Search results for: Solutions
1483 Some Static Isotropic Perfect Fluid Spheres in General Relativity
Authors: Sachin Kumar, Y. K. Gupta, J. R. Sharma
Abstract:
In the present article, a new class of solutions of Einstein field equations is investigated for a spherically symmetric space-time when the source of gravitation is a perfect fluid. All the solutions have been derived by making some suitable arrangements in the field equations. The solutions so obtained have been seen to describe Schwarzschild interior solutions. Most of the solutions are subjected to the reality conditions. As far as the authors are aware the solutions are new.Keywords: Einstein's equations, General Relativity, PerfectFluid, Spherical symmetric.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13331482 Commercializing Technology Solutions- Moving from Products to Solutions
Authors: Anand Dass, Hiroaki Murakami
Abstract:
The paper outlines the drivers behind the movement from products to solutions in the Hi-Tech Business-to-Business markets. The paper lists out the challenges in enabling the transformation from products to solutions and also attempts to explore strategic and operational recommendations based on the authors- factual experiences with Japanese Hi-tech manufacturing organizations. Organizations in the Hi-Tech Business-to-Business markets are increasingly being compelled to move to a solutions model from the conventional products model. Despite the added complexity of solutions, successful technology commercialization can be achieved by making prudent choices in defining a relevant solutions model, by backing the solution model through appropriate organizational design, and by overhauling the new product development process and supporting infrastructure.Keywords: Technology commercialization, Solutions, Hi-Tech companies, Japan, Management of technology
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13571481 Exact Pfaffian and N-Soliton Solutions to a (3+1)-Dimensional Generalized Integrable Nonlinear Partial Differential Equations
Authors: Magdy G. Asaad
Abstract:
The objective of this paper is to use the Pfaffian technique to construct different classes of exact Pfaffian solutions and N-soliton solutions to some of the generalized integrable nonlinear partial differential equations in (3+1) dimensions. In this paper, I will show that the Pfaffian solutions to the nonlinear PDEs are nothing but Pfaffian identities. Solitons are among the most beneficial solutions for science and technology, from ocean waves to transmission of information through optical fibers or energy transport along protein molecules. The existence of multi-solitons, especially three-soliton solutions, is essential for information technology: it makes possible undisturbed simultaneous propagation of many pulses in both directions.Keywords: Bilinear operator, G-BKP equation, Integrable nonlinear PDEs, Jimbo-Miwa equation, Ma-Fan equation, N-soliton solutions, Pfaffian solutions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20941480 Exploring Solutions in Extended Horava-Lifshitz Gravity
Authors: Aziza Altaibayeva, Ertan Gudekli, Ratbay Myrzakulov
Abstract:
In this letter, we explore exact solutions for the Horava-Lifshitz gravity. We use of an extension of this theory with first order dynamical lapse function. The equations of motion have been derived in a fully consistent scenario. We assume that there are some spherically symmetric families of exact solutions of this extended theory of gravity. We obtain exact solutions and investigate the singularity structures of these solutions. Specially, an exact solution with the regular horizon is found.
Keywords: Quantum gravity, Horava-Lifshitz gravity, black hole, spherically symmetric space times.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22461479 Bifurcation Method for Solving Positive Solutions to a Class of Semilinear Elliptic Equations and Stability Analysis of Solutions
Authors: Hailong Zhu, Zhaoxiang Li
Abstract:
Semilinear elliptic equations are ubiquitous in natural sciences. They give rise to a variety of important phenomena in quantum mechanics, nonlinear optics, astrophysics, etc because they have rich multiple solutions. But the nontrivial solutions of semilinear equations are hard to be solved for the lack of stabilities, such as Lane-Emden equation, Henon equation and Chandrasekhar equation. In this paper, bifurcation method is applied to solving semilinear elliptic equations which are with homogeneous Dirichlet boundary conditions in 2D. Using this method, nontrivial numerical solutions will be computed and visualized in many different domains (such as square, disk, annulus, dumbbell, etc).
Keywords: Semilinear elliptic equations, positive solutions, bifurcation method, isotropy subgroups.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16471478 Traveling Wave Solutions for Shallow Water Wave Equation by (G'/G)-Expansion Method
Authors: Anjali Verma, Ram Jiwari, Jitender Kumar
Abstract:
This paper presents a new function expansion method for finding traveling wave solution of a non-linear equation and calls it the (G'/G)-expansion method. The shallow water wave equation is reduced to a non linear ordinary differential equation by using a simple transformation. As a result the traveling wave solutions of shallow water wave equation are expressed in three forms: hyperbolic solutions, trigonometric solutions and rational solutions.
