable.

Keywords: Pipe taper thread, Three-wire probe, Measure and Calibration, The Universal length measuring machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7058
465 The Light-Effect in Cylindrical Quantum Wire with an Infinite Potential for the Case of Electrons: Optical Phonon Scattering

Authors: Hoang Van Ngoc, Nguyen Vu Nhan, Nguyen Quang Bau

Abstract:

The light-effect in cylindrical quantum wire with an infinite potential for the case of electrons, optical phonon scattering, is studied based on the quantum kinetic equation. The density of the direct current in a cylindrical quantum wire by a linearly polarized electromagnetic wave, a DC electric field, and an intense laser field is calculated. Analytic expressions for the density of the direct current are studied as a function of the frequency of the laser radiation field, the frequency of the linearly polarized electromagnetic wave, the temperature of system, and the size of quantum wire. The density of the direct current in cylindrical quantum wire with an infinite potential for the case of electrons – optical phonon scattering is nonlinearly dependent on the frequency of the linearly polarized electromagnetic wave. The analytic expressions are numerically evaluated and plotted for a specific quantum wire, GaAs/GaAsAl.

Keywords: The light-effect, cylindrical quantum wire with an infinite potential, the density of the direct current, electrons - optical phonon scattering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1023
464 A New Cut–Through Mechanism in IEEE 802.16 Mesh Networks

Authors: Yi-Ting Mai, Chun-Chuan Yang, Cheng-Jung Wen

Abstract:

IEEE 802.16 is a new wireless technology standard, it has some advantages, including wider coverage, higher bandwidth, and QoS support. As the new wireless technology for last mile solution, there are designed two models in IEEE 802.16 standard. One is PMP (point to multipoint) and the other is Mesh. In this paper we only focus on IEEE 802.16 Mesh model. According to the IEEE 802.16 standard description, Mesh model has two scheduling modes, centralized and distributed. Considering the pros and cons of the two scheduling, we present the combined scheduling QoS framework that the BS (Base Station) controls time frame scheduling and selects the shortest path from source to destination directly. On the other hand, we propose the Expedited Queue mechanism to cut down the transmission time. The EQ mechanism can reduce a lot of end-to-end delay in our QoS framework. Simulation study has shown that the average delay is smaller than contrasts. Furthermore, our proposed scheme can also achieve higher performance.

Keywords: IEEE 802.16 Mesh, Scheduling, Expedited Queue, QoS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1797
463 Towards for Admission Control in WIMAX Relay Station Mesh Network for Mobile Stations out of Coverage Using Ad-Hoc

Authors: Anas Majeed, A. A. Zaidan, B. B. Zaidan, Laiha Mat Kiah

Abstract:

WIMAX relay station mesh network has been approved by IEEE 802.16j as a standard to provide a highly data rate transmission, the RS was implemented to extend the coverage zone of the BS, for instance the MSs previously were out of the coverage of the BS they become in the coverage of the RS, therefore these MSs can have Admission control from the BS through the RS. This paper describe a problem in the mesh network Relay station, for instance the problem of how to serve the mobile stations (MSs) which are out of the Relay station coverage. This paper also proposed a solution for mobile stations out of the coverage of the WIMAX Relay stations mesh Network. Therefore Ad-hoc network defined as a solution by using its admission control schema and apply it on the mobiles inside and outside the Relay station coverage.

