
 

 

 
Abstract—This paper proposes a self-organization-based 

approach for real-time systems design. The addressed issue is the 
mapping of an application onto an architecture of heterogeneous 
processors while optimizing both makespan and reliability. Since this 
problem is NP-hard, a heuristic algorithm is used to obtain efficiently 
approximate solutions. The proposed approach takes into 
consideration the quality as well as the diversity of solutions. Indeed, 
an alternate treatment of the two objectives allows to produce solutions 
of good quality while a self-organization approach based on the 
neighborhood structure is used to reorganize solutions and 
consequently to enhance their diversity. Produced solutions make 
different compromises between the makespan and the reliability giving 
the user the possibility to select the solution suited to his (her) needs. 
 

Keywords—Embedded real-time systems design, makespan, 
reliability, self-organization, compromises. 

I. INTRODUCTION 

ESIGN of embedded real-time systems includes a key step 
which is the mapping of a set of tasks onto a given 

architecture composed of heterogeneous processors. 
Furthermore, optimization of conflicting objectives is often 
needed. These last years, researchers focused on this multi-
objective problem taking into account a variety of antagonist 
objectives.  

Schedule length and power consumption are considered in 
[1]. The proposed algorithm is a two-phase hybrid task 
scheduling which is based on decomposition of the input task 
graph by applying spectral partitioning. However, priority is 
clearly given to power consumption due to assigning each part 
of the task graph to a low power processor before addressing 
the schedule length. The work in [2] addresses the problem of 
reliability and schedule length optimization in an adaptive 
manner. In fact, this is achieved onto reconfigurable platforms 
by applying fault tolerance techniques to the running tasks 
based on the exploration of the Pareto set of solutions in order 
to select the appropriate ones. Furthermore, a mathematical 
model of an integer nonlinear multi-objective optimization 
problem is used for improving the fault tolerance of hardware 
task graphs, scheduled in partially reconfigurable platforms. 

Energy efficiency and timeliness are addressed in real-time 
embedded systems [3]. The approach is based on Non-
dominated sorting genetic algorithm-II while the timing 
constraints are formulated using type-2 fuzzy sets (T2 FSs). A 
proactive scheduling algorithm optimizing both performance 
and power consumption is presented in [4]. Proactivity allows 
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the power management system to assign the devices a low or a 
high frequency according to the current situation. Embedded 
systems’ design problem is addressed in [5] using a genetic 
algorithm. Efficient compromises are achieved between 
reliability, execution time and energy consumption objectives.  

An adaptive scheduling algorithm is proposed in [6] for the 
efficient execution and management of hard and soft real time 
tasks in embedded IoT systems. The task starvation rate and 
increasing the CPU utilization are significantly optimized. The 
work proposed in [7] concerns a self-organization approach for 
scheduling tasks on heterogeneous processors where Dynamic 
Crowding Distance is used to reorganize solutions ensuring a 
better solution diversity. 

The paper first presents the given problem as a multi-
objective optimization one. In Section III, system models are 
defined. Section IV depicts the proposed approach while 
Section V is about experiment results. A conclusion is given in 
Section VI. 

II. TASK MAPPING: A MULTI-OBJECTIVE OPTIMIZATION 

PROBLEM 

A multi-objective problem is the one implying two or more 
conflicting objectives to be optimized. The general 
optimization problem is defined according to (1): 
 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓 𝑥  𝑓 𝑥 ,  𝑓 𝑥 , … , 𝑓 𝑥     (1) 
 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑔  𝑥 0 𝑖 1, 2, … , 𝑘 

𝑎𝑛𝑑 ℎ 𝑥 0 𝑗 1, 2, … , 𝑙  
 

where 𝑚 is the number of objectives functions, 𝑘 and 𝑙 are the 
number of inequality constraints and the number of equality 
constraints respectively. 

A point 𝑧 is Pareto dominated by a point 𝑧  iff: 
 

        ∀ 𝑖 ∈  1 … 𝑚  𝑧  𝑧          (2)  
and ∃ 𝑖 ∈ 1 … 𝑚  𝑠𝑜 𝑡ℎ𝑎𝑡 𝑧  𝑧   

 

Based on Pareto dominance concept defined by (2), a 
potentially interesting solution is the one for which improving 
one objective cannot be done without degrading at least another 
one. Each solution can be represented by its objective vector in 
a multi-dimensional space (Fig. 1).  