Keywords: Shallow water wave equation, Exact solutions, (G'/G) expansion method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18391477 The Pell Equation x2 − (k2 − k)y2 = 2t
Authors: Ahmet Tekcan
Abstract:
Let k, t, d be arbitrary integers with k ≥ 2, t ≥ 0 and d = k2 - k. In the first section we give some preliminaries from Pell equations x2 - dy2 = 1 and x2 - dy2 = N, where N be any fixed positive integer. In the second section, we consider the integer solutions of Pell equations x2 - dy2 = 1 and x2 - dy2 = 2t. We give a method for the solutions of these equations. Further we derive recurrence relations on the solutions of these equationsKeywords: Pell equation, solutions of Pell equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14741476 Multiple Soliton Solutions of (2+1)-dimensional Potential Kadomtsev-Petviashvili Equation
Authors: Mohammad Najafi, Ali Jamshidi
Abstract:
We employ the idea of Hirota-s bilinear method, to obtain some new exact soliton solutions for high nonlinear form of (2+1)-dimensional potential Kadomtsev-Petviashvili equation. Multiple singular soliton solutions were obtained by this method. Moreover, multiple singular soliton solutions were also derived.
Keywords: Hirota bilinear method, potential Kadomtsev-Petviashvili equation, multiple soliton solutions, multiple singular soliton solutions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13731475 Periodic Solutions for a Delayed Population Model on Time Scales
Authors: Kejun Zhuang, Zhaohui Wen
Abstract:
This paper deals with a delayed single population model on time scales. With the assistance of coincidence degree theory, sufficient conditions for existence of periodic solutions are obtained. Furthermore, the better estimations for bounds of periodic solutions are established.
Keywords: Coincidence degree, continuation theorem, periodic solutions, time scales
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13471474 Positive Solutions for a Class of Semipositone Discrete Boundary Value Problems with Two Parameters
Authors: Benshi Zhu
Abstract:
In this paper, the existence, multiplicity and noexistence of positive solutions for a class of semipositone discrete boundary value problems with two parameters is studied by applying nonsmooth critical point theory and sub-super solutions method.Keywords: Discrete boundary value problems, nonsmoothcritical point theory, positive solutions, semipositone, sub-super solutions method
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13421473 Comparison Results of Two-point Fuzzy Boundary Value Problems
Authors: Hsuan-Ku Liu
Abstract:
This paper investigates the solutions of two-point fuzzy boundary value problems as the form x = f(t, x(t)), x(0) = A and x(l) = B, where A and B are fuzzy numbers. There are four different solutions for the problems when the lateral type of H-derivative is employed to solve the problems. As f(t, x) is a monotone function of x, these four solutions are reduced to two different solutions. As f(t, x(t)) = λx(t) or f(t, x(t)) = -λx(t), solutions and several comparison results are presented to indicate advantages of each solution.
Keywords: Fuzzy derivative, lateral type of H-derivative, fuzzy differential equations, fuzzy boundary value problems, boundary value problems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15311472 On the Integer Solutions of the Pell Equation x2 - dy2 = 2t
Authors: Ahmet Tekcan, Betül Gezer, Osman Bizim
Abstract:
Let k ≥ 1 and t ≥ 0 be two integers and let d = k2 + k be a positive non-square integer. In this paper, we consider the integer solutions of Pell equation x2 - dy2 = 2t. Further we derive a recurrence relation on the solutions of this equation.
