

Abstract—This paper proposes a self-organization-based

approach for real-time systems design. The addressed issue is the
mapping of an application onto an architecture of heterogeneous
processors while optimizing both makespan and reliability. Since this
problem is NP-hard, a heuristic algorithm is used to obtain efficiently
approximate solutions. The proposed approach takes into
consideration the quality as well as the diversity of solutions. Indeed,
an alternate treatment of the two objectives allows to produce solutions
of good quality while a self-organization approach based on the
neighborhood structure is used to reorganize solutions and
consequently to enhance their diversity. Produced solutions make
different compromises between the makespan and the reliability giving
the user the possibility to select the solution suited to his (her) needs.

Keywords—Embedded real-time systems design, makespan,
reliability, self-organization, compromises.

I. INTRODUCTION

ESIGN of embedded real-time systems includes a key step
which is the mapping of a set of tasks onto a given

architecture composed of heterogeneous processors.
Furthermore, optimization of conflicting objectives is often
needed. These last years, researchers focused on this multi-
objective problem taking into account a variety of antagonist
objectives.

Schedule length and power consumption are considered in
[1]. The proposed algorithm is a two-phase hybrid task
scheduling which is based on decomposition of the input task
graph by applying spectral partitioning. However, priority is
clearly given to power consumption due to assigning each part
of the task graph to a low power processor before addressing
the schedule length. The work in [2] addresses the problem of
reliability and schedule length optimization in an adaptive
manner. In fact, this is achieved onto reconfigurable platforms
by applying fault tolerance techniques to the running tasks
based on the exploration of the Pareto set of solutions in order
to select the appropriate ones. Furthermore, a mathematical
model of an integer nonlinear multi-objective optimization
problem is used for improving the fault tolerance of hardware
task graphs, scheduled in partially reconfigurable platforms.

Energy efficiency and timeliness are addressed in real-time
embedded systems [3]. The approach is based on Non-
dominated sorting genetic algorithm-II while the timing
constraints are formulated using type-2 fuzzy sets (T2 FSs). A
proactive scheduling algorithm optimizing both performance
and power consumption is presented in [4]. Proactivity allows

S. S. Bendib is with the Computer Science Department of Banta 2, 05000
Batna Algeria (corresponding author, phone: +213772247158; e-mail:
ss.bendib@univ-batna2.dz).

the power management system to assign the devices a low or a
high frequency according to the current situation. Embedded
systems’ design problem is addressed in [5] using a genetic
algorithm. Efficient compromises are achieved between
reliability, execution time and energy consumption objectives.

An adaptive scheduling algorithm is proposed in [6] for the
efficient execution and management of hard and soft real time
tasks in embedded IoT systems. The task starvation rate and
increasing the CPU utilization are significantly optimized. The
work proposed in [7] concerns a self-organization approach for
scheduling tasks on heterogeneous processors where Dynamic
Crowding Distance is used to reorganize solutions ensuring a
better solution diversity.

The paper first presents the given problem as a multi-
objective optimization one. In Section III, system models are
defined. Section IV depicts the proposed approach while
Section V is about experiment results. A conclusion is given in
Section VI.

II. TASK MAPPING: A MULTI-OBJECTIVE OPTIMIZATION

PROBLEM

A multi-objective problem is the one implying two or more
conflicting objectives to be optimized. The general
optimization problem is defined according to (1):

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓 𝑥 𝑓 𝑥 , 𝑓 𝑥 , … , 𝑓 𝑥 (1)
 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑔 𝑥 0 𝑖 1, 2, … , 𝑘

𝑎𝑛𝑑 ℎ 𝑥 0 𝑗 1, 2, … , 𝑙

where 𝑚 is the number of objectives functions, 𝑘 and 𝑙 are the
number of inequality constraints and the number of equality
constraints respectively.

A point 𝑧 is Pareto dominated by a point 𝑧 iff:

 ∀ 𝑖 ∈ 1 … 𝑚 𝑧 𝑧 (2)
and ∃ 𝑖 ∈ 1 … 𝑚 𝑠𝑜 𝑡ℎ𝑎𝑡 𝑧 𝑧

Based on Pareto dominance concept defined by (2), a
potentially interesting solution is the one for which improving
one objective cannot be done without degrading at least another
one. Each solution can be represented by its objective vector in
a multi-dimensional space (Fig. 1).