In the case of the task mapping problem onto processors, 
each 𝑠  in the decision space expresses a given schedule of tasks 
on processors while the schedule evaluation is achieved in the 
objective space through the objective functions 𝑓  and 𝑓 . 

Self-Organization-Based Approach for Embedded 
Real-Time System Design  

S. S. Bendib, L. W. Mouss, S. Kalla 

D

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:15, No:5, 2021 

291International Scholarly and Scientific Research & Innovation 15(5) 2021 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
Sy

st
em

s 
E

ng
in

ee
ri

ng
 V

ol
:1

5,
 N

o:
5,

 2
02

1 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
01

5.
pd

f



 

 

 

Fig. 1 Decision space mapping onto objective space 

III. SYSTEM MODELS 

A. Application and Architecture 

The two main parts of an embedded real-time system are the 
application and the architecture parts. In this work, the 
application is modelled by a data flow graph. Each vertex is a 
task and each edge a data dependency. Data dependencies 
express precedence constraints of the tasks and they have to be 
pertinently satisfied. Architecture model is represented by an 
undirected complete graph where each vertex is a processor, 
and each edge is a communication link. Processors are 
considered as heterogeneous and the communication 
mechanism as the send/receive one.  

 

 

Fig. 2 Example of application composed of 6 tasks 
 

 

Fig. 3 Example of architecture with 3 processors 

B. Reliability and Makespan Models 

According to the model proposed in [8] and considering the 
occurrence of failures following a Poisson law with a constant 
parameter λ, the reliability of a processor P (respectively, a 
communication link L) during the duration d is as described in 
(3):  
 

       𝑅𝑒𝑙 𝑒            (3) 
  

In [8], it is noted that some technical difficulties raise when 
using both reliability and makespan as objectives since the 
reliability depends intrinsically on the duration of the tasks and 

communications. Consequently, instead of using the usual 
model of the reliability [9], the concept of GSFR (Global 
System Failure Rate) proposed in [8] and noted ∧ is used. The 
GSFR expressed by (4) is the failure rate per time of the 
obtained multi-processors schedule, it is noted ∧ 𝑠  and 
defined as: 

 

         ∧ 𝑠           (4) 

 
where 𝑈 𝑆  is the total utilization of the hardware resources and 
𝑅𝑒𝑙 the corresponding reliability. That signifies the system is 
seen as a single operation executed on one machine. Thus, the 
failure rate does not depend on the duration of the operation 
anymore. Otherwise, the makespan is the end execution time of 
the task that is completed last among all tasks. It is defined as 
in (5): 
 

      M  max max
  

𝑒𝑛𝑑 𝑡𝑖, 𝑝𝑗       (5) 

  
where, end (𝑡 ,𝑝 ) is the time at which task 𝑡  ends its execution 
on processor 𝑝 . 

In [10], a function called schedule pressure is deduced from 

the application graph and is defined for each task 𝑡  ∈ 𝑇  (n 
referring to the heuristic step and cand to the set of candidate 
tasks meaning those not yet scheduled and whose predecessors 
are already scheduled) and each processor 𝑝 . It is noted 𝜎  
and defined in (6): 
 

𝜎 𝑡 , 𝑝   𝑆 ,  𝑆̅ 𝑅      (6) 

 

where 𝑅  is the critical path length of the partial schedule 

constituted of already scheduled tasks; 𝑆 ,  is the earliest 

time at which the task 𝑡  can start its execution on the processor 

𝑝 ; 𝑆̅  is the latest time from the end of 𝑡 , defined to be the 

length of the longest path from 𝑡  to output tasks of the 
application graph. 

 The schedule pressure is used to select the best task which 
minimizes the length of the critical path by introducing a 
priority between the tasks to be scheduled. 

C. Execution Models 

An execution time is defined for each pair 𝑡 , 𝑝 , it 
represents the worst-case execution time of the task 𝑡  on the 
processor 𝑝 . Since processors are heterogeneous, a task could 
have different execution times on different processors due to 
the heterogeneity of these ones. Furthermore, to each pair (𝑑 ,𝑙 ) 
corresponds a time expressing the worst-case transmission or 
communication time of the data dependency 𝑑  on the 
communication link 𝑙 . The intra-processor communication 
time is supposed to be 0-time unit. 

IV. THE PROPOSED APPROACH 

In this work, both quality and diversity of produced solutions 
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are taken into account. The alternate treatment of the objectives 
leads to solutions approaching optimal ones while a self-
organization strategy consists into solution reorganization in 
order to improve their diversity.  