Keywords: Pell equation, Diophantine equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23861471 The Pell Equation x2 − Py2 = Q
Authors: Ahmet Tekcan, Arzu Özkoç, Canan Kocapınar, Hatice Alkan
Abstract:
Let p be a prime number such that p ≡ 1(mod 4), say p = 1+4k for a positive integer k. Let P = 2k + 1 and Q = k2. In this paper, we consider the integer solutions of the Pell equation x2-Py2 = Q over Z and also over finite fields Fp. Also we deduce some relations on the integer solutions (xn, yn) of it.Keywords: Pell equation, solutions of Pell equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21051470 Behavior of Solutions of the System of Recurrence Equations Based on the Verhulst-Pearl Model
Authors: Vladislav N. Dumachev, Vladimir A. Rodin
Abstract:
By utilizing the system of the recurrence equations, containing two parameters, the dynamics of two antagonistically interconnected populations is studied. The following areas of the system behavior are detected: the area of the stable solutions, the area of cyclic solutions occurrence, the area of the accidental change of trajectories of solutions, and the area of chaos and fractal phenomena. The new two-dimensional diagram of the dynamics of the solutions change (the fractal cabbage) has been obtained. In the cross-section of this diagram for one of the equations the well-known Feigenbaum tree of doubling has been noted.Keywordsbifurcation, chaos, dynamics of populations, fractalsKeywords: bifurcation, chaos, dynamics of populations, fractals
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12761469 A Spectral Decomposition Method for Ordinary Differential Equation Systems with Constant or Linear Right Hand Sides
Authors: R. B. Ogunrinde, C. C. Jibunoh
Abstract:
In this paper, a spectral decomposition method is developed for the direct integration of stiff and nonstiff homogeneous linear (ODE) systems with linear, constant, or zero right hand sides (RHSs). The method does not require iteration but obtains solutions at any random points of t, by direct evaluation, in the interval of integration. All the numerical solutions obtained for the class of systems coincide with the exact theoretical solutions. In particular, solutions of homogeneous linear systems, i.e. with zero RHS, conform to the exact analytical solutions of the systems in terms of t.Keywords: Spectral decomposition, eigenvalues of the Jacobian, linear RHS, homogeneous linear systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11501468 On Symmetry Analysis and Exact Wave Solutions of New Modified Novikov Equation
Authors: Anupma Bansal, R. K. Gupta
Abstract:
In this paper, we study a new modified Novikov equation for its classical and nonclassical symmetries and use the symmetries to reduce it to a nonlinear ordinary differential equation (ODE). With the aid of solutions of the nonlinear ODE by using the modified (G/G)-expansion method proposed recently, multiple exact traveling wave solutions are obtained and the traveling wave solutions are expressed by the hyperbolic functions, trigonometric functions and rational functions.
Keywords: New Modified Novikov Equation, Lie Classical Method, Nonclassical Method, Modified (G'/G)-Expansion Method, Traveling Wave Solutions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16251467 Exact Solutions of Steady Plane Flows of an Incompressible Fluid of Variable Viscosity Using (ξ, ψ)- Or (η, ψ)- Coordinates
Authors: Rana Khalid Naeem, Asif Mansoor, Waseem Ahmed Khan, Aurangzaib
Abstract:
The exact solutions of the equations describing the steady plane motion of an incompressible fluid of variable viscosity for an arbitrary state equation are determined in the (ξ,ψ) − or (η,ψ )- coordinates where ψ(x,y) is the stream function, ξ and η are the parts of the analytic function, ϖ =ξ( x,y )+iη( x,y ). Most of the solutions involve arbitrary function/ functions indicating that the flow equations possess an infinite set of solutions.
Keywords: Exact solutions, Fluid of variable viscosity, Navier-Stokes equations, Steady plane flows
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34471466 Bifurcations and Chaotic Solutions of Two-dimensional Zonal Jet Flow on a Rotating Sphere
Authors: Eiichi Sasaki, Shin-ichi Takehiro, Michio Yamada
Abstract:
We study bifurcation structure of the zonal jet flow the streamfunction of which is expressed by a single spherical harmonics on a rotating sphere. In the non-rotating case, we find that a steady traveling wave solution arises from the zonal jet flow through Hopf bifurcation. As the Reynolds number increases, several traveling solutions arise only through the pitchfork bifurcations and at high Reynolds number the bifurcating solutions become Hopf unstable. In the rotating case, on the other hand, under the stabilizing effect of rotation, as the absolute value of rotation rate increases, the number of the bifurcating solutions arising from the zonal jet flow decreases monotonically. We also carry out time integration to study unsteady solutions at high Reynolds number and find that in the non-rotating case the unsteady solutions are chaotic, while not in the rotating cases calculated. This result reflects the general tendency that the rotation stabilizes nonlinear solutions of Navier-Stokes equations.Keywords: rotating sphere, two-dimensional flow, bifurcationstructure
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16501465 Effects of Introducing Similarity Measures into Artificial Bee Colony Approach for Optimization of Vehicle Routing Problem
Authors: P. Shunmugapriya, S. Kanmani, P. Jude Fredieric, U. Vignesh, J. Reman Justin, K. Vivek
Abstract:
Vehicle Routing Problem (VRP) is a complex combinatorial optimization problem and it is quite difficult to find an optimal solution consisting of a set of routes for vehicles whose total cost is minimum. Evolutionary and swarm intelligent (SI) algorithms play a vital role in solving optimization problems. While the SI algorithms perform search, the diversity between the solutions they exploit is very important. This is because of the need to avoid early convergence and to get an appropriate balance between the exploration and exploitation. Therefore, it is important to check how far the solutions are diverse. In this paper, we measure the similarity between solutions, which ABC exploits while optimizing VRP. The similar solutions found are discarded at the end of the iteration and only unique solutions are passed on to the next iteration. The bees of discarded solutions become scouts and they start searching for new solutions. This process is continued and results show that the solution is optimized at lesser number of iterations but with the overhead of computing similarity in all the iterations. The problem instance from Solomon benchmarked dataset has been used for evaluating the presented methodology.