Keywords: WIMAX, relay station, mesh network, ad-hoc, WiFi, generic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1705
462 Performance Analysis of Ferrocement Retrofitted Masonry Wall Units under Cyclic Loading

Authors: Raquib Ahsan, Md. Mahir Asif, Md. Zahidul Alam

Abstract:

A huge portion of old masonry buildings in Bangladesh are vulnerable to earthquake. In most of the cases these buildings contain unreinforced masonry wall which are most likely to be subjected to earthquake damages. Due to deterioration of mortar joint and aging, shear resistance of these unreinforced masonry walls dwindle. So, retrofitting of these old buildings has become an important issue. Among many researched and experimented techniques, ferrocement retrofitting can be a low cost technique in context of the economic condition of Bangladesh. This study aims at investigating the behavior of ferrocement retrofitted unconfined URM walls under different types of cyclic loading. Four 725 mm × 725 mm masonry wall units were prepared with bricks jointed by stretcher bond with 12.5 mm mortar between two adjacent layers of bricks. To compare the effectiveness of ferrocement retrofitting a particular type wire mesh was used in this experiment which is 20 gauge woven wire mesh with 12.5 mm × 12.5 mm square opening. After retrofitting with ferrocement these wall units were tested by applying cyclic deformation along the diagonals of the specimens. Then a comparative study was performed between the retrofitted specimens and control specimens for both partially reversed cyclic load condition and cyclic compression load condition. The experiment results show that ultimate load carrying capacities of ferrocement retrofitted specimens are 35% and 27% greater than the control specimen under partially reversed cyclic loading and cyclic compression respectively. And before failure the deformations of ferrocement retrofitted specimens are 43% and 33% greater than the control specimen under reversed cyclic loading and cyclic compression respectively. Therefore, the test results show that the ultimate load carrying capacity and ductility of ferrocement retrofitted specimens have improved.

Keywords: Cyclic compression, ferrocement, masonry wall, partially reversed cyclic load, retrofitting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 868
461 Thermal Fatigue Behavior of Austenitic Stainless Steels

Authors: Jung-Ho Moon, Tae Kwon Ha

Abstract:

Continually increasing working temperature and growing need for greater efficiency and reliability of automotive exhaust require systematic investigation into the thermal fatigue properties especially of high temperature stainless steels. In this study, thermal fatigue properties of 300 series austenitic stainless steels have been evaluated in the temperature ranges of 200-800oC and 200-900oC. Systematic methods for control of temperatures within the predetermined range and measurement of load applied to specimens as a function of temperature during thermal cycles have been established. Thermal fatigue tests were conducted under fully constrained condition, where both ends of specimens were completely fixed. Load relaxation behavior at the temperatures of thermal cycle was closely related with the thermal fatigue property.

Keywords: Austenitic stainless steel, automotive exhaust, thermal fatigue, microstructure, load relaxation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3323
460 Effect of Mesh Size on the Supersonic Viscous Flow Parameters around an Axisymmetric Blunt Body

Authors: Rabah Haoui

Abstract:

The aim of this work is to analyze a viscous flow around the axisymmetric blunt body taken into account the mesh size both in the free stream and into the boundary layer. The resolution of the Navier-Stokes equations is realized by using the finite volume method to determine the flow parameters and detached shock position. The numerical technique uses the Flux Vector Splitting method of Van Leer. Here, adequate time stepping parameter, CFL coefficient and mesh size level are selected to ensure numerical convergence. The effect of the mesh size is significant on the shear stress and velocity profile. The best solution is obtained with using a very fine grid. This study enabled us to confirm that the determination of boundary layer thickness can be obtained only if the size of the mesh is lower than a certain value limits given by our calculations.

Keywords: Supersonic flow, viscous flow, finite volume, blunt body.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1995
459 Numerical Calculation of the Ionization Energy of Donors in a Cubic Quantum well and Wire

Authors: Sara Sedaghat, Mahmood Barati, Iraj Kazeminezhad

Abstract:

The ionization energy in semiconductor systems in nano scale was investigated by using effective mass approximation. By introducing the Hamiltonian of the system, the variational technique was employed to calculate the ground state and the ionization energy of a donor at the center and in the case that the impurities are randomly distributed inside a cubic quantum well. The numerical results for GaAs/GaAlAs show that the ionization energy strongly depends on the well width for both cases and it decreases as the well width increases. The ionization energy of a quantum wire was also calculated and compared with the results for the well.