A. Approach Principle 

The proposed approach called GSFR-Makespan 
Compromise Algorithm (GMCA) is based on three modules: 
Two heuristics constrained by a GSFR value and a makespan 
value respectively and which work in an alternate manner to 
optimize the GSFR and the makespan. The third module is a 
self-organization strategy to better explore solution space.  

 

 

Fig. 4 The proposed approach 
 

The self-organization is based on the neighborhood structure 
where a permutation-based neighborhood is used; it is defined 
by the transformation depicted in (7): 
 

      𝑉: 𝑆 → 𝑃 𝑠  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡: ∀ 𝑠 ∈ 𝑆      (7) 
 
𝑉 𝑠  𝑠  /𝑠  is a schedule resulting from a given 
permutation 𝑝 of 𝑠   

Supposing that two solutions 𝑠 and 𝑠  (grey and white 
colors), in the objective space, are too close, the self-
organization consists into extending the decision space by 
applying permutations on 𝑠.  

 

Fig. 5 Example of permutation result 
 

The solution 𝑠 could be replaced by one of its neighbours in 
the objective space. The starting constraint value could be 
changed using either GSFR or makespan value. This allows to 
create an instance of the problem.  

B. The Proposed Heuristics 

The proposed approach is supported by two greedy list-based 
heuristics (Algorithm 1 and Algorithm 2).  
 
Algorithm 1: GSFR-Constrained Heuristic 
Inputs: application graph, architecture graph, 𝐺𝑆𝐹𝑅 constraint  
Output: (GSFR value, Makespan value)  
Begin 

Initialize the lists of candidate and scheduled tasks: 𝑇 ≔  𝑡 ∈
𝑇 / 𝑝𝑟𝑒𝑑 𝑡  ∅  

 𝑇  := ∅ 

  While 𝑇   ∅ do 

   1.Compute the schedule pressure for each task 𝑡 of 𝑇  
 on each processor 𝑝𝑗 such that GSFR value   𝐺𝑆𝐹𝑅 constraint; 

   2.Schedule the pair (candidate task t, processor p) such  
 that the schedule pressure value is minimal; 
   3.Update the lists of candidate and scheduled tasks: 

  𝑇 := 𝑇  ∪ 𝑡  
 

  𝑇 := 𝑇 𝑡 ∪  𝑡  ∈ 𝑠𝑢𝑐𝑐 𝑡   ̸ 𝑝𝑟𝑒𝑑 𝑡  ⊆  𝑇  
  end while 
f s GSFR s , Makespan s  
if f s  is too close to already produced compromise values then 
 execute Self-organization; 
end if 
end 
 

GSFR and makespan objectives are optimized in an alternate 
manner while a self-organization is achieved to better explore 
the decision space and aiming to improve solution diversity. 

The lists 𝑇 , 𝑇  of candidate task list (a task is said to 
be candidate if it has no predecessor) and scheduled task list 
respectively are used. The two heuristics are guided by the same 
logic. Indeed, as long as there are still candidate (unscheduled) 
tasks, the three following steps are repeated: 
1. For each candidate task, the cost-function value is 

calculated on each processor such that the specified 
constraint is satisfied. 

2. The best pair (task, processor) is selected meaning the one 
minimizing the cost-function value and not violating the 
space defined by the current constraint value.  

3. The two used lists are updated by adding the selected task 
to the schedule in construction and removing it from the list 
of candidate tasks. 

In the case of close solutions, a self-organization is executed 
to eventually translate the current solution. 
 
Algorithm 2: Makespan-Constrained Heuristic 
Inputs: application graph, architecture graph, Makespan constraint  
Output: (GSFR value, Makespan value) 
Begin 
 Initialize the lists of candidate and scheduled tasks: 

 𝑇 ≔  𝑡 ∈ 𝑇 / 𝑝𝑟𝑒𝑑 𝑡  ∅  

 𝑇  := ∅ 

 While 𝑇   ∅ do 

  1.Compute the GSFR for each task of 𝑇  on each 
 processor 𝑝𝑗 such that Makespan value   Makespan constraint 
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  2. Schedule the pair (candidate task t, processor p) such  
 that GSFR value is minimal; 
  3.Update the lists of candidate and scheduled tasks: 

 𝑇 := 𝑇  ∪ 𝑡  

  𝑇 := 𝑇 𝑡 ∪  𝑡  ∈ 𝑠𝑢𝑐𝑐 𝑡   ̸ 𝑝𝑟𝑒𝑑 𝑡  ⊆  𝑇  
  end while 
f s GSFR s , Makespan s  
if f s  is too close to already produced compromise values then 
execute Self-organization; 
end if 
end 
 

The self-organization is described by Algorithm 3. 
 