Keywords: ABC algorithm, vehicle routing problem, optimization, Jaccard’s similarity measure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8451464 Self-Organization-Based Approach for Embedded Real-Time System Design
Authors: S. S. Bendib, L. W. Mouss, S. Kalla
Abstract:
This paper proposes a self-organization-based approach for real-time systems design. The addressed issue is the mapping of an application onto an architecture of heterogeneous processors while optimizing both makespan and reliability. Since this problem is NP-hard, a heuristic algorithm is used to obtain efficiently approximate solutions. The proposed approach takes into consideration the quality as well as the diversity of solutions. Indeed, an alternate treatment of the two objectives allows to produce solutions of good quality while a self-organization approach based on the neighborhood structure is used to reorganize solutions and consequently to enhance their diversity. Produced solutions make different compromises between the makespan and the reliability giving the user the possibility to select the solution suited to his (her) needs.Keywords: Embedded real-time systems design, makespan, reliability, self-organization, compromises.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4581463 Periodic Solutions in a Delayed Competitive System with the Effect of Toxic Substances on Time Scales
Authors: Changjin Xu, Qianhong Zhang
Abstract:
In this paper, the existence of periodic solutions of a delayed competitive system with the effect of toxic substances is investigated by using the Gaines and Mawhin,s continuation theorem of coincidence degree theory on time scales. New sufficient conditions are obtained for the existence of periodic solutions. The approach is unified to provide the existence of the desired solutions for the continuous differential equations and discrete difference equations. Moreover, The approach has been widely applied to study existence of periodic solutions in differential equations and difference equations.
Keywords: Time scales, competitive system, periodic solution, coincidence degree, topological degree.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14001462 Analytic and Finite Element Solutions for Temperature Profiles in Welding using Varied Heat Source Models
Authors: Djarot B. Darmadi, John Norrish, Anh Kiet Tieu
Abstract:
Solutions for the temperature profile around a moving heat source are obtained using both analytic and finite element (FEM) methods. Analytic and FEM solutions are applied to study the temperature profile in welding. A moving heat source is represented using both point heat source and uniform distributed disc heat source models. Analytic solutions are obtained by solving the partial differential equation for energy conservation in a solid, and FEM results are provided by simulating welding using the ANSYS software. Comparison is made for quasi steady state conditions. The results provided by the analytic solutions are in good agreement with results obtained by FEM.Keywords: Analytic solution, FEM, Temperature profile, HeatSource Model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22171461 Role of Ionic Solutions Affect Water Treeing Propagation in XLPE Insulation for High Voltage Cable
Authors: T. Boonraksa, B. Marungsri
Abstract:
This paper presents the experimental results on role of ionic solutions affect water treeing propagation in cross-linked polyethylene insulation for high voltage cable. To study the water treeing expansion due to the ionic solutions, discs of 4mm thickness and 4cm diameter were taken from 115 kV XLPE insulation cable and were used as test specimen in this study. Ionic solutions composed of CuSO4, FeSO4, Na2SO4 and K2SO4 were used. Each specimen was immersed in 0.1 mole ionic solutions and was tested for 120 hrs. under a voltage stress at 7 kV AC rms, 1000 Hz. The results show that Na2SO4 and CuSO4solutions play an important role in the expansion of water treeing and cause degradation of the crosslinked polyethylene (XLPE) in the presence of the applied electric field.
Keywords: Ionic Solutions, Water Treeing, Water treeing Expansion, Cross-linked Polyethylene (XLPE).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28801460 Exact Solutions of the Helmholtz equation via the Nikiforov-Uvarov Method
Authors: Said Laachir, Aziz Laaribi
Abstract:
The Helmholtz equation often arises in the study of physical problems involving partial differential equation. Many researchers have proposed numerous methods to find the analytic or approximate solutions for the proposed problems. In this work, the exact analytical solutions of the Helmholtz equation in spherical polar coordinates are presented using the Nikiforov-Uvarov (NU) method. It is found that the solution of the angular eigenfunction can be expressed by the associated-Legendre polynomial and radial eigenfunctions are obtained in terms of the Laguerre polynomials. The special case for k=0, which corresponds to the Laplace equation is also presented.
