Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 31464
Thermal Fatigue Behavior of Austenitic Stainless Steels

Authors: Jung-Ho Moon, Tae Kwon Ha

Abstract:

Continually increasing working temperature and growing need for greater efficiency and reliability of automotive exhaust require systematic investigation into the thermal fatigue properties especially of high temperature stainless steels. In this study, thermal fatigue properties of 300 series austenitic stainless steels have been evaluated in the temperature ranges of 200-800oC and 200-900oC. Systematic methods for control of temperatures within the predetermined range and measurement of load applied to specimens as a function of temperature during thermal cycles have been established. Thermal fatigue tests were conducted under fully constrained condition, where both ends of specimens were completely fixed. Load relaxation behavior at the temperatures of thermal cycle was closely related with the thermal fatigue property.

Keywords: Austenitic stainless steel, automotive exhaust, thermal fatigue, microstructure, load relaxation.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1092279

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3099

References:


[1] R. Zuchowski, PraceNaukowe Inst. Mater. I Mech. Tech. Pol. Wrocl., vol. 43, 1989.
[2] D. A. Spera, "Thermal fatigue of materials and components,” ASTM STP 612, p. 69, 1976.
[3] F. D. Fisher, F. G. Rammersdorfer, F. J. Bauer, Metall. Trans. A, vol. 21, p. 935, 1990.
[4] N. Matsuura, 2nd Annual Conference of the International Stainless Steel Forum, Market Development Committee, p. 1, 1998.
[5] J. W. Kwon, Y. H. Kim, and Y. D. Lee,The 7th Steel Symposium on "Development of Automotive Materials and Parts for Weight Reduction”, Eds. by O. Kwon, Y. S. Jin, S. J. Kim, and W. P. Lee, KIM, Korea,p. 285, 2000.
[6] Y. D. Lee, and S. H. Park,Bull. of the Koeran Inst. of Met. &Mater.,vol. 6, p. 41, 1993.
[7] J. W. Kwon, Y. Y. Lee, and Y. D. Lee,Materials at High Temperature, vol. 17, p. 319, 2000.
[8] M. Barteri, M. G. Mecozzi, and S. Fortunati, International Congress Stainless Steel ’99, vol. 3, p. 75, 1999.
[9] N. Fujita, N. Ohmura, E. Sato, and A. Yamamoto, Nippon Technical Report, No. 71, p. 25, 1996.
[10] F. Cverna, "Thermal Properties of Metals,” ASM International, Materials Park, Ohio, 2002.