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Microstructure Changes of Machined Surfaces
on Austenitic 304 Stainless Steel

Lin. Yan, Wenyu. Yang, Hongping. Jin , Zhiguang Wang

Abstract—This paper presents a experiment to estimate the
influences of cutting conditions in microstructure changes of
machining austenitic 304 stainless steel, especially for wear insert. The
wear insert were prefabricated with awidth of 0.5 mm. And the forces,
temperature distribution, RS, and microstructure changes were
measured by force dynamometer, infrared thermal camera, X-ray
diffraction, XRD, SEM, respectively. Theresultstold that the different
combinations of machining condition have a significant influence on
machined surface microstructure changes. In addition to that, the
ANOVA and AOM were used to tell the different influences of cutting
speed, feed rate, and wear insert.
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|. INTRODUCTION
HE austenitic 304 stainless steel is hard machined material,
because of its high strain, high strain hardening, and low
heat conductivity. When stainless steel is used in a product, the
microstructure changes of the machined surfaces generated
significantly influence the product performance [1, 2].

Many investigators have studied the effects of machining
conditions on microstructure changes in 304 stainless steel.
Ezugwu and Olgjire evaluated the machining performance of
stainless steel in different machining conditions [3]. In their
work, they concluded that the microstructural alterations of the
machined surfaces were predominantly plastic deformation of
grain boundaries in addition to untempered and overtemperated
matensites. Kurniawan et a also researched the influences of
cutting parameters and wiper tool on machined surfaces
microstructure changes [4]. And, they found that the
combination of low cutting speed and feed rate resulted in
preferable surface integrity, minor microstructure alteration,
and compressive residual stress. However, as investigated by
these researchers, the relationship between the machining
parameters and microstructure changes is unclear. Chien and
Chou used the ANN theory to predict the machinability of 304
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stainless steel [5]. And, they trained the ANN model with
experimental data and proposed an optimized approach to
obtain optimal cutting conditions for desired surface roughness,
cutting force and tool life, that maximizes material removal rate
(MRR). In addition to that, Dabade et a used ANONA to
research the influences of machining parameters in surface
finish and integrity, and they found that the feed rate was the
most significant factor influencing the magnitude of cutting
force, the wiper insert obviously reduced the feed marks, pits
and cracks[6].

Unfortunately, very few researchers have studied the effect of
wear width. The main obstacles to the development of
experimental researches for wear influence are to measure the
temperature distribution, forces, and wear width. Therefore,
considered all abovefacts, the present study intendsto study the
influence of wear on microstructure changes in machining
austenitic 304 stainless steel. In this work, a new experiment is
presented to estimate the influences of wear on machined
surfaces. And, the forces, temperature distribution, and
microstructure changes are measured, then the influence of wear
on surface are talked.

II.EXPERIMENTAL DETAILS

A. Design of experiment

The cutting tool with prefabricated wear width of 0.5 mm is
shown in Fig.1, thetool radiusis 0.4mm, and therake angleis 3

°. The experimental measurement of machining temperature

distribution is shown in Fig.2. To study the cutting area
temperature distribution along the tool flank wear width, the
camera was placed sufficiently close to the cutting zone, at a
distance of 40 mm. And, to protect the cameralens, two chips of
silicon with a thickness of 0.5 mm each were placed in front of
the camera, while other areas were protected using IR-proof
Plexiglass. The camerawas placed on the small pallet of alathe,
which continuously moved with the cutting tool. The length of
the feed was limited to 10 mm to minimize the variability of the
new cutting tools and prevent the introduction new tool wear. A
new cutting tool was used for each experimental parameter.
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Fig. 1 Cutting tool system with prefabricated wear width
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Fig. 2 Designed experiment to measure machining temperature

B. Experimental setup

Inthisexperiment, aKistler cutting force dynamometer 9257,
a three-component tool-holding dynamometer with a minimum
resolution of 2 N, was used to measure the forces. And,
temperatures were measured by a VarioCAM IR thermal
imager, which is a modern thermo-graphic system used to
obtain precise, quick and non-contact measurements of the
surface temperatures of objects. Its compact, robust design and
durability make it especially suitable for industrial applications,
even under unfavorable external conditions. The infrared
thermal-imaging camera has a 640x480- or 384x228-pixel
array, a target image temperature range between -40°C and

1200°C , and aminimum resolvable temperature difference of

approximately 0.2°C. And, the experiment design matrix is
shown in Tabl. After turning, the residual stresses was
measured by Proto MG2000 X-ray, the surface microstructure
changes were measured by scanning electron microscope
(Quanta 200), the transformations of machined surfaces were
measured by XRD (X' Pert PRO).