Keywords: quantum well, quantum wire, quantum dot, impuritystate

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1697
458 Microstructure Changes of Machined Surfaceson Austenitic 304 Stainless Steel

Authors: Lin. Yan, Wenyu. Yang, Hongping. Jin, Zhiguang Wang

Abstract:

This paper presents a experiment to estimate the influences of cutting conditions in microstructure changes of machining austenitic 304 stainless steel, especially for wear insert. The wear insert were prefabricated with a width of 0.5 mm. And the forces, temperature distribution, RS, and microstructure changes were measured by force dynamometer, infrared thermal camera, X-ray diffraction, XRD, SEM, respectively. The results told that the different combinations of machining condition have a significant influence on machined surface microstructure changes. In addition to that, the ANOVA and AOMwere used to tell the different influences of cutting speed, feed rate, and wear insert.

Keywords: Microstructure Changes, Wear width, Stainless steel

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2289
457 Selective Forwarding Attack and Its Detection Algorithms: A Review

Authors: Sushil Sarwa, Rajeev Kumar

Abstract:

The wireless mesh networks (WMNs) are emerging technology in wireless networking as they can serve large scale high speed internet access. Due to its wireless multi-hop feature, wireless mesh network is prone to suffer from many attacks, such as denial of service attack (DoS). We consider a special case of DoS attack which is selective forwarding attack (a.k.a. gray hole attack). In such attack, a misbehaving mesh router selectively drops the packets it receives rom its predecessor mesh router. It is very hard to detect that packet loss is due to medium access collision, bad channel quality or because of selective forwarding attack. In this paper, we present a review of detection algorithms of selective forwarding attack and discuss their advantage & disadvantage. Finally we conclude this paper with open research issues and challenges.

Keywords: CAD algorithm, CHEMAS, selective forwarding attack, watchdog & pathrater, wireless mesh network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2746
456 A Method for 3D Mesh Adaptation in FEA

Authors: S. Sfarni, E. Bellenger, J. Fortin, M. Guessasma

Abstract:

The use of the mechanical simulation (in particular the finite element analysis) requires the management of assumptions in order to analyse a real complex system. In finite element analysis (FEA), two modeling steps require assumptions to be able to carry out the computations and to obtain some results: the building of the physical model and the building of the simulation model. The simplification assumptions made on the analysed system in these two steps can generate two kinds of errors: the physical modeling errors (mathematical model, domain simplifications, materials properties, boundary conditions and loads) and the mesh discretization errors. This paper proposes a mesh adaptive method based on the use of an h-adaptive scheme in combination with an error estimator in order to choose the mesh of the simulation model. This method allows us to choose the mesh of the simulation model in order to control the cost and the quality of the finite element analysis.

Keywords: Finite element, discretization errors, adaptivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1439
455 Volume Fraction Law for Stainless Steel on Inner Surface and Nickel on Outer Surface For FGM Cylindrical Shell

Authors: M.Hosseinjani Zamenjani, A.R.Tahmasebi Birgani, M.R.Isvandzibaei

Abstract:

Vibration of thin cylindrical shells made of a functionally gradient material composed of stainless steel and nickel is presented. The effects of the FGM configuration are studied by studying the frequencies of FG cylindrical shells. In this case FG cylindrical shell has Nickel on its outer surface and stainless steel on its inner surface. The study is carried out based on third order shear deformation shell theory. The objective is to study the natural frequencies, the influence of constituent volume fractions and the effects of configurations of the constituent materials on the frequencies. The properties are graded in the thickness direction according to the volume fraction power-law distribution. Results are presented on the frequency characteristics, the influence of the constituent various volume fractions on the frequencies.