In the case of the task mapping problem onto processors,
each 𝑠 in the decision space expresses a given schedule of tasks
on processors while the schedule evaluation is achieved in the
objective space through the objective functions 𝑓 and 𝑓 .

Self-Organization-Based Approach for Embedded
Real-Time System Design

S. S. Bendib, L. W. Mouss, S. Kalla

D

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:15, No:5, 2021

291International Scholarly and Scientific Research & Innovation 15(5) 2021 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

5,
 N

o:
5,

 2
02

1
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
01

5.
pd

f

Fig. 1 Decision space mapping onto objective space

III. SYSTEM MODELS

A. Application and Architecture

The two main parts of an embedded real-time system are the
application and the architecture parts. In this work, the
application is modelled by a data flow graph. Each vertex is a
task and each edge a data dependency. Data dependencies
express precedence constraints of the tasks and they have to be
pertinently satisfied. Architecture model is represented by an
undirected complete graph where each vertex is a processor,
and each edge is a communication link. Processors are
considered as heterogeneous and the communication
mechanism as the send/receive one.

Fig. 2 Example of application composed of 6 tasks

Fig. 3 Example of architecture with 3 processors

B. Reliability and Makespan Models

According to the model proposed in [8] and considering the
occurrence of failures following a Poisson law with a constant
parameter λ, the reliability of a processor P (respectively, a
communication link L) during the duration d is as described in
(3):

 𝑅𝑒𝑙 𝑒 (3)

In [8], it is noted that some technical difficulties raise when
using both reliability and makespan as objectives since the
reliability depends intrinsically on the duration of the tasks and

communications. Consequently, instead of using the usual
model of the reliability [9], the concept of GSFR (Global
System Failure Rate) proposed in [8] and noted ∧ is used. The
GSFR expressed by (4) is the failure rate per time of the
obtained multi-processors schedule, it is noted ∧ 𝑠 and
defined as:

 ∧ 𝑠 (4)

where 𝑈 𝑆 is the total utilization of the hardware resources and
𝑅𝑒𝑙 the corresponding reliability. That signifies the system is
seen as a single operation executed on one machine. Thus, the
failure rate does not depend on the duration of the operation
anymore. Otherwise, the makespan is the end execution time of
the task that is completed last among all tasks. It is defined as
in (5):

 M max max

𝑒𝑛𝑑 𝑡𝑖, 𝑝𝑗 (5)

where, end (𝑡 ,𝑝) is the time at which task 𝑡 ends its execution
on processor 𝑝 .

In [10], a function called schedule pressure is deduced from

the application graph and is defined for each task 𝑡 ∈ 𝑇 (n
referring to the heuristic step and cand to the set of candidate
tasks meaning those not yet scheduled and whose predecessors
are already scheduled) and each processor 𝑝 . It is noted 𝜎
and defined in (6):

𝜎 𝑡 , 𝑝 𝑆 , 𝑆̅ 𝑅 (6)

where 𝑅 is the critical path length of the partial schedule

constituted of already scheduled tasks; 𝑆 , is the earliest

time at which the task 𝑡 can start its execution on the processor

𝑝 ; 𝑆̅ is the latest time from the end of 𝑡 , defined to be the

length of the longest path from 𝑡 to output tasks of the
application graph.

 The schedule pressure is used to select the best task which
minimizes the length of the critical path by introducing a
priority between the tasks to be scheduled.

C. Execution Models

An execution time is defined for each pair 𝑡 , 𝑝 , it
represents the worst-case execution time of the task 𝑡 on the
processor 𝑝 . Since processors are heterogeneous, a task could
have different execution times on different processors due to
the heterogeneity of these ones. Furthermore, to each pair (𝑑 ,𝑙)
corresponds a time expressing the worst-case transmission or
communication time of the data dependency 𝑑 on the
communication link 𝑙 . The intra-processor communication
time is supposed to be 0-time unit.