TABLEI
THE L4 EXPERIMENT DESIGN MATRIX
Condition No. Wiper Cutting Feed rate(mm/rev)
width(mm)  speed(m/min)
1 0 100 0.11
2 0 175 0.2
3 0.5 100 0.2
4 0.5 175 0.11

C.Workpiece material

In the cutting experiments, 304 stainless steel tubes with the
same external diameter of 150x48x3.5 mm were used. The
reason why 304 stainless steel was chosen is due to its wide
application in the production of critical structural components
in chemical industries and nuclear power stations and their
provision of a unique combination of strong mechanical
properties and corrosion resistance. However, it is often
regarded as a difficult-to-machine material because of its high
sengitivity to strain and stress rates and severe work hardening.
Moreover, its low therma conductivity leads to heat

International Scholarly and Scientific Research & Innovation 5(9) 2011

concentration in the cutting zone, resulting in high localized
temperatures; the chemical composition of the stainless steel is

shownin Fig. 3.
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Fig. 3 The composition of austenitic 304 stainless steel

I1l. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. Experimental measurements of temperature, forces and
RS

The image of temperature distribution along wear width was
shown in Fig. 4. From the figure, we can see that the contact
width of the tool-workpiece interface is the same as that of the
tool wear width, and the temperaturein this region is obviously
higher than in other regions along the workpiece surface, since
the process-generated heat along the tool flank wear width has
no timeto diffuse. The location of the maximum temperature in
workpiece along tool-workpiece interface is at the end area of
the wear width because the amount of heat generated along the
wear width is greater than the heat diffused, which agrees with
the results of Huang and Liang[7].

Fig. 4 Temperature measurement along wear width

The variations in the absolute magnitude of forces during
machining are shownin Figs.5. It is observed that the magnitude
of force in cutting direction is always higher than that in other
directions. Residual stress pattern induced by machining is
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critical for component life and corrosion resistance. The
residual stress is significantly influenced by feed rate, cutting
speed, and tool geometry. In these experiments, residual stress
measurements were carried out using Proto MG2000 X-ray
diffraction technique. In the experiments, the tube was
Mn_K-Alpha, and the test head was with 2mm diameter. Every
measurement was taken at four different points on the same
surface, and the measured val ues were shown in Tab.2.
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Fig.5. Absolute magnitude of force components during machining

TABLE I
RESIDUAL STRESS COMPONENTS FROM MEASUREMENTS
Condition RSinfeed RSin cutting RSinradia
No. direction (MPa)  direction (MPa)  direction (MPa)
1 -145+35 15015 -10%25
2 -45+15 475430 -35+15
3 -175+20 165435 55420
4 -105£25 655+15 -15£25

B. Satigtical analysis of factors influencing temperature,
forcesand RS

TABLE Il
ANONA (P VALUES) FOR CUTTING 304 STAINLESS STEEL
Cutting Cuttin~ Feed Cutting RSin  RSin RSin
condition  gforce force temperatur feed cuttin  radia
e g |

Wear width 0.185 0.12 0.023 0.025 0.387 0.291
4

Feed rate 0.003 0.00 0.318 0.191 0.271 0.012
7

Cutting speed 0.031 0.06 0.009 0.008 0.513 0.154
2

plots of temperature are shown in Fig.6. They told that cutting
speed is the most significant influencing the magnitude of
temperature, and with the increasing of wear, feed rate and
cutting speed, the temperature increases, which are same as that
talked by Grzesik [8]. The forces of AOM plots are shown in
Fig.7. The thing must be pointed out that the forces in radia
direction were ignored because of zero values. From the Fig and
Tab.3, we can know that the most significant influencing the
magnitude of forcesisfeed rate. And, an interesting thing can be
seen that with the increasing of cutting speed, the forces are
reduced. Thesetrends could be dueto larger cutting speed could
cause larger heat generation in the cutting zone leading to
increased thermal softening. The AOM plots of residual stresses
are shown in Fig.8. It is observed from the Fig that residua
stresses are tensile for the machined workpiece surface, which
agrees with the earlier results by Jang et a in machining
stainless stedl because of its harden machining [9]. Further, the
tensile stresses are reduced by wear, the reason is related to the
increased of tool-workpiece contact area.

The statistical analysis involving ANOVA and AOM was
used to research the factor influences. The ANOVA for
temperature, forces and RSis shownin Tab 3. And, the AOM
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Fig. 8 Main effect plotsfor RS (a) RS in feed direction (b) RSin
cutting direction (c) RS in radial direction

C.Analysis of surface transformation

XRD measurements were made on un-machined and
machined workpiece surfaces, respectively. The measured
results are shown in Fig.9. The transformations of machined
surfaces are obvioudy captured, and 7 and & represent the
austenite and martensite phases, respectively. The figure shows
that the austenite near the machined surface transformed to
martensite. This result was also found by Ghosh [2].
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Fig. 10 SEM images of the machined surface and subsurface

IV. CONCLUSIONS

The experiments were conducted to determine microstructure
changes of different machining conditions of austenitic 304
stainless stedl, and the following conclusions were thus made:
1) The statistical analysis of the temperature indicates that

cutting speed is the most significant factor influencing
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magnitude of them. The location of the maximum
temperature in workpiece along tool-workpiece interface is
at the end area of the wear width because the amount of heat
generated along the wear width is greater than the heat
diffused.

The statistical analysis of the forces indicates that feed rate
is the most significant factor influencing magnitude of
them. Also, with a wear insert tool the forces are also
improved, and this trend could be due to the increased of
friction between wear and workpiece contact. And, the
magnitudes of these forces components tell that the
mechanical influence of friction is greater than thermal
softening of stainless steel material.

The state of residual stresses changes from tensile to
compressive with wear insert at the combination of low
feed rate and cutting speed.

Lastly, the wear cutting is significantly effective in
reducing the number of microscopic pitting, cracks, and
feed marks than no wear insert. Moreover, the machined
surfaces of wear insert are much cleaner than non-wear
inserts are used. Thus, it can tell that the wear is relatively
successful in improving the quality of machined surface.
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