Keywords: Nickel, Stainless Steel, Cylindrical shell.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1265
454 The Interaction between Hydrogen and Surface Stress in Stainless Steel

Authors: O. Takakuwa, Y. Mano, H. Soyama

Abstract:

This paper reveals the interaction between hydrogen and surface stress in austenitic stainless steel by X-ray diffraction stress measurement and thermal desorption analysis before and after being charged with hydrogen. The surface residual stress was varied by surface finishing using several disc polishing agents. The obtained results show that the residual stress near surface had a significant effect on hydrogen absorption behavior, that is, tensile residual stress promoted the hydrogen absorption and compressive one did opposite. Also, hydrogen induced equi-biaxial stress and this stress has a linear correlation with hydrogen content.

Keywords: Hydrogen embrittlement, Residual stress, Surface finishing, Stainless steel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3003
453 Optimization of Wire EDM Parameters for Fabrication of Micro Channels

Authors: Gurinder Singh Brar, Sarbjeet Singh, Harry Garg

Abstract:

Wire Electric Discharge Machining (WEDM) is thermal machining process capable of machining very hard electrically conductive material irrespective of their hardness. WEDM is being widely used to machine micro scale parts with the high dimensional accuracy and surface finish. The objective of this paper is to optimize the process parameters of wire EDM to fabricate the micro channels and to calculate the surface finish and material removal rate of micro channels fabricated using wire EDM. The material used is aluminum 6061 alloy. The experiments were performed using CNC wire cut electric discharge machine. The effect of various parameters of WEDM like pulse on time (TON) with the levels (100, 150, 200), pulse off time (TOFF) with the levels (25, 35, 45) and current (IP) with the levels (105, 110, 115) were investigated to study the effect on output parameter i.e. Surface Roughness and Material Removal Rate (MRR). Each experiment was conducted under different conditions of pulse on time, pulse off time and peak current. For material removal rate, TON and Ip were the most significant process parameter. MRR increases with the increase in TON and Ip and decreases with the increase in TOFF. For surface roughness, TON and Ip have the maximum effect and TOFF was found out to be less effective.

Keywords: Micro Channels, Wire Electric Discharge Machining (WEDM), Metal Removal Rate (MRR), Surface Finish.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2659
452 Nickel on Inner Surface and Stainless Steel on Outer Surface for Functionally Graded Cylindrical Shell

Authors: A.R.Tahmasebi Birgani, M.Hosseinjani Zamenjani, M.R.Isvandzibaei

Abstract:

Study is on the vibration of thin cylindrical shells made of a functionally gradient material (FGM) composed of stainless steel and nickel is presented. The effects of the FGM configuration are studied by studying the frequencies of FG cylindrical shells. In this case FG cylindrical shell has Nickel on its inner surface and stainless steel on its outer surface. The study is carried out based on third order shear deformation shell theory. The objective is to study the natural frequencies, the influence of constituent volume fractions and the effects of configurations of the constituent materials on the frequencies. The properties are graded in the thickness direction according to the volume fraction power-law distribution. Results are presented on the frequency characteristics, the influence of the constituent various volume fractions on the frequencies.

Keywords: Nickel, Stainless Steel, Cylindrical shell.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1371
451 Mechanical and Microstructural Properties of Rotary-Swaged Wire of Commercial-Purity Titanium

Authors: Michal Duchek, Jan Palán, Tomas Kubina

Abstract:

Bars made of titanium grade 2 and grade 4 were subjected to rotary forging with up to 2.2 true strain reduction in the cross-section from 10 to 3.81 mm. During progressive deformation, grain refinement in the transverse direction took place. In the longitudinal direction, ultrafine microstructure has not developed. It has been demonstrated that titanium grade 2 strengthens more than grade 4. The ultimate tensile strength increased from 650 MPa to 1040 MPa in titanium grade 4. Hardness profiles on the cross section in both materials show an increase in the centre of the wire.