Keywords: Helmholtz equation, Nikiforov-Uvarov method, exact solutions, eigenfunctions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30031459 A Numerical Algorithm for Positive Solutions of Concave and Convex Elliptic Equation on R2
Authors: Hailong Zhu, Zhaoxiang Li
Abstract:
In this paper we investigate numerically positive solutions of the equation -Δu = λuq+up with Dirichlet boundary condition in a boundary domain ╬® for λ > 0 and 0 < q < 1 < p < 2*, we will compute and visualize the range of λ, this problem achieves a numerical solution.
Keywords: positive solutions, concave-convex, sub-super solution method, pseudo arclength method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13191458 Constructing Approximate and Exact Solutions for Boussinesq Equations using Homotopy Perturbation Padé Technique
Authors: Mohamed M. Mousa, Aidarkhan Kaltayev
Abstract:
Based on the homotopy perturbation method (HPM) and Padé approximants (PA), approximate and exact solutions are obtained for cubic Boussinesq and modified Boussinesq equations. The obtained solutions contain solitary waves, rational solutions. HPM is used for analytic treatment to those equations and PA for increasing the convergence region of the HPM analytical solution. The results reveal that the HPM with the enhancement of PA is a very effective, convenient and quite accurate to such types of partial differential equations.Keywords: Homotopy perturbation method, Padé approximants, cubic Boussinesq equation, modified Boussinesq equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 45761457 Reference Architecture for Intelligent Enterprise Solutions
Authors: Shankar Kambhampaty, Harish Rohan Kambhampaty
Abstract:
Data in IT systems in enterprises have been growing at phenomenal pace. This has provided opportunities to run analytics to gather intelligence on key business parameters that enable them to provide better products and services to customers. While there are several Artificial Intelligence/Machine Learning (AI/ML) and Business Intelligence (BI) tools and technologies available in marketplace to run analytics, there is a need for an integrated view when developing intelligent solutions in enterprises. This paper progressively elaborates a reference model for enterprise solutions, builds an integrated view of data, information and intelligence components and presents a reference architecture for intelligent enterprise solutions. Finally, it applies the reference architecture to an insurance organization. The reference architecture is the outcome of experience and insights gathered from developing intelligent solutions for several organizations.
Keywords: Architecture, model, intelligence, artificial intelligence, business intelligence, AI, BI, ML, analytics, enterprise.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13281456 Traveling Wave Solutions for the Sawada-Kotera-Kadomtsev-Petviashivili Equation and the Bogoyavlensky-Konoplechenko Equation by (G'/G)- Expansion Method
Authors: Nisha Goyal, R.K. Gupta
Abstract:
This paper presents a new function expansion method for finding traveling wave solutions of a nonlinear equations and calls it the G G -expansion method, given by Wang et al recently. As an application of this new method, we study the well-known Sawada-Kotera-Kadomtsev-Petviashivili equation and Bogoyavlensky-Konoplechenko equation. With two new expansions, general types of soliton solutions and periodic solutions for these two equations are obtained.
Keywords: Sawada-Kotera-Kadomtsev-Petviashivili equation, Bogoyavlensky-Konoplechenko equation,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16171455 New Exact Three-Wave Solutions for the (2+1)-Dimensional Asymmetric Nizhnik-Novikov-Veselov System
Authors: Fadi Awawdeh, O. Alsayyed
Abstract:
New exact three-wave solutions including periodic two-solitary solutions and doubly periodic solitary solutions for the (2+1)-dimensional asymmetric Nizhnik-Novikov- Veselov (ANNV) system are obtained using Hirota's bilinear form and generalized three-wave type of ansatz approach. It is shown that the generalized three-wave method, with the help of symbolic computation, provides an e¤ective and powerful mathematical tool for solving high dimensional nonlinear evolution equations in mathematical physics.
Keywords: Soliton Solution, Hirota Bilinear Method, ANNV System.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15111454 Exact Solution of Some Helical Flows of Newtonian Fluids
Authors: Imran Siddique
Abstract:
This paper deals with the helical flow of a Newtonian fluid in an infinite circular cylinder, due to both longitudinal and rotational shear stress. The velocity field and the resulting shear stress are determined by means of the Laplace and finite Hankel transforms and satisfy all imposed initial and boundary conditions. For large times, these solutions reduce to the well-known steady-state solutions.Keywords: Newtonian fluids, Velocity field, Exact solutions, Shear stress, Cylindrical domains.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1457