Algorithm 3: Permutation-based Self-Organization  
Input: current schedule 𝑠, selected schedules  
Output: New schedule 𝑠   
Begin 
 Apply permutations on 𝑠 to create a set of schedules; 
 Select the subset 𝑃  of schedules satisfying precedence constraints; 
  if ∃ a schedule 𝑠  ∈ 𝑃  such that 
   (1) 𝑠  is not yet selected 
    and 
    (2) 𝑓 𝑠  is not close to compromise values of selected 
schedules 
    and 
    (3) 𝑓 𝑠  is non-dominated by the compromise values of 
schedules ∈ 𝑃   
  then 
  𝑠  is considered as the new schedule 𝑠  
   else 
 𝑠 is saved as the new schedule 𝑠  
  end if 
end 
 

When applying permutations on a given schedule, new 
schedules are produced. Once a solution (schedule) satisfies the 
three conditions cited in Algorithm 3, it is considered as the 
current schedule. However, such a schedule may not be found, 
in which case current schedule is saved. 

V. EXPERIMENT RESULTS 

In order to evaluate the proposed approach, a comparison to 
SPEA2 algorithm [11] is realized. For this purpose, a set of 
random algorithm graphs and an architecture graph composed 
of 4, 5, and 6 processors is generated. The parameter to vary is 
the number of task N = 20, 40, 60, 80 and for each N, 100 graphs 
have been generated.  

 

 

Fig. 6 Impact of N on Makespan for P = 5 

The aim of simulations is to study the impact of N (number 
of tasks) and P (number of processors) on the reliability and the 
makespan.  

 

 

Fig. 7 Impact of N on Reliability for P = 5 
 

Figs. 6 and 7 describe the impact of the number of tasks on 
the makespan and the reliability respectively. In Fig. 6, it is 
noted that GMCA performs better than SPEA2 since the 
makespan values related to GMCA are smaller than the ones of 
SPEA2. Similarly, with Fig. 7, it is observed that reliability 
values are greater when applying GMCA. 

 

 

Fig. 8 Impact of P on Makespan for N = 40 
 

 

Fig. 9 Impact of P on Reliability for N = 40 
 

TABLE I 
∆ METRIC VALUES OF GMCA AND SPEA2 

GMCA 
∆ Metric

SPEA2 
∆ Metric

GMCA 
∆ Metric 

SPEA2 
∆ Metric

0.535 0.539 0.632 0.639 

0.605 0.611 0.540 0.543 

0.712 0.720 0.582 0.584 

0.615 0.630 0.701 0.705 

0.541 0.542 0.652 0.655 

0.630 0.641 0.679 0.681 

0.553 0.556 0.714 0.718 

0.701 0.710 0.579 0.583 

0.663 0.670 0.597 0.601 

0.529 0.532 0.705 0.710 
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Figs. 8 and 9 are about the impact of the number of 
processors on the makespan and the reliability. Fig. 8 shows 
that the makespan, when applying GMCA, is less so better than 
the ones produced by SPEA2 while in Fig. 9, the reliability is 
better with GMCA. 

Solution diversity is evaluated using the ∆ metric proposed 
in [12] where a smaller value of ∆ implies a greater diversity. 
Table I shows more solution diversification with the proposed 
approach. 

VI. CONCLUSION 

In this paper, a self-organization-based approach for real-
time systems design is presented. More precisely, the addressed 
problem is the mapping of an application composed of a set of 
tasks onto an architecture of heterogeneous processors. In 
addition, two conflicting objectives have to be optimized 
namely the makespan and the reliability. The proposed 
approach addresses both quality and diversity of solutions. 
Indeed, alternate treatment of the objectives aims to produce 
solutions of good quality whereas diversification is ensured by 
a self-organization strategy. This one consists into applying 
permutations over the decision space in order to reorganize 
solutions in a better diversified configuration. The approach 
evaluation is achieved through its comparison with SPEA2 
algorithm. The obtained results show that the proposed 
approach produces solution of better quality with comparison 
to SPEA2. Furthermore, the ∆ metric indicates that solution 
diversity is better when applying the proposed approach. 
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