Keywords: Commercial-purity titanium, wire, rotary swaging, tensile test, hardness, modulus of elasticity, microstructure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 693
450 Characterising the Effects of Heat Treatment on 3CR12 and AISI 316 Stainless Steels

Authors: Esther T. Akinlabi, Stephen A. Akinlabi

Abstract:

This paper reports on the effects of heat treatment on 3CR12 and AISI 316 stainless steel grades. Heat treatment was conducted on the steel grades and cooled using two different media; air and water in order to study the effect of each medium on the evolving properties of the samples. The heat treated samples were characterized through the evolving microstructure and hardness. It was found that there was a significant grain size reduction in both the heat treated stainless steel specimens compared to the parent materials. The finer grain sizes were achieved as a result of impediment to growth of one phase by the other. The Vickers microhardness values of the heat treated samples were higher compared to the parent materials due to the fact that each of the steel grades had a proportion of martensitic structures in their microstructures thereby improving the integrity of the material.

Keywords: Austenite, Ferrite, Grain size, Hardness, Martensite, Microstructure and stainless steel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4360
449 Failure Analysis of a 304 Stainless Steel Flange Crack at Pipeline Transportation of Ethylene

Authors: Parisa Hasanpour, Bahram Borooghani, Vahid Asadi

Abstract:

In the current research, a catastrophic failure of a 304 stainless steel flange at pipeline transportation of ethylene in a petrochemical refinery was studied. Cracking was found in the flange after about 78840h service. Through the chemical analysis and tensile tests, in addition to microstructural analysis such as optical microscopy and Scanning Electron Microscopy (SEM) on the failed part, it found that the fatigue was responsible for the fracture of the flange, which originated from bumps and depressions on the outer surface and propagated by vibration caused by the working condition.

Keywords: Failure analysis, 304 stainless steel, fatigue, flange, petrochemical refinery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 174
448 Enhancement Throughput of Unplanned Wireless Mesh Networks Deployment Using Partitioning Hierarchical Cluster (PHC)

Authors: Ahmed K. Hasan, A. A. Zaidan, Anas Majeed, B. B. Zaidan, Rosli Salleh, Omar Zakaria, Ali Zuheir

Abstract:

Wireless mesh networks based on IEEE 802.11 technology are a scalable and efficient solution for next generation wireless networking to provide wide-area wideband internet access to a significant number of users. The deployment of these wireless mesh networks may be within different authorities and without any planning, they are potentially overlapped partially or completely in the same service area. The aim of the proposed model is design a new model to Enhancement Throughput of Unplanned Wireless Mesh Networks Deployment Using Partitioning Hierarchical Cluster (PHC), the unplanned deployment of WMNs are determinates there performance. We use throughput optimization approach to model the unplanned WMNs deployment problem based on partitioning hierarchical cluster (PHC) based architecture, in this paper the researcher used bridge node by allowing interworking traffic between these WMNs as solution for performance degradation.

Keywords: Wireless Mesh Networks, 802.11s Internetworking, partitioning Hierarchical Cluste.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1496
447 Heat Forging Analysis Method on Blank Consisting of Two Metals

Authors: Takashi Ueda, Shinichi Enoki

Abstract:

Forging parts is used to automobiles; because, they have high strength and it is possible to press them into complicated shape. When itis possible to manufacture hollow forging parts, it leads to reduce weightof the automobiles. But, hollow forging parts are confined to axisymmetrical shape. Hollowforging parts that were pressed to complicated shape are expected. Therefore, we forge a blank that aluminum alloy was inserted in stainless steel. After that, we can providecomplex forging parts that are reduced weight,ifit is possible to be melted the aluminum alloy away by using different of melting points.It is necessary to establish heat forging analysis methodon blank consist of stainless steel and aluminum alloy. Because,this forging is different from conventional forging and this technology is not confirmed. In this study, we compared forging experiment with numerical analysis on the view point of forming load and shape after forming and establish how to set the material temperaturesof two metals and material property of stainless steel on the analysis method. Consequently, temperature difference of stainless steel and aluminum alloy was obtained by experiment. We got material property of stainless steel on forging experimental by compression tests. We had compared numerical analysis that was used the temperature difference of two metals and the material property of stainless steel on forging experimental with forging experiment. Forging analysis method on blankconsist of two metals was established by result of numerical analysis having agreedwith result of forging experiment.