IV. THE PROPOSED APPROACH

In this work, both quality and diversity of produced solutions

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:15, No:5, 2021

292International Scholarly and Scientific Research & Innovation 15(5) 2021 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

5,
 N

o:
5,

 2
02

1
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
01

5.
pd

f

are taken into account. The alternate treatment of the objectives
leads to solutions approaching optimal ones while a self-
organization strategy consists into solution reorganization in
order to improve their diversity.

A. Approach Principle

The proposed approach called GSFR-Makespan
Compromise Algorithm (GMCA) is based on three modules:
Two heuristics constrained by a GSFR value and a makespan
value respectively and which work in an alternate manner to
optimize the GSFR and the makespan. The third module is a
self-organization strategy to better explore solution space.

Fig. 4 The proposed approach

The self-organization is based on the neighborhood structure
where a permutation-based neighborhood is used; it is defined
by the transformation depicted in (7):

 𝑉: 𝑆 → 𝑃 𝑠 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡: ∀ 𝑠 ∈ 𝑆 (7)

𝑉 𝑠 𝑠 /𝑠 is a schedule resulting from a given
permutation 𝑝 of 𝑠

Supposing that two solutions 𝑠 and 𝑠 (grey and white
colors), in the objective space, are too close, the self-
organization consists into extending the decision space by
applying permutations on 𝑠.

Fig. 5 Example of permutation result

The solution 𝑠 could be replaced by one of its neighbours in
the objective space. The starting constraint value could be
changed using either GSFR or makespan value. This allows to
create an instance of the problem.

B. The Proposed Heuristics

The proposed approach is supported by two greedy list-based
heuristics (Algorithm 1 and Algorithm 2).

Algorithm 1: GSFR-Constrained Heuristic
Inputs: application graph, architecture graph, 𝐺𝑆𝐹𝑅 constraint
Output: (GSFR value, Makespan value)
Begin

Initialize the lists of candidate and scheduled tasks: 𝑇 ≔ 𝑡 ∈
𝑇 / 𝑝𝑟𝑒𝑑 𝑡 ∅

 𝑇 := ∅

 While 𝑇 ∅ do

 1.Compute the schedule pressure for each task 𝑡 of 𝑇
 on each processor 𝑝𝑗 such that GSFR value 𝐺𝑆𝐹𝑅 constraint;

 2.Schedule the pair (candidate task t, processor p) such
 that the schedule pressure value is minimal;
 3.Update the lists of candidate and scheduled tasks:

 𝑇 := 𝑇 ∪ 𝑡

 𝑇 := 𝑇 𝑡 ∪ 𝑡 ∈ 𝑠𝑢𝑐𝑐 𝑡 ̸ 𝑝𝑟𝑒𝑑 𝑡 ⊆ 𝑇
 end while
f s GSFR s , Makespan s
if f s is too close to already produced compromise values then
 execute Self-organization;
end if
end

GSFR and makespan objectives are optimized in an alternate
manner while a self-organization is achieved to better explore
the decision space and aiming to improve solution diversity.

The lists 𝑇 , 𝑇 of candidate task list (a task is said to
be candidate if it has no predecessor) and scheduled task list
respectively are used. The two heuristics are guided by the same
logic. Indeed, as long as there are still candidate (unscheduled)
tasks, the three following steps are repeated:
1. For each candidate task, the cost-function value is

calculated on each processor such that the specified
constraint is satisfied.

2. The best pair (task, processor) is selected meaning the one
minimizing the cost-function value and not violating the
space defined by the current constraint value.

3. The two used lists are updated by adding the selected task
to the schedule in construction and removing it from the list
of candidate tasks.

In the case of close solutions, a self-organization is executed
to eventually translate the current solution.