Keywords: Forging, lightweight, analysis, hollow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1697
446 Metal Inert Gas Welding-Based-Shaped Metal Deposition in Additive Layered Manufacturing: A Review

Authors: Adnan A. Ugla, Hassan J. Khaudair, Ahmed R. J. Almusawi

Abstract:

Shaped Metal Deposition (SMD) in additive layered manufacturing technique is a promising alternative to traditional manufacturing used for manufacturing large, expensive metal components with complex geometry in addition to producing free structures by building materials in a layer by layer technique. The present paper is a comprehensive review of the literature and the latest rapid manufacturing technologies of the SMD technique. The aim of this paper is to comprehensively review the most prominent facts that researchers have dealt with in the SMD techniques especially those associated with the cold wire feed. The intent of this study is to review the literature presented on metal deposition processes and their classifications, including SMD process using Wire + Arc Additive Manufacturing (WAAM) which divides into wire + tungsten inert gas (TIG), metal inert gas (MIG), or plasma. This literary research presented covers extensive details on bead geometry, process parameters and heat input or arc energy resulting from the deposition process in both cases MIG and Tandem-MIG in SMD process. Furthermore, SMD may be done using Single Wire-MIG (SW-MIG) welding and SMD using Double Wire-MIG (DW-MIG) welding. The present review shows that the method of deposition of metals when using the DW-MIG process can be considered a distinctive and low-cost method to produce large metal components due to high deposition rates as well as reduce the input of high temperature generated during deposition and reduce the distortions. However, the accuracy and surface finish of the MIG-SMD are less as compared to electron and laser beam.

Keywords: Shaped metal deposition, additive manufacturing, double-wire feed, cold feed wire.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1339
445 EBSD Investigation of Friction Stir Welded Duplex Stainless Steel

Authors: T. Saeid, A. Abdollah-zadeh, T. Shibayanagi, K. Ikeuchi, H. Assadi

Abstract:

Electron back-scattered diffraction was used to follow the evolution of microstructure from the base metal to the stir zone (SZ) in a duplex stainless steel subjected to friction stir welding. In the stir zone (SZ), a continuous dynamic recrystallization (CDRX) was evidenced for ferrite, while it was suggested that a static recrystallization together with CDRX may occur for austenite. It was found that ferrite and austenite grains in the SZ take a typical shear texture of bcc and fcc materials respectively.

Keywords: Friction stir welding, Dynamic recrystallization, Electron backscattering diffraction (EBSD), Duplex stainless steel

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2954
444 Structural Safety Evaluation of Zip-Line Due to Dynamic Impact Load

Authors: Bu Seog Ju, Jae Sang Kim, Woo Young Jung

Abstract:

In recent year, with recent increase of interest towards leisure sports, increased number of Zip-Line or Zip-Wire facilities has built. Many researches have been actively conducted on the emphasis of the cable and the wire at the bridge. However, very limited researches have been conducted on the safety of the Zip-Line structure. In fact, fall accidents from Zip-Line have been reported frequently. Therefore, in this study, the structural safety of Zip-Line under dynamic impact loading condition were evaluated on the previously installed steel cable for leisure (Zip-Line), using 3-dimensional nonlinear Finite Element (FE) model. The result from current study would assist assurance of systematic stability of Zip-Line.