Algorithm 2: Makespan-Constrained Heuristic
Inputs: application graph, architecture graph, Makespan constraint
Output: (GSFR value, Makespan value)
Begin
 Initialize the lists of candidate and scheduled tasks:

 𝑇 ≔ 𝑡 ∈ 𝑇 / 𝑝𝑟𝑒𝑑 𝑡 ∅

 𝑇 := ∅

 While 𝑇 ∅ do

 1.Compute the GSFR for each task of 𝑇 on each
 processor 𝑝𝑗 such that Makespan value Makespan constraint

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:15, No:5, 2021

293International Scholarly and Scientific Research & Innovation 15(5) 2021 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

5,
 N

o:
5,

 2
02

1
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
01

5.
pd

f

 2. Schedule the pair (candidate task t, processor p) such
 that GSFR value is minimal;
 3.Update the lists of candidate and scheduled tasks:

 𝑇 := 𝑇 ∪ 𝑡

 𝑇 := 𝑇 𝑡 ∪ 𝑡 ∈ 𝑠𝑢𝑐𝑐 𝑡 ̸ 𝑝𝑟𝑒𝑑 𝑡 ⊆ 𝑇
 end while
f s GSFR s , Makespan s
if f s is too close to already produced compromise values then
execute Self-organization;
end if
end

The self-organization is described by Algorithm 3.

Algorithm 3: Permutation-based Self-Organization
Input: current schedule 𝑠, selected schedules
Output: New schedule 𝑠
Begin
 Apply permutations on 𝑠 to create a set of schedules;
 Select the subset 𝑃 of schedules satisfying precedence constraints;
 if ∃ a schedule 𝑠 ∈ 𝑃 such that
 (1) 𝑠 is not yet selected
 and
 (2) 𝑓 𝑠 is not close to compromise values of selected
schedules
 and
 (3) 𝑓 𝑠 is non-dominated by the compromise values of
schedules ∈ 𝑃
 then
 𝑠 is considered as the new schedule 𝑠
 else
 𝑠 is saved as the new schedule 𝑠
 end if
end

When applying permutations on a given schedule, new
schedules are produced. Once a solution (schedule) satisfies the
three conditions cited in Algorithm 3, it is considered as the
current schedule. However, such a schedule may not be found,
in which case current schedule is saved.

V. EXPERIMENT RESULTS

In order to evaluate the proposed approach, a comparison to
SPEA2 algorithm [11] is realized. For this purpose, a set of
random algorithm graphs and an architecture graph composed
of 4, 5, and 6 processors is generated. The parameter to vary is
the number of task N = 20, 40, 60, 80 and for each N, 100 graphs
have been generated.

Fig. 6 Impact of N on Makespan for P = 5

The aim of simulations is to study the impact of N (number
of tasks) and P (number of processors) on the reliability and the
makespan.

Fig. 7 Impact of N on Reliability for P = 5

Figs. 6 and 7 describe the impact of the number of tasks on
the makespan and the reliability respectively. In Fig. 6, it is
noted that GMCA performs better than SPEA2 since the
makespan values related to GMCA are smaller than the ones of
SPEA2. Similarly, with Fig. 7, it is observed that reliability
values are greater when applying GMCA.

Fig. 8 Impact of P on Makespan for N = 40

Fig. 9 Impact of P on Reliability for N = 40

TABLE I
∆ METRIC VALUES OF GMCA AND SPEA2

GMCA
∆ Metric

SPEA2
∆ Metric

GMCA
∆ Metric

SPEA2
∆ Metric

0.535 0.539 0.632 0.639

0.605 0.611 0.540 0.543

0.712 0.720 0.582 0.584

0.615 0.630 0.701 0.705

0.541 0.542 0.652 0.655

0.630 0.641 0.679 0.681

0.553 0.556 0.714 0.718

0.701 0.710 0.579 0.583

0.663 0.670 0.597 0.601

0.529 0.532 0.705 0.710

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:15, No:5, 2021

294International Scholarly and Scientific Research & Innovation 15(5) 2021 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

5,
 N

o:
5,

 2
02

1
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
01

5.
pd

f

Figs. 8 and 9 are about the impact of the number of
processors on the makespan and the reliability. Fig. 8 shows
that the makespan, when applying GMCA, is less so better than
the ones produced by SPEA2 while in Fig. 9, the reliability is
better with GMCA.

Solution diversity is evaluated using the ∆ metric proposed
in [12] where a smaller value of ∆ implies a greater diversity.
Table I shows more solution diversification with the proposed
approach.

VI. CONCLUSION

In this paper, a self-organization-based approach for real-
time systems design is presented. More precisely, the addressed
problem is the mapping of an application composed of a set of
tasks onto an architecture of heterogeneous processors. In
addition, two conflicting objectives have to be optimized
namely the makespan and the reliability. The proposed
approach addresses both quality and diversity of solutions.
Indeed, alternate treatment of the objectives aims to produce
solutions of good quality whereas diversification is ensured by
a self-organization strategy. This one consists into applying
permutations over the decision space in order to reorganize
solutions in a better diversified configuration. The approach
evaluation is achieved through its comparison with SPEA2
algorithm. The obtained results show that the proposed
approach produces solution of better quality with comparison
to SPEA2. Furthermore, the ∆ metric indicates that solution
diversity is better when applying the proposed approach.

REFERENCES
[1] G. Taheri, A. Khonsari, R. Entezari-Maleki, L. Sousa, “A hybrid

algorithm for task scheduling on heterogeneous multiprocessor embedded
systems,” Journal of Applied Soft Computing, vol. 91, June. 2020

[2] R. Ramezani, Y. Sedaghat, M. Naghibzadeh, J. A. Clemente, “Reliability
and Makespan Optimization of Hardware Task Graphs in Partially
Reconfigurable Platforms,” IEEE Transactions on Aerospace and
Electronic Systems, vol. 53, pp. 983-994, 2017.

[3] A. K. Shukla, R. Nath, P. K. Muhuri, Q. M. Danish Lohani, “Energy
efficient multi-objective scheduling of tasks with interval type-2 fuzzy
timing constraints in an Industry 4.0 ecosystem,” Journal of Engineering
Applications of Artificial Intelligence, vol. 87, January. 2020.

[4] S. Shanthaveeraiah, Harsha, R. Balsubramani, “Optimal Power
Management System in Embedded Devices by using Novel Scheduling
Algorithm,” International journal of Embedded Systems and Real Time
Communication Systems, vol. 11, pp. 41-61, mois. 2020.

[5] M. Salimi, A. Majd, L. Loni, T. Seceleanu, C. Seceleanu, M. Sirjani, M.
Daneshtalab, E. Troubytsina, “A Multi-objective Task Scheduling
Method for Embedded System Design,” in Proc. 6th Conf. Engineering
of Computer Based Systems, 2020, pp. 1-9.

[6] M. Sehrish, A. Shabir, U. Israr, P. Dong Hwan, K. DoHyeun, “An
Adaptive Emergency First Intelligent Scheduling Algorithm for Efficient
Task Management and Scheduling in Hybrid of Hard Real-Time and Soft
Real-Time Embedded IoT Systems,” Sustainability, MDPI, Open Access
Journal, vol. 11(8), April. 2019.

[7] S. S. Bendib, H. kalla, S. Kalla, R. Hocine “A Self-Organized Scheduling
Algorithm for Embedded Real-Time Systems,” International journal of
Embedded of Real-Time Communication Systems, to be published.

[8] A. Girault, H. Kalla, “A novel bicriteria scheduling heuristics providing a
guaranteed global failure rate,” IEEE Transactions on Dependable and
secure Computing, vol. 6, pp. 241-254, 2009.

[9] J. Wang, S. Shatz, M. Goto, “Task allocation for maximizing reliability
of distributed computer systems,” IEEE Trans. Computers, vol. 41,
pp.156-168, 1992.

[10] Y. Sorel, “The algorithm architecture adequation methodology,” in The

Massively Parallel Computing systems, 1994.
[11] E. Zitzler, M. Laumanns, L. Thiele, “SPEA2: Improving the Strength

Pareto Evolutionary Algorithm for Multi-objective Optimization,” Int.
Conf. Evolutionary Methods for Design, Optimization and Control with
Applications to Industrial Problems. 2001.

[12] K. Deb, L. Thiele, M. Laumanns,, E. Zitzler,“Scalable test problems for
evolutionary multi-objective optimization, ” Evolutionary Multi-objective
Optimization, pp. 105-145, 2005.

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:15, No:5, 2021

295International Scholarly and Scientific Research & Innovation 15(5) 2021 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

5,
 N

o:
5,

 2
02

1
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
01

5.
pd

f