Keywords: Zip-Line, Wire, Cable, 3D FE Model, Safety.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4026
443 Phase Transformation Temperatures for Shape Memory Alloy Wire

Authors: Tan Wee Choon, Abdul Saad Salleh, Saifulnizan Jamian, Mohd. Imran Ghazali

Abstract:

Phase transformation temperature is one of the most important parameters for the shape memory alloys (SMAs). The most popular method to determine these phase transformation temperatures is the Differential Scanning Calorimeter (DSC), but due to the limitation of the DSC testing itself, it made it difficult for the finished product which is not in the powder form. A novel method which uses the Universal Testing Machine has been conducted to determine the phase transformation temperatures. The Flexinol wire was applied with force and maintained throughout the experiment and at the same time it was heated up slowly until a temperature of approximately 1000C with direct current. The direct current was then slowly decreased to cool down the temperature of the Flexinol wire. All the phase transformation temperatures for Flexinol wire were obtained. The austenite start at 52.540C and austenite finish at 60.900C, while martensite start at 44.780C and martensite finish at 32.840C.

Keywords: Phase transformation temperature, Robotic, Shapememory alloy, Universal Testing Machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3891
442 Optimization of Process Parameters in Wire Electrical Discharge Machining of Inconel X-750 for Dimensional Deviation Using Taguchi Technique

Authors: Mandeep Kumar, Hari Singh

Abstract:

The effective optimization of machining process parameters affects dramatically the cost and production time of machined components as well as the quality of the final products. This paper presents the optimization aspects of a Wire Electrical Discharge Machining operation using Inconel X-750 as work material. The objective considered in this study is minimization of the dimensional deviation. Six input process parameters of WEDM namely spark gap voltage, pulse-on time, pulse-off time, wire feed rate, peak current and wire tension, were chosen as variables to study the process performance. Taguchi's design of experiments methodology has been used for planning and designing the experiments. The analysis of variance was carried out for raw data as well as for signal to noise ratio. Four input parameters and one two-factor interaction have been found to be statistically significant for their effects on the response of interest. The confirmation experiments were also performed for validating the predicted results.

Keywords: ANOVA, DOE, inconel, machining, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1384
441 The Contraction Point for Phan-Thien/Tanner Model of Tube-Tooling Wire-Coating Flow

Authors: V. Ngamaramvaranggul, S. Thenissara

Abstract:

The simulation of extrusion process is studied widely in order to both increase products and improve quality, with broad application in wire coating. The annular tube-tooling extrusion was set up by a model that is termed as Navier-Stokes equation in addition to a rheological model of differential form based on singlemode exponential Phan-Thien/Tanner constitutive equation in a twodimensional cylindrical coordinate system for predicting the contraction point of the polymer melt beyond the die. Numerical solutions are sought through semi-implicit Taylor-Galerkin pressurecorrection finite element scheme. The investigation was focused on incompressible creeping flow with long relaxation time in terms of Weissenberg numbers up to 200. The isothermal case was considered with surface tension effect on free surface in extrudate flow and no slip at die wall. The Stream Line Upwind Petrov-Galerkin has been proposed to stabilize solution. The structure of mesh after die exit was adjusted following prediction of both top and bottom free surfaces so as to keep the location of contraction point around one unit length which is close to experimental results. The simulation of extrusion process is studied widely in order to both increase products and improve quality, with broad application in wire coating. The annular tube-tooling extrusion was set up by a model that is termed as Navier-Stokes equation in addition to a rheological model of differential form based on single-mode exponential Phan- Thien/Tanner constitutive equation in a two-dimensional cylindrical coordinate system for predicting the contraction point of the polymer melt beyond the die. Numerical solutions are sought through semiimplicit Taylor-Galerkin pressure-correction finite element scheme. The investigation was focused on incompressible creeping flow with long relaxation time in terms of Weissenberg numbers up to 200. The isothermal case was considered with surface tension effect on free surface in extrudate flow and no slip at die wall. The Stream Line Upwind Petrov-Galerkin has been proposed to stabilize solution. The structure of mesh after die exit was adjusted following prediction of both top and bottom free surfaces so as to keep the location of contraction point around one unit length which is close to experimental results.

Keywords: wire coating, free surface, tube-tooling, extrudate swell, surface tension, finite element method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1972